Projeto da Disciplina
|
|
|
- Geraldo Cipriano
- 6 Há anos
- Visualizações:
Transcrição
1 Projeto da Disciplina Germano C. Vasconcelos Centro de Informática - UFPE Germano C.Vasconcelos 1
2 Objetivo Realizar um estudo experimental sobre a aplicação de modelos de redes neurais em um problema do mundo real Germano C.Vasconcelos 2
3 Motivações Possibilitar ao aluno uma visão prática do uso de redes neurais na solução de problemas Consolidar os conhecimentos teóricos apresentados em sala de aula Permitir o contato com ferramentas do Github, Keras, Scikit-learn na Linguagem Python Germano C.Vasconcelos 3
4 Projeto Análise de Risco de Crédito Classificação de padrões Base real de instituição que vende a crédito Base em larga escala: mil registros para treinamento e mil registros para teste Problema: com base no perfil de clientes, decidir a quem conceder crédito (risco de inadimplência) Germano C.Vasconcelos 4
5 Descrição do Projeto Conjunto de classificadores disponíveis Perceptron multicamadas (MLP) (obrigatório) Máquina de Vetores de Suporte (obrigatório) Ensemble de MLPs (obrigatório) Random Forest (usado para comparação) Gradient Boosting (usado para comparação) Ensemble de Classificadores (usado para comparação) Investigar diferentes topologias da rede e diferentes valores dos parâmetros (básico) Número de camadas Número de unidades intermediárias Influência da taxa de aprendizagem no treinamento Função de ativação Método de amostragem (SMOTE) Germano C.Vasconcelos 5
6 Descrição do Projeto Parâmetros adicionais que podem ser explorados Algoritmo de aprendizagem Taxa de aprendizagem adaptativa SMOTE Adaptado Outros Germano C.Vasconcelos 6
7 Preparação de Dados: (divisão e balanceamento) Conjuntos de dados independentes Treinamento Validação Teste (já está separado) Estatisticamente representativos e independentes Não pode haver sobreposição Germano Vasconcelos
8 Preparação de Dados: (divisão e balanceamento) Particionamento dos Dados Primeira etapa Misturados Germano Vasconcelos
9 Preparação de Dados: (divisão e balanceamento) Particionamento dos Dados Segunda etapa Misturados (com repetição) Germano Vasconcelos
10 Preparação de Dados: (divisão e balanceamento) Particionamento dos Dados Terceira etapa (com repetição)
11 Preparação de Dados: (divisão e balanceamento) Particionamento dos Dados com K- folds OBS: use 1 fold para validação também em cada rodada
12 Análise de Desempenho Classificação MSE (erro médio quadrado) Teste estatístico Kolmogorov-Smirnov -KS (principal) Matriz de confusão Auroc (Área sob a Curva Roc) Recall, Precision e F-Measure Germano C.Vasconcelos 12
13 Avaliação (Desempenho e Resultados)
14 Avaliação (Desempenho e Resultados) Matriz de Confusão Germano Vasconcelos
15 Avaliação (Desempenho e Resultados) Curvas ROC Germano Vasconcelos
16 Avaliação (Desempenho e Resultados) Curvas ROC: Exemplo
17 Experimentos Adicionais Replicação (oversampling) da Classe Minoritária com SMOTE Replicação (oversampling) da Classe Minoritária com SMOTE Adaptado Germano C.Vasconcelos 17
18 SMOTE (Synthetic Minority Oversampling Technique Chawla et al) Para a classe minoritária: Calcule k vizinhos mais próximos (da sua classe); Escolha 1 deles (x ); Crie um xnew=x + (x -x) * δ, Onde δ ε [0,1] : exemplo minoritário : Novo dado sintético 18
19 SMOTE (Synthetic Minority Oversampling Technique Chawla et al) Que ocorre se há um exemplo majoritário próximo? : exemplo minoritário : Novo dado sintético : exemplo majoritário 19
20 SMOTE Tendência de Sobre-generalização Sobre-generalização : exemplo minoritário : exemplo majoritário : exemplo sintético 20
21 Para a classe minoritária: Calcule k vizinhos mais próximos (de qualquer classe); Escolha 1 deles (x ); Crie um xnew=x + (x -x) * δ, Onde δ ε [0,1] se x for da classe minoritária e δ ε [0,0.5] se x for da classe majoritária SMOTE (Adaptado) : exemplo minoritário : Novo dado sintético : exemplo majoritário 21
22 Ferramentas para o Projeto Código em Python Conjuntos de dados do problema Germano C.Vasconcelos 22
23 Resultados do Projeto Apresentação com todos do grupo com descrição do problema, divisão dos dados, estrutura experimental e interpretação dos resultados Entrega no final do semestre Germano C.Vasconcelos 23
Redes Neurais Artificial. Prática. Inteligência Artificial
Redes Neurais Artificial Prática Inteligência Artificial Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Introdução a MLP 2. Base de dados e Pré-Processamento 3. Prática MLP - Introdução Redes
Classificação e Predição de Dados - Profits Consulting - Consultoria Empresarial - Serviços SAP- CRM Si
Classificação e Predição de Dados - Profits Consulting - Consultoria Empresarial - Serviços SAP- CRM Si Classificação de Dados Os modelos de classificação de dados são preditivos, pois desempenham inferências
Aprendizagem de Máquina
Aprendizagem de Máquina Alessandro L. Koerich Programa de Pós-Graduação em Informática Pontifícia Universidade Católica do Paraná (PUCPR) Horários Aulas Sala 3 CCET [quinta-feira, 8:20 12:00] Atendimento
Estudos Empíricos dos Métodos de Balanceamento para a Classificação
1 Estudos Empíricos dos Métodos de Balanceamento para a Classificação Daiany Francisca Lara Universidade do Estado de Mato Grosso - UNEMAT Colíder, Brasil [email protected] Aurora Trinidad Ramirez Pozo
Redes Neurais: MLP. Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação
Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Redes Neurais: MLP DCA0121 Inteligência Artificial Aplicada Heitor Medeiros 1 Tópicos Redes diretas de múltiplas
Aprendizagem de Máquina
Aprendizagem de Máquina Avaliação de Paradigmas Alessandro L. Koerich Mestrado/Doutorado em Informática Pontifícia Universidade Católica do Paraná (PUCPR) Mestrado/Doutorado em Informática Aprendizagem
Predição genômica de caracteres quantitativos por meio de Redes Neurais Artificias
Universidade Federal de Viçosa Predição genômica de caracteres quantitativos por meio de Redes Neurais Artificias Isabela de Castro Sant Anna Supervisor: Moysés Nascimento Laboratório de Inteligência Computacional
Mineração de Dados - II
Tópicos Especiais: INTELIGÊNCIA DE NEGÓCIOS II Mineração de Dados - II Sylvio Barbon Junior [email protected] 10 de julho de 2015 DC-UEL Sylvio Barbon Jr 1 Sumário Etapa II Algoritmos Básicos Weka: Framework
Redes Perceptron e Multilayer Perceptron aplicadas a base de dados IRIS
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Redes Perceptron e Multilayer Perceptron aplicadas a base de dados IRIS Aluno: Fabricio Aparecido Breve Prof.: Dr. André Ponce
Fundamentos de Inteligência Artificial [5COP099]
Fundamentos de Inteligência Artificial [5COP099] Dr. Sylvio Barbon Junior Departamento de Computação - UEL Disciplina Anual Assunto Aula 16 Redes Neurais Artificiais (MLP) 2 de 24 (MLP) Sumário Introdução
JAI 6 - Deep Learning Teoria e Prática
JAI 6 - Deep Learning Teoria e Prática Esteban Clua e Cristina Nader Vasconcelos Universidade Federal Fluminense Fundamentos Computação baseada em modelos [email protected] 2 Computação baseada em aprendizado
Inteligência Artificial Redes Neurais
Inteligência Artificial Jarley P. Nóbrega, Dr. Faculdade Nova Roma Bacharelado em Ciência da Computação [email protected] Semestre 2018.2 Jarley P. Nóbrega, Dr. (Nova Roma) Inteligência Artificial Semestre
Tópicos Especiais: Inteligência Artificial REDES NEURAIS
Tópicos Especiais: Inteligência Artificial REDES NEURAIS Material baseado e adaptado do Cap. 20 do Livro Inteligência Artificial de Russell & Norvig Bibliografia Inteligência Artificial Russell & Norvig
Redes Neurais MLP: Exemplos e Características
Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Redes Neurais MLP: Exemplos e Características DCA0121 Inteligência Artificial Aplicada Heitor Medeiros 1
Predição da Resposta ao Tramento Anti- Retroviral de Pacientes portadores do vírus HIV-1 através de Redes Neurais Artificiais
Universidade Federal de Pernambuco UFPE Centro de Informática CIn Pós-graduação em Ciência da Computação Princípios e Técnicas da Análise Estatística Experimental Predição da Resposta ao Tramento Anti-
UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica
REDES DE FUNÇÃO DE BASE RADIAL - RBF Prof. Dr. André A. P. Biscaro 1º Semestre de 2017 Funções de Base Global Funções de Base Global são usadas pelas redes BP. Estas funções são definidas como funções
Tópicos Especiais: Inteligência Artificial. Deep Learning
Tópicos Especiais: Inteligência Artificial Deep Learning Bibliografia Inteligência Artificial Russell & Norvig Site: http://aima.cs.berkeley.edu Inteligência Artificial, Ben Coppin. Online Course: Zero
Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 21 Projeto de RNA
Inteligência Artificial Prof. Tiago A. E. Ferreira Aula 21 Projeto de RNA Projeto de Redes Neurais Projeto de Redes Neurais Baseado apenas em dados Exemplos para treinar uma rede devem ser compostos por
2. Redes Neurais Artificiais
Computação Bioinspirada - 5955010-1 2. Redes Neurais Artificiais Prof. Renato Tinós Depto. de Computação e Matemática (FFCLRP/USP) 1 2.3. Perceptron Multicamadas - MLP 2.3.1. Introdução ao MLP 2.3.2. Treinamento
Reconhecimento de Padrões
Reconhecimento de Padrões André Tavares da Silva [email protected] Kuncheva pg. 8 a 25 (seções 1.3 e 1.4) Roteiro da aula Cálculo do erro de um classificador Técnicas de treinamento, avaliação e teste
Bruna Galle UPE Ecomp Mêuser Valença UPE Ecomp
Bruna Galle UPE Ecomp [email protected] Mêuser Valença UPE Ecomp [email protected] Roteiro Motivação Objetivos Conceitos básicos: Redes Neurais Pré processamento dos Dados Treinamento Resultados Conclusões
3 Redes Neurais Artificiais
3 Redes Neurais Artificiais 3.1. Introdução A capacidade de implementar computacionalmente versões simplificadas de neurônios biológicos deu origem a uma subespecialidade da inteligência artificial, conhecida
Redes Neurais Artificiais
Redes Neurais Artificiais Fabrício Olivetti de França Universidade Federal do ABC Tópicos 1. Redes Neurais Biológicas 2. Neurônio Artificial 3. Rede Neural Artificial 4. Keras 1 Redes Neurais Biológicas
Descoberta de Conhecimento em Bancos de Dados - KDD
Descoberta de Conhecimento em Bancos de Dados - KDD Professor: Rosalvo Ferreira de Oliveira Neto Disciplina: Inteligência Artificial Tópicos 1. Definições 2. Fases do processo 3. Exemplo do DMC 4. Avaliação
Redes Neurais Feedforward e Backpropagation. André Siqueira Ruela
Redes Neurais Feedforward e Backpropagation André Siqueira Ruela Sumário Introdução a redes feedforward Algoritmo feedforward Algoritmo backpropagation Feedforward Em uma rede feedforward, cada camada
Mineração de Dados em Biologia Molecular
Mineração de Dados em Biologia Molecular André C.. L. F. de Carvalho Monitor: Valéria Carvalho lanejamento e Análise de Experimentos rincipais tópicos Estimativa do erro artição dos dados Reamostragem
Introdução às Redes Neurais Artificiais
Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Introdução às Redes Neurais Artificiais DCA0121 Inteligência Artificial Aplicada Heitor Medeiros 1 Tópicos
Protótipo de Software para Reconhecimento de Impressões Digitais
Protótipo de Software para Reconhecimento de Impressões Digitais Aluno: Alex Sandro da Silva Orientador: Paulo de Tarso Mendes Luna Semestre - 99/1 Roteiro da Apresentação INTRODUÇÃO CONCEITOS BÁSICOS
Primeiras Redes Neurais Artificiais: Perceptron e Adaline
Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Primeiras Redes Neurais Artificiais: Perceptron e Adaline DCA0121 Inteligência Artificial Aplicada Heitor
FACULDADE DE CIÊNCIA DE ENGENHARIA DE SOFTWARE MATRIZ CURRICULAR DO CURSO DE ENGENHARIA DE SOFTWARE PRIMEIRO PERÍODO SEGUNDO PERÍODO
FACULDADE DE CIÊNCIA DE ENGENHARIA DE SOFTWARE MATRIZ CURRICULAR DO CURSO DE ENGENHARIA DE SOFTWARE PRIMEIRO PERÍODO ESW200 Introdução à Engenharia de Software 2 36 30 - ESW201 Prática de Programação I
Aprendizado de Máquina Introdução às Redes Neurais Artificiais
Aprendizado de Máquina Introdução às Redes Neurais Artificiais Marcos Oliveira Prates (Agradecimento Marcelo Azevedo Costa) Departamento de Estatística Universidade Federal de Minas Gerais Inteligência
Thiago Marzagão 1. 1 Thiago Marzagão (Universidade de Brasília) MINERAÇÃO DE DADOS 1 / 21
MINERAÇÃO DE DADOS Thiago Marzagão 1 1 [email protected] ÁRVORE DE DECISÃO & VALIDAÇÃO Thiago Marzagão (Universidade de Brasília) MINERAÇÃO DE DADOS 1 / 21 árvore de decisão Aulas passadas: queríamos
Perceptron de Múltiplas Camadas e Backpropagation
Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Perceptron de Múltiplas Camadas e Backpropagation Redes Neurais Artificiais Site: http://jeiks.net
DCBD. Avaliação de modelos. Métricas para avaliação de desempenho. Avaliação de modelos. Métricas para avaliação de desempenho...
DCBD Métricas para avaliação de desempenho Como avaliar o desempenho de um modelo? Métodos para avaliação de desempenho Como obter estimativas confiáveis? Métodos para comparação de modelos Como comparar
UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica
Toolbox de Redes Neurais MATLAB Prof. Dr. André A. P. Biscaro 1º Semestre de 2017 Toolbox de Redes Neurais Introdução ao Matlab Linha de comando NNTool Estudo de Casos Análise de Crédito Bancário (Classificação).
Roteiro. PCC142 / BCC444 - Mineração de Dados Avaliação de Classicadores. Estimativa da Acurácia. Introdução. Estimativa da Acurácia
Roteiro PCC142 / BCC444 - Mineração de Dados Avaliação de Classicadores Introdução Luiz Henrique de Campos Merschmann Departamento de Computação Universidade Federal de Ouro Preto [email protected]
4 Redes Neurais Artificiais
4 Redes Neurais Artificiais Inteligência computacional pode ser definida como um conjunto de modelos, algoritmos, técnicas, ferramentas e aplicações em sistemas computadorizados que emulem características
Aprendizado de Máquinas. Multi-Layer Perceptron (MLP)
Universidade Federal do Paraná (UFPR) Departamento de Informática (DInf) Aprendizado de Máquinas Multi-Layer Perceptron (MLP) David Menotti, Ph.D. web.inf.ufpr.br/menotti Redes Neuronais Cérebro humano.
Aprendizado de Máquina
Aprendizado de Máquina Introdução Luiz Eduardo S. Oliveira Universidade Federal do Paraná Departamento de Informática http://lesoliveira.net Luiz S. Oliveira (UFPR) Aprendizado de Máquina 1 / 19 Introdução
Previsão de Vazões utilizando Redes Neurais Artificiais MLP e NSRBN
Previsão de Vazões utilizando Redes Neurais Artificiais MLP e NSRBN Alan Caio Rodrigues MARQUES 1, Gelson da Cruz JUNIOR 2, Cassio Dener Noronha VINHAL 3 Escola de Engenharia Elétrica e de Computação 1
Introdução às Redes Neurais Artificiais
Introdução às Redes Neurais Artificiais Perceptrons de Múltiplas Camadas I Prof. João Marcos Meirelles da Silva www.professores.uff.br/jmarcos Departamento de Engenharia de Telecomunicações Escola de Engenharia
UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica
REDES NEURAIS ARTIFICIAIS REDE ADALINE e REGRA DELTA Prof. Dr. André A. P. Biscaro 2º Semestre de 2017 Aspectos históricos O ADALINE foi idealizado por Widrow & Hoff em 1960. Sua principal aplicação estava
Regressão Linear. Fabrício Olivetti de França. Universidade Federal do ABC
Regressão Linear Fabrício Olivetti de França Universidade Federal do ABC Tópicos 1. Overfitting 2. Treino e Validação 3. Baseline dos modelos 1 Overfitting Overfit Em muitos casos, a amostra de dados coletada
UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica
REDES NEURAIS ARTIFICIAIS PERCEPTRONS Prof. Dr. André A. P. Biscaro 1º Semestre de 2017 Forma mais simples de configuração das RNAs Rosenblatt (1958) retina área de projeção área de associação respostas
Redes Neurais e Sistemas Fuzzy
Redes Neurais e Sistemas Fuzzy Redes de uma única camada O Perceptron elementar Classificação de padrões por um perceptron A tarefa de classificação consiste em aprender a atribuir rótulos a dados que
UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica
REDES NEURAIS ARTIFICIAIS AULA 03 Prof. Dr. André A. P. Biscaro 1º Semestre de 2017 INTRODUÇÃO Aprendizagem é um processo pelo qual os parâmetros livres de uma rede neural são adaptados através de um processo
Redes Neurais: RBF. Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação
Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Redes Neurais: RBF DCA0121 Inteligência Artificial Aplicada Heitor Medeiros 1 Tópicos Redes de Funções de
Redes Neurais Artificiais. Professor: Juan Moises Villanueva
Redes Neurais Artificiais Mestrando: Lucas Nicolau Email: [email protected] Professor: Juan Moises Villanueva Rede Neural Direta Arquitetura com múltiplas camadas com fluxo de informação apenas em
SEMINÁRIO DOS ARTIGOS:
SEMINÁRIO DOS ARTIGOS: Text Detection and Character Recognition in Scene Images with Unsupervised Feature Learning End-to-End Text Recognition with Convolutional Neural Networks Fernanda Maria Sirlene
Aprendizado de Máquina (Machine Learning)
Ciência da Computação Aprendizado de Máquina (Machine Learning) Aula 09 Árvores de Decisão Max Pereira Classificação É a tarefa de organizar objetos em uma entre diversas categorias pré-definidas. Exemplos
Sistemas Inteligentes
Sistemas Inteligentes UNIDADE 5 Redes Neurais Artificiais (Perceptron Multicamadas Conceitos) Prof. Ivan Nunes da Silva. Rede Perceptron Multicamadas Aspectos de arquitetura Redes Perceptron de Múltiplas
Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 03 / Detecção de Sinais
Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 03 / Detecção de Sinais Prof. Eduardo Simas ([email protected]) Programa de Pós-Graduação em Engenharia Elétrica/PPGEE Universidade Federal
2. Redes Neurais Artificiais
Computação Bioinspirada - 5955010-1 2. Redes Neurais Artificiais Prof. Renato Tinós Depto. de Computação e Matemática (FFCLRP/USP) 1 2.3. Perceptron Multicamadas - MLP 2.3.1. Introdução ao MLP 2.3.2. Treinamento
7 Resultados. F i (x j ) = j=1
7 Resultados Neste capítulo, utilizaremos os mesmos dados sintéticos gerados para realizar os experimentos no capítulo 4. Testaremos a aproximação implícita da variedade com duas subdivisões espaciais
Redes Neurais Artificiais - Introdução. Visão Computacional
Redes Neurais Artificiais - Introdução Visão Computacional Inspiração 2 Inspiração 3 Inspiração Atividade seletivanas conexões Soma os impulsos e passa a diante 4 Inspiração As conexões entre os dendritos
TÓPICOS EM INTELIGÊNCIA ARTIFICIAL Redes Neurais Artificiais
TÓPICOS EM INTELIGÊNCIA ARTIFICIAL Redes Neurais Artificiais [email protected] http://professor.luzerna.ifc.edu.br/ricardo-kerschbaumer/ Introdução O Cérebro humano Mais fascinante processador
PERCEPTRON. Características Básicas Modelo de Neurônio Estrutura da Rede Algoritmo de Aprendizado
PERCEPTRON Características Básicas Modelo de Neurônio Estrutura da Rede Algoritmo de Aprendizado CARACTERISTICAS BASICAS - Regra de propagação net - Função de ativação: Degrau = x w + - Topologia: uma
Aplicações de Sistemas Inteligentes
Aplicações de Sistemas Inteligentes Germano C. Vasconcelos Centro de Informática - UFPE 14/6/2010 1 Roteiro Inteligência Computacional Aplicações Mineração de Dados Métodos Exemplo em Análise de Crédito
Agregação de Algoritmos de Aprendizado de Máquina (AM) Professor: Eduardo R. Hruschka Estagiário PAE: Luiz F. S. Coletta
Agregação de Algoritmos de Aprendizado de Máquina (AM) Professor: Eduardo R. Hruschka Estagiário PAE: Luiz F. S. Coletta ([email protected]) Sumário 1. Motivação 2. Bagging 3. Random Forest 4. Boosting
Redes Neurais Artificiais. Sistemas de Informação/Ciências da Computação UNISUL Aran Bey Tcholakian Morales, Dr. Eng. (Apostila 9)
Redes Neurais Artificiais Sistemas de Informação/Ciências da Computação UNISUL Aran Bey Tcholakian Morales, Dr. Eng. (Apostila 9) Conceitos 2 Redes Neurais As Redes Neurais Artificias são modelos computacionais
Multi-Layer. Perceptrons. Algoritmos de Aprendizado. Perceptrons. Perceptrons
Algoritmos de Aprendizado Regra de Hebb Perceptron Delta Rule (Least Mean Square) Back Propagation Multi-Layer Perceptrons Redes de apenas uma camada só representam funções linearmente separáveis Redes
Inteligência Artificial. IA Conexionista: Perceptron de Múltiplas Camadas Mapas Auto-Organizáveis. Renan Rosado de Almeida
Inteligência Artificial IA Conexionista: Redes Neurais Artificiais Perceptron de Múltiplas Camadas Mapas Auto-Organizáveis Renan Rosado de Almeida [email protected] Perceptron de Múltiplas Camadas
