Análise de Componentes Principais (PCA)

Tamanho: px
Começar a partir da página:

Download "Análise de Componentes Principais (PCA)"

Transcrição

1 Análise de Componentes Principais (PCA) Lailson B. Moraes, George D. C. Cavalcanti

2 Roteiro Introdução Características Definição Algoritmo Exemplo Aplicações Vantagens e Desvantagens

3 Introdução (1/4) principal component analysis (pca) Técnica de análise estatística usada para compressão, visualização e classificação de dados A ideia central é reduzir a dimensionalidade de um conjunto de dados com o mínimo de perda de informação

4 Introdução (2/4) Proposta em 1901 por Karl Pearson E posteriormente por Hotelling (1933) e Loève (1963) Também conhecida como Transformação de Hotelling ou Transformação de Karhunen-Loève Nasceu no campo da estatística Popularizada na década de 60 Até hoje bastante usada

5 Introdução (3/4) objetivo do pca Encontrar um novo conjunto de variáveis menor que o conjunto original que preserve a maior parte da informação presente nos dados Informação diz respeito à variação presente na base de dados informação = variância

6 Introdução (4/4) pca variáveis correlacionadas, com redundância transformação linear variáveis independentes, sem redundância Em geral, há perda de informação no processo

7 Características (1/3) Elimina redundância entre os dados Variáveis que medem o mesmo evento Variáveis dependentes Análise feita a partir da matriz de covariância dos dados variância covariância

8 Características (2/3) Re-expressa os dados em um novo espaço Cada eixo representa um componente principal Novos eixos produzidos por combinações lineares dos eixos originais Eixos selecionados conforme sua variância

9 Características (3/3) Quantidade de componentes principais = Quantidade de variáveis originais Maior parte da informação concentra-se em poucos componentes Geralmente, obtém-se boa representação em baixa dimensão

10 Um pouco de estatística (1/4) Dada uma matriz de dados X, composta por n vetores-coluna com m atributos 1 Média Vetor-coluna com o valor médio para cada atributo a 11 a 21 a n1 a 12 a 22 a n2 a 1m a 2m a nm x1 x2 xn X = 1 n n x i = i=1 1 n 1 n 1 n n i=1 n i=1 n i=1 a i1 a i2 a im

11 Um pouco de estatística (2/4) Dada uma matriz de dados X, composta por n vetores-coluna com m atributos 2 Variância Vetor-coluna com a dispersão de cada atributo a 11 a 21 a n1 a 12 a 22 a n2 a 1m a 2m a nm var(x)= s 2 = n (x i X) 2 i=1 n 1 x1 x2 xn

12 Um pouco de estatística (3/4) Dada uma matriz de dados X, composta por n vetores-coluna com m atributos 3 Covariância Mede a correlação entre dois atributos. Se eles são linearmente independentes, sua covariância é nula. a 11 a 21 a n1 a 12 a 22 a n2 a 1m a 2m a nm cov(m j,m k )= s 2 jk = n (a ij a j )(a ik a k ) i=1 n 1 x1 x2 xn

13 Um pouco de estatística (4/4) Dada uma matriz de dados X, composta por n vetores-coluna com m atributos 4 Matriz de covariância Matriz simétrica quadrada (m, m) das covariâncias a 11 a 21 a n1 a 12 a 22 a n2 a 1m a 2m a nm C = cov(m 1,m 1 ) cov(m 2,m 1 ) cov(m m,m 1 ) cov(m 1,m 2 ) cov(m 2,m 2 ) cov(m m,m 2 ) cov(m 1,m m ) cov(m 2,m m ) cov(m m,m m ) x1 x2 xn

14 Definição (1/3) Seja p um vetor-coluna (m, 1) ˆX = p T X A projeção de X na direção p é dada por X = p T X objetivo do pca Encontrar o vetor p que maximiza a variância de X p 1 = argmax p =1 var(p T X) ˆX

15 Definição (2/3) objetivo do pca Encontrar o vetor p que maximiza a variância de X p 1 = argmax p =1 var(p T X) ˆX o que equivale a Sp 1 = αp 1 p1 é um autovetor de S α é um autovalor de S

16 Definição (3/3) Diz-se que p1 é um componente principal (PC) de X Os demais podem ser calculados de forma semelhante p 2 = argmax p =1 var(p T ˆX1 ) p m = argmax p =1 var(p T ˆXm 1 ) Contanto que p1, p2,, pm sejam ortogonais entre si

17 Algoritmo 1 Obter a média e centralizar os dados n X = 1 x i X = X X n i=1 2 Calcular a matriz de covariância X C = X T n 1 4 Montar a matriz de projeção com os k autovetores correspondentes ao k maiores autovalores P = p 11 p 21 p n1 p 12 p 22 p n2 p 1m p 2m p km p1 p2 pk 3 Decompor a matriz de covariância em autovalores e autovetores C =PDP T 5 Projetar os dados originais no novo espaço de k dimensões P autovetores D autovalores ˆX =P T X

18 Exemplo (1/4) toy problem X =

19 Exemplo (2/4) toy problem 1 Obter a média e centralizar os dados X = X = X X =

20 Exemplo (3/4) toy problem 2 Calcular a matriz de covariância cov(x) = Montar a matriz de projeção com os k autovetores dos k maiores autovalores D = Decompor a matriz de covariância em autovalores e autovetores D = P = P =

21 Exemplo (4/4) toy problem 5 Projetar os dados originais no novo espaço de k dimensões ˆX =

22 Aplicação (1/6) classificação por reconstrução Malagón-Borja and Fuentes. Object detection using image reconstruction with PCA. Image and Vision Computing (2009) vol. 27 (1-2) pp Available online at Image and Vision Computing 27 (2009) Object detection using image reconstruction with PCA Luis Malagón-Borja a, Olac Fuentes b, * a Computer Science Department, I.N.A.O.E., Tonantzintla, Puebla 72840, Mexico b Computer Science Department, University of Texas at El Paso, El Paso, TX 79968, USA Received 25 January 2006; received in revised form 8 November 2006; accepted 5 March 2007

23 Aplicação (2/6) ideia central Usar erros de reconstrução para classificação A Projeção de um vetor B Reconstrução de um vetor c Erro de reconstrução x = P T x x =Px ε = x x m dimensões k dimensões k dimensões m dimensões Cada reconstrução tem um erro associado PCA garante erro quadrático médio mínimo

24 Aplicação (3/6) ideia central Usar erros de reconstrução para classificação P gp P gn P ep P en pedestres escala de cinza não-pedestres escala de cinza pedestres bordas não-pedestres bordas PCA captura um padrão a partir das amostras Erros menores para imagens de pedestres nas reconstruções de Pgp e Pep

25 Aplicação (4/6) Imagens de borda diminuem a variabilidade Eliminação de cor e textura Filtro de Sobel

26 Aplicação (5/6) pedestres não-pedestres Original + Bordas P gp P ep P gn P en

27 Aplicação (6/6) 1 Obtenha as bordas e da imagem g 2 Calcule quatro reconstruções 4 Calcule o erro total dt d t = d gn + d en d gp d ep u gp =P gp P T gp (g µ gp )+µ gp u ep =P ep P T ep (e µ ep )+µ ep 5 Classifique usando a regra u gn =P gn P T gn (g µ gn )+µ gn u en =P en P T en(e µ en )+µ en 3 Compute os erros de reconstrução classe(g) = Pedestre d t 0 Não-pedestre d t <0 d gp = u gp g d gn = u gn g d ep = u ep e d en = u en e

28 Outras Aplicações Reconhecimento de faces Detecção de faces Reconstrução de imagens Compressão de dados Visualização de dados multidimensionais

29 Vantagens Alto poder de representação Técnica puramente estatística Robusta e largamente utilizada e estudada Possui muitas adaptações Redução no custo de armazenamento Fácil implementação

30 Desvantagens (1/2) Limitação na distribuição dos dados Nem sempre é fácil determinar o valor de k

31 Desvantagens (2/2) Não considera as classes das amostras Não é ótima para classificação classe classe

32 Referências [Moraes 2010] B. de Moraes, Lailson. (2010). Erro Ponderado de Reconstrução com PCA para Detecção de Pedestres em Imagens. Centro de Informática, UFPE. [Shlens 2005] Shlens, J. (2005). A tutorial on principal component analysis. Systems Neurobiology Laboratory, University of California at San Diego. [Malagón-Borja 2009] Malagón-Borja, Luis; Fuentes, Olac. (2009). Object detection using image reconstruction with PCA. Image and Vision Computing, 27:2-9. Implementação do PCA usando Matlab.

Reconhecimento de Faces com PCA e Redes Neurais

Reconhecimento de Faces com PCA e Redes Neurais Reconhecimento de Faces com Sandro Santos Andrade Programa de Pós-graduação em Mecatrônica Setembro / 2003 Visão Computacional Computacional Computação Computação Visual Computação Computação Gráfica Introdução

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões PCA. Luiz Eduardo S. Oliveira, Ph.D.

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões PCA. Luiz Eduardo S. Oliveira, Ph.D. Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões PCA Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Objetivos Introduzir os conceitos de PCA e suas aplicações

Leia mais

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Componentes Principais

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Componentes Principais Estatística: Aplicação ao Sensoriamento Remoto SER 4 - ANO 9 Componentes Principais Camilo Daleles Rennó camilorenno@inpebr http://wwwdpiinpebr/~camilo/estatistica/ Associação entre Variáveis r = < r

Leia mais

Análise Fatorial e Componentes Principais Aplicadas na Engenharia de Avaliações

Análise Fatorial e Componentes Principais Aplicadas na Engenharia de Avaliações Análise Fatorial e Componentes Principais Aplicadas na Engenharia de Avaliações Diogo de Carvalho Bezerra Universidade Federal de Pernambuco Núcleo de Gestão e-mail:[email protected] SOBREA Sociedade

Leia mais

4 Estado da Arte do Kernel PCA

4 Estado da Arte do Kernel PCA 4 Estado da Arte do Kernel PCA Conforme apresentado no Capítulo 1, o Kernel PCA é uma técnica promissora para auxiliar no processo de ajuste de histórico, devido a sua capacidade de extrair parte da estatística

Leia mais

RECONHECIMENTO FACIAL UTILIZANDO EIGENFACES

RECONHECIMENTO FACIAL UTILIZANDO EIGENFACES Universidade Federal do Rio de Janeiro Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia Programa de Engenharia de Sistemas e Computação Rio de Janeiro, RJ Brasil RECONHECIMENTO

Leia mais

INTRODUÇÃO À CALIBRAÇÃO MULTIVARIADA

INTRODUÇÃO À CALIBRAÇÃO MULTIVARIADA INTRODUÇÃO À CALIBRAÇÃO MULTIVARIADA APLICAÇÃO NO CONTROLE DE QUALIDADE DE FÁRMACOS MÓDULO 05 Unidade Universitária de Ciências Exatas e Tecnológicas UnUCET Anápolis 1 2 MÓDULO 05 CALIBRAÇÃO MULTIVARIADA

Leia mais

Reconhecimento de Padrões. Principal Component Analysis (PCA) Análise dos Componentes Principais

Reconhecimento de Padrões. Principal Component Analysis (PCA) Análise dos Componentes Principais Universidade Federal de Ouro Preto (UFOP) Programa de Pós-Graduação em Ciência da Computação (PPGCC) Reconhecimento de Padrões Principal Component Analysis (PCA) Análise dos Componentes Principais David

Leia mais

ANÁLISE DE COMPONENTES PRINCIPAIS/PCA ou ACP

ANÁLISE DE COMPONENTES PRINCIPAIS/PCA ou ACP Procedimento para a determinação de novas variáveis (componentes) que expliquem a maior variabilidade possível existente em uma matriz de dados multidimensionais. ANÁLISE DE COMPONENTES PRINCIPAIS/PCA

Leia mais

Estatística Aplicada à Administração II. Tópico. Análise de Componentes Principais

Estatística Aplicada à Administração II. Tópico. Análise de Componentes Principais Estatística Aplicada à Administração II Tópico Análise de Componentes Principais Bibliografia: R.A. Johnson, Applied Multivariate Statistical Analysis, Prentice Hall, 99 Análise de Componentes Principais

Leia mais

Álgebra Linear I - Aula 22

Álgebra Linear I - Aula 22 Álgebra Linear I - Aula 1. Bases Ortonormais.. Matrizes Ortogonais. 3. Exemplos. 1 Bases Ortonormais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de

Leia mais

INTRODUÇÃO AO PROCESSAMENTO DIGITAL DE IMAGENS SENSORIAMENTO REMOTO

INTRODUÇÃO AO PROCESSAMENTO DIGITAL DE IMAGENS SENSORIAMENTO REMOTO INTRODUÇÃO AO PROCESSAMENTO DIGITAL DE IMAGENS SENSORIAMENTO REMOTO PROCESSAMENTO DE IMAGENS Introdução Conceitos básicos Pré-processamento Realce Classificação PROCESSAMENTO DE IMAGENS Extração de Informações

Leia mais

Face Detection. Image Processing scc moacir ICMC/USP São Carlos, SP, Brazil

Face Detection. Image Processing scc moacir ICMC/USP São Carlos, SP, Brazil Face Detection Image Processing scc0251 www.icmc.usp.br/ moacir [email protected] ICMC/USP São Carlos, SP, Brazil 2011 Moacir Ponti Jr. (ICMCUSP) Face Detection 2011 1 / 24 Agenda 1 Detectando faces 2

Leia mais

5. Seja A uma matriz qualquer. Assinale a afirmativa

5. Seja A uma matriz qualquer. Assinale a afirmativa UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno, Gregório, Luiz Carlos, Mario, Milton, Monique e Umberto Data: 12 de julho de 2013 Terceira Prova 1. Considere no espaço

Leia mais

G3 de Álgebra Linear I

G3 de Álgebra Linear I G de Álgebra Linear I 7 Gabarito ) Considere a transformação linear T : R R cuja matriz na base canônica E = {(,, ), (,, ), (,, )} é [T] E = a) Determine os autovalores de T e seus autovetores correspondentes

Leia mais

Estudo dirigido de Análise Multivariada

Estudo dirigido de Análise Multivariada Estudo dirigido de Análise Multivariada Conceitos Iniciais De um modo geral, os métodos estatísticos de análise multivariada são aplicados para analisar múltiplas medidas sobre cada indivíduo ou objeto

Leia mais

SCC0173 Mineração de Dados Biológicos

SCC0173 Mineração de Dados Biológicos SCC073 Mineração de Dados Biológicos Análise Exploratória de Dados Parte A: Revisão de Estatística Descritiva Elementar Prof. Ricardo J. G. B. Campello SCC / ICMC / USP Tópicos Análise Exploratória de

Leia mais

Maldição da dimensionalidade

Maldição da dimensionalidade EXTRAÇÃO E SELEÇÃO DE ATRIBUTOS Maldição da dimensionalidade 2 Maldição da dimensionalidade (ou Curse of dimensionality) Termo que se refere a vários fenômenos que surgem na análise de dados em espaços

Leia mais

Módulo IV Medidas de Variabilidade ESTATÍSTICA

Módulo IV Medidas de Variabilidade ESTATÍSTICA Módulo IV Medidas de Variabilidade ESTATÍSTICA Objetivos do Módulo IV Compreender o significado das medidas de variabilidade em um conjunto de dados Encontrar a amplitude total de um conjunto de dados

Leia mais

Ralph S. Silva

Ralph S. Silva ANÁLISE ESTATÍSTICA MULTIVARIADA Ralph S Silva http://wwwimufrjbr/ralph/multivariadahtml Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Revisão:

Leia mais

Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável

Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável Álgebra Linear I - Aula 18 1 Forma diagonal de uma matriz diagonalizável 2 Matrizes ortogonais Roteiro 1 Forma diagonal de uma matriz diagonalizável Sejam A uma transformação linear diagonalizável, β =

Leia mais

Autovalores e Autovetores

Autovalores e Autovetores Autovalores e Autovetores Maria Luísa B. de Oliveira SME0300 Cálculo Numérico 24 de novembro de 2010 Introdução Objetivo: Dada matriz A, n n, determinar todos os vetores v que sejam paralelos a Av. Introdução

Leia mais

Estatística Aplicada ao Serviço Social

Estatística Aplicada ao Serviço Social Estatística Aplicada ao Serviço Social Módulo 7: Correlação e Regressão Linear Simples Introdução Coeficientes de Correlação entre duas Variáveis Coeficiente de Correlação Linear Introdução. Regressão

Leia mais

Álgebra Linear I - Aula 14. Roteiro

Álgebra Linear I - Aula 14. Roteiro Álgebra Linear I - Aula 14 1 Matrizes 2 Forma matricial de uma transformação linear 3 Composição de transformações lineares e produto de matrizes 4 Determinante do produto de matrizes Roteiro 1 Matrizes

Leia mais

Análise Multivariada Aplicada à Contabilidade

Análise Multivariada Aplicada à Contabilidade Mestrado e Doutorado em Controladoria e Contabilidade Análise Multivariada Aplicada à Contabilidade Prof. Dr. Marcelo Botelho da Costa Moraes www.marcelobotelho.com [email protected] Turma: 2º / 2016 1 Agenda

Leia mais

ANÁLISE DE COMPONENTES PRINCIPAIS/PCA ou ACP

ANÁLISE DE COMPONENTES PRINCIPAIS/PCA ou ACP Procedimento para a determinação de novas variáveis (componentes) que expliquem a maior variabilidade possível existente em uma matriz de dados multidimensionais. ANÁLISE DE COMPONENTES PRINCIPAIS/PCA

Leia mais

8. Análise em Componentes Principais - ACP

8. Análise em Componentes Principais - ACP 8. Análise em Componentes Principais - ACP 8.1 Introdução O propósito principal da ACP é substituir as variáveis originais por um número menor de variáveis que são função das variáveis originais. A ACP

Leia mais

Por que atributos irrelevantes são um problema Quais tipos de algoritmos de aprendizado são afetados Abordagens automáticas

Por que atributos irrelevantes são um problema Quais tipos de algoritmos de aprendizado são afetados Abordagens automáticas Por que atributos irrelevantes são um problema Quais tipos de algoritmos de aprendizado são afetados Abordagens automáticas Wrapper Filtros Muitos algoritmos de AM são projetados de modo a selecionar os

Leia mais

CM005 Álgebra Linear Lista 3

CM005 Álgebra Linear Lista 3 CM005 Álgebra Linear Lista 3 Alberto Ramos Seja T : V V uma transformação linear. Se temos que T v = λv, v 0, para λ K. Dizemos que λ é um autovalor de T e v autovetor de T associado a λ. Observe que λ

Leia mais

Resolução de Sistemas Lineares. Ana Paula

Resolução de Sistemas Lineares. Ana Paula Resolução de Sistemas Lineares Sumário 1 Aula Anterior 2 Decomposição LU 3 Decomposição LU com Pivotamento 4 Revisão Aula Anterior Aula Anterior Aula Anterior Aula Anterior Eliminação de Gauss Transforma

Leia mais

Multicolinariedade e Autocorrelação

Multicolinariedade e Autocorrelação Multicolinariedade e Autocorrelação Introdução Em regressão múltipla, se não existe relação linear entre as variáveis preditoras, as variáveis são ortogonais. Na maioria das aplicações os regressores não

Leia mais

Análise Modal no Domínio do Tempo. SSI Stochastic Subspace Identification

Análise Modal no Domínio do Tempo. SSI Stochastic Subspace Identification Análise Modal no Domínio do Tempo SSI Stochastic Subspace Identification Stochastic Subspace Identification VAN OVERSCHEE, P., 1995, Subspace Identification: Theory, Implementation, Application, PhD thesis,

Leia mais

Aula 25: Análise Fatorial. Prof. Eduardo A. Haddad

Aula 25: Análise Fatorial. Prof. Eduardo A. Haddad Aula 25: Análise Fatorial Prof. Eduardo A. Haddad Utilização específica Como identificar o potencial de desenvolvimento agropecuário dos municípios brasileiros? Banco de dados municipais: Tamanho do rebanho,

Leia mais

Reconhecimento facial. uma aplicação prática do reconhecimento de padrões

Reconhecimento facial. uma aplicação prática do reconhecimento de padrões Reconhecimento facial uma aplicação prática do reconhecimento de padrões Márcio Koch, junho 2014 Pauta Apresentação Visão computacional Reconhecimento de padrões Analise de Componentes Principais Reconhecimento

Leia mais

PROCESSAMENTO DE IMAGENS

PROCESSAMENTO DE IMAGENS PROCESSAMENTO DE IMAGENS Introdução Conceitos básicos Pré-processamento Realce Classificação PROCESSAMENTO DE IMAGENS- aula de 25/5/10 Introdução Conceitos básicos Pré-processamento Realce Classificação

Leia mais

EXTRAÇÃO SEMI - AUTOMÁTICA DE FEIÇÕES LINEARES E A CALIBRAÇÃO DOS PARÂMETROS INTRÍNSECOS DE CÂMERAS Projeto de Pesquisa PIBIC/CNPq ( )

EXTRAÇÃO SEMI - AUTOMÁTICA DE FEIÇÕES LINEARES E A CALIBRAÇÃO DOS PARÂMETROS INTRÍNSECOS DE CÂMERAS Projeto de Pesquisa PIBIC/CNPq ( ) USP UNIVERSIDADE DE SÃO PAULO EP ESCOLA POLITÉCNICA EXTRAÇÃO SEMI - AUTOMÁTICA DE FEIÇÕES LINEARES E A CALIBRAÇÃO DOS PARÂMETROS INTRÍNSECOS DE CÂMERAS Projeto de Pesquisa PIBIC/CNPq (2000-2001) LEONARDO

Leia mais

Aula 03 Estatística, Correlação e Regressão

Aula 03 Estatística, Correlação e Regressão BIS0005-15 Bases Computacionais da Ciência Aula 03 Estatística, Correlação e Regressão http://bcc.compscinet.org Prof. Rodrigo de Alencar Hausen [email protected] 1 Medidas de tendência central: Média,

Leia mais

Álgebra Linear I - Aula Bases Ortonormais e Matrizes Ortogonais

Álgebra Linear I - Aula Bases Ortonormais e Matrizes Ortogonais Álgebra Linear I - Aula 19 1. Bases Ortonormais e Matrizes Ortogonais. 2. Matrizes ortogonais 2 2. 3. Rotações em R 3. Roteiro 1 Bases Ortonormais e Matrizes Ortogonais 1.1 Bases ortogonais Lembre que

Leia mais

Álgebra Linear I - Aula Matrizes simultaneamente ortogonais e simétricas

Álgebra Linear I - Aula Matrizes simultaneamente ortogonais e simétricas Álgebra Linear I - Aula 22 1. Matrizes 2 2 ortogonais e simétricas. 2. Projeções ortogonais. 3. Matrizes ortogonais e simétricas 3 3. Roteiro 1 Matrizes simultaneamente ortogonais e simétricas 2 2 Propriedade

Leia mais

Métodos de Segmentação de Imagem para Análise da Marcha

Métodos de Segmentação de Imagem para Análise da Marcha Métodos de Segmentação de Imagem para Análise da Marcha Maria João M. Vasconcelos, João Manuel R. S. Tavares [email protected], [email protected] 3º Congresso Nacional de Biomecânica 11-12 Fevereiro

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE. Programa de Mestrado e Doutorado em Engenharia de Produção. Disciplina: Estatística Multivariada

UNIVERSIDADE FEDERAL FLUMINENSE. Programa de Mestrado e Doutorado em Engenharia de Produção. Disciplina: Estatística Multivariada UNIVERSIDADE FEDERAL FLUMINENSE Programa de Mestrado e Doutorado em Engenharia de Produção Disciplina: Estatística Multivariada Aula: Análise Discriminante Professor: Valdecy Pereira, D. Sc. email: [email protected]

Leia mais

Transformação dos dados. Analise de Componentes Principais - PCA

Transformação dos dados. Analise de Componentes Principais - PCA Transformação dos dados Tratamento nos dados Redução de Dimensionalidade Dados centrados na média e variância xm = /n Σ i=n x i x i = ( x i - xm)/σ (centrados na média) Escalamento ela variância ( quando

Leia mais

Variáveis bidimensionais

Variáveis bidimensionais Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação 19/04/2018 WB, FM, EK ( LEG/DEST/UFPR ) Variáveis

Leia mais

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017 º Sábado - Matrizes - //7. Plano e Programa de Ensino. Definição de Matrizes. Exemplos. Definição de Ordem de Uma Matriz. Exemplos. Representação Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz

Leia mais

Física Geral - Laboratório. Aula 2: Organização e descrição de dados e parâmetros de dispersão e correlação

Física Geral - Laboratório. Aula 2: Organização e descrição de dados e parâmetros de dispersão e correlação Física Geral - Laboratório Aula 2: Organização e descrição de dados e parâmetros de dispersão e correlação 1 Física Geral - Objetivos Ao final do período, o aluno deverá ser capaz de compreender as principais

Leia mais

Vetor de Variáveis Aleatórias

Vetor de Variáveis Aleatórias Vetor de Variáveis Aleatórias Luis Henrique Assumpção Lolis 25 de junho de 2013 Luis Henrique Assumpção Lolis Vetor de Variáveis Aleatórias 1 Conteúdo 1 Vetor de Variáveis Aleatórias 2 Função de Várias

Leia mais

Física Geral - Laboratório. Aula 2: Organização e descrição de dados e parâmetros de dispersão e correlação

Física Geral - Laboratório. Aula 2: Organização e descrição de dados e parâmetros de dispersão e correlação Física Geral - Laboratório Aula 2: Organização e descrição de dados e parâmetros de dispersão e correlação 1 Física Geral - Objetivos Ao final do período, o aluno deverá ser capaz de compreender as principais

Leia mais

5. Seja R : R 3 R 3 uma rotação em torno do eixo gerado por (0, 0, 1). Suponha que R mande o vetor

5. Seja R : R 3 R 3 uma rotação em torno do eixo gerado por (0, 0, 1). Suponha que R mande o vetor Universidade Federal do Rio de Janeiro Instituto de Matemática Disciplina: Álgebra Linear II Professor: Bruno Costa, Cesar Niche, Francesco Noseda, Luiz Carlos Guimarães, Mário de Oliveira, Milton Ramirez,

Leia mais

Análise de Dados Longitudinais Aula

Análise de Dados Longitudinais Aula 1/35 Análise de Dados Longitudinais Aula 08.08.2018 José Luiz Padilha da Silva - UFPR www.docs.ufpr.br/ jlpadilha 2/35 Sumário 1 Revisão para dados transversais 2 Como analisar dados longitudinais 3 Perspectiva

Leia mais

Física Geral - Laboratório. Aula 2: Organização e descrição de dados e parâmetros de dispersão e correlação

Física Geral - Laboratório. Aula 2: Organização e descrição de dados e parâmetros de dispersão e correlação Física Geral - Laboratório Aula 2: Organização e descrição de dados e parâmetros de dispersão e correlação 1 Física Geral - Objetivos Ao final do período, o aluno deverá ser capaz de compreender as principais

Leia mais

SEMINÁRIO DOS ARTIGOS:

SEMINÁRIO DOS ARTIGOS: SEMINÁRIO DOS ARTIGOS: Text Detection and Character Recognition in Scene Images with Unsupervised Feature Learning End-to-End Text Recognition with Convolutional Neural Networks Fernanda Maria Sirlene

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

MP-208: Filtragem Ótima com Aplicações Aeroespaciais

MP-208: Filtragem Ótima com Aplicações Aeroespaciais MP-208: Filtragem Ótima com Aplicações Aeroespaciais Seção 2.1: Álgebra Linear e Matrizes Davi Antônio dos Santos Departamento de Mecatrônica Instituto Tecnológico de Aeronáutica [email protected] São José

Leia mais

Antonio Elias Fabris. Map 2210 Aplicações de Álgebra Linear

Antonio Elias Fabris. Map 2210 Aplicações de Álgebra Linear Fatoração QR Antonio Elias Fabris Instituto de Matemática e Estatística Universidade de São Paulo Map 2210 Aplicações de Álgebra Linear Antonio Elias Fabris (IME-USP) QR 1 / 13 Projetores Um projetor é

Leia mais

Um modelo estocástico para o fluxo de caixa de um plano de previdência de um indivíduo 15

Um modelo estocástico para o fluxo de caixa de um plano de previdência de um indivíduo 15 2 Simulação estocástica A simulação computacional consiste em empregar técnicas matemáticas em computadores com o propósito de gerar ensaios que tentam reproduzir de maneira análoga um processo ou operação

Leia mais

Resolução de sistemas de equações lineares: Método dos Gradientes Conjugados

Resolução de sistemas de equações lineares: Método dos Gradientes Conjugados Resolução de sistemas de equações lineares: Método dos Gradientes Conjugados Marina Andretta/Franklina Toledo ICMC-USP 24 de março de 2015 Baseado no livro Cálculo Numérico, de Neide B. Franco Marina Andretta/Franklina

Leia mais

Ajustamento de Observações

Ajustamento de Observações Ajustamento de Observações Teoria dos Erros Prof. Dr. Marcos Aurélio Basso IFSULDEMINAS Campus Incondentes MG Teoria dos Erros - Introdução Observações e erros de observação; Factores que caracterizam

Leia mais

Álgebra Linear II - Poli - Gabarito Prova SUB-tipo 00

Álgebra Linear II - Poli - Gabarito Prova SUB-tipo 00 Álgebra Linear II - Poli - Gabarito Prova SUB-tipo 00 [ ] 4 2 Questão 1. Seja T : R 2 R 2 o operador linear cuja matriz, com respeito à base canônica de R 2, é. 1 3 [ ] 2 0 Seja B uma base de R 2 tal que

Leia mais

Análise de componentes principais (PCA)

Análise de componentes principais (PCA) Análise de componentes principais (PCA) Redução de dados Sumarizar os dados que contém muitas variáveis (p) por um conjunto menor de (k) variáveis compostas derivadas a partir do conjunto original. p k

Leia mais

Métodos Quantitativos II

Métodos Quantitativos II Métodos Quantitativos II MEDIDAS DE VARIABILIDADE O que significa Variabilidade? As medidas de tendência central nos dão uma ideia da concentração dos dados em torno de um valor. Entretanto, é preciso

Leia mais

Introdução a Regressão Linear

Introdução a Regressão Linear Introdução a Regressão Linear 1 Duas pedras fundamentais em econometria: 1) Modelo de Regressão Linear 2) OLS método de estimação: Mínimos Quadrados Ordinários técnica algébrica / estatística Modelo de

Leia mais

Estatística para Cursos de Engenharia e Informática

Estatística para Cursos de Engenharia e Informática Estatística para Cursos de Engenharia e Informática BARBETTA, Pedro Alberto REIS, Marcelo Menezes BORNIA, Antonio Cezar MUDANÇAS E CORREÇOES DA ª EDIÇÃO p. 03, após expressão 4.9: P( A B) = P( B A) p.

Leia mais

Introdução a Regressão Linear

Introdução a Regressão Linear Introdução a Regressão Linear 1 Duas pedras fundamentais em econometria: 1) Modelo de Regressão Linear 2) OLS método de estimação: Mínimos Quadrados Ordinários técnica algébrica / estatística Modelo de

Leia mais

Aprendizado de Máquinas. Seleção de Características

Aprendizado de Máquinas. Seleção de Características Universidade Federal do Paraná (UFPR) Departamento de Informática (DInf) Seleção de Características David Menotti, Ph.D. web.inf.ufpr.br/menotti Introdução Um dos principais aspectos na construção de um

Leia mais

PREVISÃO. Prever o que irá. acontecer. boas decisões com impacto no futuro. Informação disponível. -quantitativa: dados.

PREVISÃO. Prever o que irá. acontecer. boas decisões com impacto no futuro. Informação disponível. -quantitativa: dados. PREVISÃO O problema: usar a informação disponível para tomar boas decisões com impacto no futuro Informação disponível -qualitativa Prever o que irá acontecer -quantitativa: dados t DEI/FCTUC/PGP/00 1

Leia mais