Invariantes com Restos
|
|
|
- Lucca Aldeia
- 7 Há anos
- Visualizações:
Transcrição
1 Programa Olímpico de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 12 Invariantes com Restos Problema 1. (Leningrado 1987) As moedas dos países Dillia e Dallia são o diller e o daller, respectivamente. Podemos trocas um diller por dez dallers e um daller por dez dillers. Zequinha possui um diller e deseja obter a mesma quantidade de dillers e dallers usando essas operações. É possível que isso ocorra? Solução. Seja S a diferença entre a quantidade de dillers e dallers. Note que a congruência de S módulo 11 é invariante. Como inicialmente S 1 (mod 11), não se pode obter a mesma quantia de dillers e dallers. Problema 2. (Rússia 1998) Um inteiro positivo é escrito no quadro. Nós repetimos o processo: Apagar o dígito das unidades e soma 5 vezes este dígito com o número restante. Começando com pordemos terminar em ? Solução. Seja a n o n-ésimo número da lista. Escrevemos esse número da seguinte forma a n = 10t n +u n, em que u n é um dígito e t n representa os primeiros algarismos de a n. Pelas condições dadas no problema, devemos ter a n+1 = t n +5u n. Agora, observe que t n +5u n 50t n +5u n 5(10t n +u n ) 5a n (mod 7). Como a 1 = (mod 7) e (mod 7), concluímos que é impossível que apareca na lista. Problema 3. (Rússia 2008) Um número natural é escrito no quadro-negro. Sempre que o x número x está escrito, podemos trocá-lo por 2x+1 ou por. Em algum momento o x+2 número 2008 aparece na lista. Prove que 2008 deve ser o primeiro. Solução. Seja x = a um número racional escrito na sua forma reduzida. Defina a função b f(x) = a+b. Observe que
2 1. Se x = 2x+1, então x = 2a+b. Como mdc(2a+b,b) = mdc(2a,b) pelo lema de b Euclides, então f(x ) = 2f(x) ou f(x ) = f(x). 2. Se x = x x+2 = a. Como mdc(2b + a,b) = mdc(2b,a) pelo lema de Euclides, a+2b então f(x ) 2f(x) ou f(x ) = f(x). Como f(2008) = 2009, ele deve ser o primeiro. Semi-Invariantes A idéia de semi-invariante é um pequena generalização da idéia de invariante. Diremos que uma propriedade é semi-invariante quando ela muda de forma previsível (periodicamente, sempre crescendo ou decrescendo). Um exemplo bastante comum de semi-invariante é a idade de uma pessoa, que sempre cresce de forma periódica (a cada 365 anos). Problema 4. Nove casas 1 1 de um tabuleiro estão infectadas. A cada segundo, uma casa que possui duas casas vizinhas (com um lado em comum) infectadas também se torna infectada. É possível todas as casas se tornarem infectadas? Solução. Veja que uma casa pode ser infectada de várias formas. Primeiramente vamos analisar a seguinte infecção : Figura 1: Infecção do Tipo 1. Olhando para figura fica fácil observar que o perímetro total da área infectada não muda após a infecção do tipo 1. Desse modo, poderíamos pensar que esse perímetro é invariante e igual a 4 9 = 36. Daí, como o perímetro do tabuleiro todo é 4 10 = 40 seria impossível tornar o tabuleiro totalmente infectado. Mas neste caso, estaríamos cometendo um erro gravíssimo: esquecer de analisar todos os casos. Vejamos o que acontece nos demais casos: Note que neste tipo de infecção o perímetro não permanece constante, e sim diminui em duas unidades! A princípio isso pode parecer um problema, mas não é. Se o perímetro 2
3 Figura 2: Infecção do Tipo 2. Figura 3: Infecção do Tipo 3. não aumenta, nunca poderá chegar a 40 (já que inicialmente ele é no máximo 36). Porém, para ter certeza que essa hipótese é verdadeira, ainda temos que analisar o último caso: Aqui podemos notar que o perímetro fica menor ainda, diminuindo em quatro unidades. Com isso, podemos concluir o problema. Ou seja, já que o perímetro inicial é no máximo 36 (caso em que não há duas casas infectadas vizinhas) e ele nunca cresce, jamais poderemos infectar completamente o tabuleiro. Problema 5. Umtotalde2000pessoasestãodivididasentreos115quartosdeumamansão. A cada minuto, uma pessoa anda para um quarto com número igual ou maior de pessoas do qual ela estava. Prove que eventualmente todas as pessoas vão estar em um mesmo quarto. Solução. Sejam a 1,a 2,...,a 115 a quantidade de pessoas nos quartos 1,2,...,115 respectivamente em um dado momento. Defina I = a 2 1 +a a Digamos que uma pessoa sai de um quarto com n pessoas e vai para um quarto com m pessoas (m n). A variação de I é dada por: I = ((m+1) 2 +(n 1) 2 ) (m 2 +n 2 ) = 2(m n+1) > 0 Assim, toda vez que uma pessoa muda de quarto o valor de I cresce. Porém, sabemos que o valor de I não pode crescer indefinidamente pois, o número de pessoas é finito. Ou seja, em um dado momento I não poderá mais crescer, isso só acontecerá quando nenhuma pessoa puder mudar de quarto. Logo, todas elas deverão estar no mesmo quarto. 3
4 Problemas Propostos Problema 6. (Rússia 1998) Um número de quatro dígitos é escrito no quadro-negro. As operações permitidas são: adicionar 1 a dois dígitos vizinhos (caso nenhum deles seja 9), ou subtrair 1 de dois dígitos vizinhos (caso nenhum deles seja 0). É possível obtermos 2002 a partir de 1234 realizando algumas operações? Problema 7. Seja d(x) a soma dos dígitos de x N. Determine todas as soluções de d(d(n))+d(n)+n = Problema 8. (Torneio das Cidades) Todo membro de uma seqüência, iniciando do segundo, é igual a soma do termo anterior com a soma de seus dígitos. O primeiro número é 1. É possível que pertença à seqüência? Problema 9. (Hong Kong 1997) Cinco números 1,2,3,4,5 estão escritos em um quadro negro. Um estudante pode apagar dois dos números a e b e escrever nos seus lugares a+b e ab. Após algumas operações podemos obter a quíntupla 21,27,64,180,540? Problema 10. (Torneio das Cidades 1985) Na ilha de Camelot vivem 13 camaleões roxos, 15 verdes e 17 amarelos. Quando dois de cores distintas se encontram, mudam simultaneamente para a terceira cor. Poderia dar-se a situação na qual todos tenham a mesma cor? Problema 11. Em uma fábrica de cartões existem três máquinas. A primeira recebe um cartão (a,b) e retorna um cartão (a + 1,b + 1). A segunda recebe um cartão (2a,2b) e retorna um cartão (a,b). A terceira recebe dois cartões (a,b) e (b,c) e retorna o cartão (a, c). Todas as máquinas também retornam o(s) cartão(ões) dados. É possível fabricar um cartão (1, 1988) se temos inicialmente apenas um cartão (5, 19)? Problema 12. Com a calculadora KPK-1991 podemos efetuar duas operações: (a) elevar um número ao quadrado; e (b) e obter de um número X de n dígitos (n > 3) o número A+B, onde A é o número formado pelos três últimos de X e B o número formado pelos (n 3) dígitos de X. Podemos obter o número 703 a partir de 604 usando essa calculadora? Problema 13. (Rússia 1998) Os número 19 e 98 são escritos no quadro. A cada minuto, um deles é acrescentado 1 e o outro é elevado ao quadrado. É possível que os dois números se tornem iguais após diversas operações? Problema 14. (Rússia 1998) Temos um tabuleiro n n (n > 100) com n 1 casas iguais a 1 e o restante iguais a 0. Podemos escolher uma casa, subtrair 1 dela, e adicionar 1 nas demais casas que estão na mesma liha e coluna desta. Com essa operação, podemos fazer com que todas as casas do tabuleiro se tornem iguais? Problema 15. (Leningrado) Existem n 2 números não-nulos escritos em um quadro. Podemos escolher dois números a e b e trocá-los por a+b/2 e b a/2. Prove que após feito um movimento não podemos obter os números iniciais novamente. 4
5 Problema 16. (Ucrânia 2000) Existem inicialmente n números 1 escritos em um quadro. Em cada passo podemos apagar a e b e escrever o número ab 2 no seu lugar. Após repetir a+b 1 essa operação n 1 vezes, prove que o último número escrito não pode ser menor que n Problema 17. (São Petersburgo 1998) Um total de 119 anões vivem em uma aldeia com 120 pequenas casas. Uma casa é dita super-habitada se 15 anões ou mais vivem nela. Todo dia, os anões de uma casa super-habitada têm uma briga e se mudam para outras casas da aldeia. Algum dia, necessariamente se encerrará? Problema 18. (Rússia 1997) Temos uma fileira longa de copos e n pedras no copo central (copo 0). Os seguintes movimentos são permitidos: Movimento tipo A: i 1 i i+1i+2 i 1 i i+1i+2 Se há pelo menos uma pedra no copo i e pelo menos uma no copo i + 1 podemos fazerumapedraqueestánocopoi+1pularparaocopoi 1eliminandoumapedradocopoi. Movimento tipo B: i 1 i i+1i+2 i 1 i i+1i+2 Se há pelo menos duas pedras no copo i podemos pular uma pedra para o copo i + 2 e outra para o copo i 1. Demonstre o seguinte fato: fazendo os movimentos tipo A ou B durante um tempo suficientemente longo sempre chegamos a uma configuração a partir da qual não é possível fazer nenhum desses dois tipos de movimento. Além disso, essa configuração final não depende da escolha de movimentos durante o processo. Dica: Lembre-se de usar energia! 5
Invariantes BRUNO HOLANDA
Invariantes BRUNO HOLANDA Neste artigo vamos estudar o princípio da invariância. Ou seja, vamos resolver problemas que, dada uma transformação, existe uma propriedade associada que nunca muda. 1 Analisando
Polos Olímpicos de Treinamento. Aula 1. Curso de Combinatória - Nível 2. Prof. Bruno Holanda
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 1 Lógica Nos últimos anos, a participação brasileira em competições internacionais de matemática vem melhorado significamente.
Problemas Diversos de Invariantes e Semi-invariantes
Problemas Diversos de Invariantes e Semi-invariantes XXI Semana Olímpica Maceió, Janeiro 2018 Prof. George Lucas 1. Escrevemos os números inteiros de 1 a 10 (inclusive) no quadro. A cada passo, escolhemos
Polos Olímpicos de Treinamento. Aula 3. Curso de Combinatória - Nível 2. Paridade. Prof. Bruno Holanda
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 3 Paridade Todo número é par ou ímpar. Óbvio, não? Pois é com essa simples afirmação que vamos resolver os problemas
Polos Olímpicos de Treinamento. Aula 1. Curso de Combinatória - Nível 2. Prof. Bruno Holanda
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 1 Lógica Nos últimos anos, a participação brasileira em competições internacionais de matemática vem melhorado significamente.
Polos Olímpicos de Treinamento. Aula 3. Curso de Combinatória - Nível 2. Paridade. Prof. Bruno Holanda
Polos Olímpicos de Treinamento Curso de Combinatória - Nível Prof. Bruno Holanda Aula 3 Paridade Todo número é par ou ímpar. Óbvio, não? Pois é com essa simples afirmação que vamos resolver os problemas
Raciocínio Lógico I. Solução. Primeiramente vamos listar todos os números de dois algarismos que são múltiplos de 7 ou 13.
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 3 Raciocínio Lógico I O estudo da Lógica é essencial para os alunos que desejam participar de olimpíadas de matemática.
Prog A B C A e B A e C B e C A,B e C Nenhum Pref
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 2 Lógica II Quando lemos um problema de matemática imediatamente podemos ver que ele está dividido em duas partes:
Buscando um Invariante
Resolução de Problemas Lista 01 com dicas e discussão Faça mentalmente as seguintes multiplicações: 1. 27 37 2. 21 23 Invente e resolva um problema, usando como inspiração o problema anterior. Decida o
UNIVERSIDADE FEDERAL DO PARANÁ Nível 1 - POTI Aula 1 - Combinatória
UNIVERSIDADE FEDERAL DO PARANÁ Nível 1 - POTI Aula 1 - Combinatória Exercícios: 1. Maria inventou uma brincadeira. Digitou alguns algarismos na primeira linha de uma folha. Depois, no segunda linha, fez
Paridade. Todo número é par ou ímpar. Óbvio, não? Pois é com essa simples afirmação que vamos resolver os problemas deste capítulo.
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 5 Paridade Todo número é par ou ímpar. Óbvio, não? Pois é com essa simples afirmação que vamos resolver os problemas
Exemplos e Contra-Exemplos
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 7 Exemplos e Contra-Exemplos Você que já tentou resolver alguns problemas de provas anteriores de Olimpíada de Matemática
Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 5 Contagem II Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em
Números Primos, MDC e MMC. O próximo teorema nos diz que os primos são as peças fundamentais dos números inteiros:
Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível Prof. Samuel Feitosa Aula 4 Números Primos, MDC e MMC. Definição 1. Um inteiro p > 1 é chamado número primo se não possui um divisor d
Polos Olímpicos de Treinamento. Aula 8. Curso de Combinatória - Nível 1. Prof. Bruno Holanda
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 8 Configurações Mágicas De maneira geral, podemos dizer que as configurações mágicas são tipos especiais de diagramas
Aula 4 - Números Primos, MDC e MMC
Polos Olímpicos de Treinamento Intensivo (POTI) Curso de Teoria dos Números - Nível Aula 4 - Números Primos, MDC e MMC Prof. Samuel Feitosa Arquivo Original 1 1 Documento:...gaia/educacional/matematica/teoria
Combinatória: Dicas para escrever uma boa solução. Prof. Bruno Holanda Semana Olímpica 2010 São José do Rio Preto
Combinatória: icas para escrever uma boa solução. Prof. Bruno Holanda Semana Olímpica 00 São José do Rio Preto? Nível Uma dificuldade que é bastante frequente nos alunos do nível (ou em outros quaisquer
Sequências - Aula 06
Sequências - Aula 06 Muitos problemas, de álgebra ou teoria dos números, envolvem sequências. Elas podem ser definidas como uma lista ordenada de elementos. Por exemplo, na sequência (, 3, 5, 8) o primeiro
Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares
Introdução à Teoria dos Números 2018 - Notas de Aulas 3 Prof Carlos Alberto S Soares 1 Números Primos e o Teorema Fundamental da Aritmética Em notas anteriores já definimos os números primos, isto é, números
Introdução à Teoria dos Números - Notas 4 Máximo Divisor Comum e Algoritmo de Euclides
Introdução à Teoria dos Números - Notas 4 Máximo Divisor Comum e Algoritmo de Euclides 1 Máximo Divisor Comum Definição 1.1 Sendo a um número inteiro, D a indicará o conjunto de seus divisores positivos,
Problemas dos Círculos Matemáticos. Problemas extras para os capítulos 0 e 1
Problemas dos Círculos Matemáticos Problemas extras para os capítulos 0 e 1 Problemas dos Círculos Matemáticos - Capítulos 0 e 1 Problemas extras para os capítulos 0 e 1 1 Exercícios Introdutórios Exercício
Aplicações das Técnicas Desenvolvidas. Soluções de Exercícios e Tópicos Relacionados a Combinatória. 2 a série E.M.
Aplicações das Técnicas Desenvolvidas Soluções de Exercícios e Tópicos Relacionados a Combinatória 2 a série E.M. Professores Tiago Miranda e Cleber Assis Aplicações das Técnicas Desenvolvidas Soluções
Polos Olímpicos de Treinamento. Aula 8. Curso de Combinatória - Nível 1. Prof. Bruno Holanda
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 8 Configurações Mágicas De maneira geral, podemos dizer que as configurações mágicas são tipos especiais de diagramas
Jogos e Brincadeiras I. 1. Brincadeiras
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 1 Jogos e Brincadeiras I 1. Brincadeiras Nesta primeira parte da aula resolveremos duas questões retiradas da Olimpíada
Princípio KISS. Semana Olímpica/ Nível 1. Prof. Armando Barbosa. 25 de janeiro de 2019
Princípio KISS Semana Olímpica/2019 - Nível 1 Prof. Armando Barbosa 25 de janeiro de 2019 1 Pensar simples (Principio KISS) A ideia dessa seção é apresentar o príncipio KISS (Keep it simple, stupid) à
Módulo Tópicos Adicionais. Recorrências
Módulo Tópicos Adicionais Recorrências Módulo Tópico Adicionais Recorrências 1 Exercícios Introdutórios Exercício 1 Considere a sequência definida por x 1 d e x n r + x n 1, para n > 1 Trata-se de uma
Produtos Notáveis. Vejamos alguns exemplos para diversos produtos notáveis que auxiliarão na formação de ideias para problemas futuros mais difíceis.
Polos Olímpicos de Treinamento Curso de Álgebra - Nível Prof. Marcelo Mendes Aula Produtos Notáveis Vários problemas de Álgebra para alunos do Ensino Fundamental utilizam Produtos Notáveis, que são identidades
Jogos e Brincadeiras II
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. runo Holanda ula 2 Jogos e rincadeiras II Neste artigo continuaremos o assunto iniciado no material anterior. O primeiro exercício,
MATEMÁTICA 1 MÓDULO 2. Divisibilidade. Professor Matheus Secco
MATEMÁTICA 1 Professor Matheus Secco MÓDULO 2 Divisibilidade 1. DIVISIBILIDADE 1.1 DEFINIÇÃO: Dizemos que o inteiro a é divisível pelo inteiro b (ou ainda que a é múltiplo de b) se existe um inteiro c
Divisibilidade e Restos. Caio Hermano Maia
Divisibilidade e Restos Caio Hermano Maia 1 Introdução Neste material iremos introduzi-lo à Teoria dos Números, uma área da matemática focada exclusivamente no estudo dos números inteiros e suas diversas
Congruências I. Por exemplo, 7 2 (mod 5), 9 3 (mod 6), 37 7 (mod 10) mas 5 3 (mod 4). Veja que a b (mod m) se, e somente se, m a b.
Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Prof. Samuel Feitosa Aula 6 Congruências I Definição 1. Dizemos que os inteiros a e b são congrentes módulo m se eles deixam o mesmo
SOLUÇÕES NÍVEL 2 2ª. FASE 2017
SOLUÇÕES NÍVEL ª. FASE 017 NQ1 Solução Há 10 botões pretos na figura do. Quando apertarmos o botão indicado, os dois botões vizinhos que são inicialmente pretos passarão a ser amarelos. Com isso, teremos
Binomiais e Primos. p p 2 + p 3 + p k. Demonstração. No produto n! = n, apenas os múltiplos de p contribuem com um fator p.
Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 16 Binomiais e Primos Começamos lembrando a Proposição 1 (Fatores do Fatorial) Seja p um primo Então a maior
Polos Olímpicos de Treinamento. Aula 7. Curso de Teoria dos Números - Nível 2. Aula de Revisão e Aprofundamento. Prof.
Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Prof. Samuel Feitosa Aula 7 Aula de Revisão e Aprofundamento Observação 1. É recomendável que o professor instigue seus alunos a pensarem
OBMEP 2010 Soluções da prova da 2ª Fase Nível 2. Questão 1
Questão a) Para saber o número que deve dizer ao matemágico, Joãozinho deve fazer quatro contas: ª conta: multiplicar o número no cartão escolhido por 2; 2ª conta: somar 3 ao resultado da primeira conta;
Representação decimal dos números racionais
Representação decimal dos números racionais Alexandre Kirilov Elen Messias Linck 21 de março de 2018 1 Introdução Um número é racional se puder ser escrito na forma a/b, com a e b inteiros e b 0; esta
Combinatória - Nível 2
Combinatória - Nível 2 POTI UFPR Princípio da Casa dos Pombos - 30/09/2017 Material complementar http://www.mat.ufpr.br/poti/ Princípio da Casa dos Pombos: se em n gaiolas são postos n + 1 pombos, então
Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares
Introdução à Teoria dos Números 2018 - Notas de Aulas 3 Prof Carlos Alberto S Soares 1 Números Primos e o Teorema Fundamental da Aritmética Em notas anteriores já definimos os números primos, isto é, números
Equações Diofantinas III
Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível Prof. Samuel Feitosa Aula 13 Equações Diofantinas III Já estudamos as equações diofantinas lineares e equações em que alguma fatoração
Equações Diofantinas II
Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível Prof. Samuel Feitosa Aula 1 Equações Diofantinas II Continuaremos nosso estudo das equações diofantinas abordando agora algumas equações
36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO
6ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Ensino Médio) GABARITO GABARITO NÍVEL ) C 6) A ) D 6) A ) D ) A 7) A ) E 7) B ) E ) A 8) E ) B 8) E ) A ) C 9) C ) D 9) E ) B ) A 0) B ) A 0)
Semana Olímpica 2019
Semana Olímpica 2019 Prof a Ana Paula Chaves [email protected] Nível 1 Congruência 1. Divisibilidade e Aritmética Modular Um dos tópicos mais fundamentais da teoria dos números é, sem dúvidas, a
Equações Diofantinas I
Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível Prof. Samuel Feitosa Aula 8 Equações Diofantinas I Exemplo 1. Em Gugulândia, o jogo de basquete é jogado com regras diferentes. Existem
MAT Laboratório de Matemática I - Diurno Profa. Martha Salerno Monteiro
MAT 1511 - Laboratório de Matemática I - Diurno - 2005 Profa. Martha Salerno Monteiro Representações decimais de números reais Um número real pode ser representado de várias maneiras, sendo a representação
Percebendo Padrões. Vitor T T T F T T T F T T T F T T T F T T T F Maria T T T T T T T F F F T T T T T T T F F F
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 6 Percebendo Padrões Uma das principais habilidades que deve ser desenvolvida pelos alunos que desejam ter um bom
SIMULADO SEGUNDA FASE NÍVEL 2 RESOLUÇÃO Programa de Polos de Reforço Olímpico 2017
1. (Banco de Questões 2017) Temos 9 99 = 9 99 + 9 + 99 + 6 = 1005. Temos b = 2 b = 2b + 2 + b + 6 = 3b + 8. Daí, 2b=-4 e b=-2. Item c Como a + 1 b + 1 = ab + a + b + 1, segue que a b = ሺa + 1ሻ b + 1 +
a) Temos da tabela C 3, A 1, B 2, I 9, D 4 e E 5. O número da palavra CABIDE é então = 1080
1 NQ1 a) Temos da tabela C 3, A 1, B, I 9, D 4 e E 5. O número da palavra CABIDE é então 3 1 9 4 5 = 1080. b) A decomposição de 455 em fatores primos é 455 = 5 7 13 ; as letras correspondentes a 5, 7 e
Contagem I. Figura 1: Abrindo uma Porta.
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 4 Contagem I De quantos modos podemos nos vestir? Quantos números menores que 1000 possuem todos os algarismos pares?
DESAFIO FINAL GABARITO ALL
DESAFIO FINAL GABARITO ALL 01. a) Queremos que apareça na tela o número 7 10 2 10 7 = 7 10 9. Uma maneira de fazer tal conversão, começando com 7 10 2, é apertar quatro vezes a tecla com a operação de
MA21: Resolução de Problemas - gabarito da primeira prova
MA21: Resolução de Problemas - gabarito da primeira prova Problema 1 (2 pontos) Prove que a maior área dentre todos os retângulos de perímetro 1 é atingida por um quadrado. Dificuldade: MUITO FÁCIL Sejam
COLETÂNEA DE PROBLEMAS PARA TREINAMENTO (*) NÍVEL III (ENSINO MÉDIO)
COLETÂNEA DE PROBLEMAS PARA TREINAMENTO (*) NÍVEL III (ENSINO MÉDIO) PROBLEMA 1 Uma calculadora tem o número 1 na tela. Devemos efetuar 2001 operações, cada uma das quais consistindo em pressionar a tecla
Capítulo 1 Números Reais
Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 1 Números Reais Conjuntos Numéricos Conjunto dos naturais: N = {1,, 3, 4,... } Conjunto dos inteiros: Z = {..., 3,, 1, 0, 1,, 3,... } {
Polos Olímpicos de Treinamento. Aula 1. Curso de Teoria dos Números - Nível 2. Divisibilidade I. Samuel Barbosa Feitosa
Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Samuel Barbosa Feitosa Aula 1 Divisibilidade I Teorema 1. (Algoritmo da Divisão) Para quaisquer inteiros positivos a e b, existe um
Aritmética dos Restos. Problemas com Congruências. Tópicos Adicionais
Aritmética dos Restos Problemas com Congruências Tópicos Adicionais Aritmética dos Restos Problemas com Congruências 1 Exercícios Introdutórios Exercício 1. inteiro n Prove que n 5 + 4n é divisível por
Algoritmo de Euclides Estendido, Relação de Bézout e Equações Diofantinas. O Algortimo de Euclides Estendido. Tópicos Adicionais
Algoritmo de Euclides Estendido, elação de Bézout e Equações Diofantinas O Algortimo de Euclides Estendido Tópicos Adicionais Tópicos Adicionais O Algoritmo de Euclides Estendido 1 Exercícios Introdutórios
Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c.
Divisores Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Quando a é múltiplo de d dizemos também que a é divisível
Módulo de Princípios Básicos de Contagem. Princípio fundamental da contagem. Segundo ano
Módulo de Princípios Básicos de Contagem Princípio fundamental da contagem Segundo ano Princípio Fundamental de Contagem 1 Exercícios Introdutórios Exercício 1. Considere três cidades A, B e C, de forma
+ 1, segue que o 103º termo dessa sequência é
1 N1Q1 a) A sequência é 415 537 810 91 10 1 b) Os seis primeiros termos são 995 1814 995 1814 995 1814 c) Os primeiros termos da sequência são 33333 6666 111 33333 6666 e vemos que os termos se repetem
Polo Olímpico de Treinamento Intensivo UFPR Curso de Combinatória, Nível 3 1 o semestre de 2019
Polo Olímpico de Treinamento Intensivo UFPR Curso de Combinatória, Nível 3 1 o semestre de 2019 Marcel Thadeu de Abreu e Souza Vitor Emanuel Gulisz Análise Combinatória: Introdução Vamos buscar contar
GABARITO - ANO 2018 OBSERVAÇÃO:
GABARITO - ANO 018 OBSERVAÇÃO: Embora as soluções neste gabarito se apresentem sob a forma de um texto explicativo, gostaríamos de salientar que para efeito de contagem dos pontos adquiridos, na avaliação
Grafos I. Figura 1: Mapa de Königsberg
Programa Olímpico de Treinamento Curso de Combinatória - Nível Prof. Bruno Holanda Aula 0 Grafos I O que é um grafo? Se você nunca ouviu falar nisso antes, esta é certamente uma pergunta que você deve
Polos Olímpicos de Treinamento. Aula 11. Curso de Teoria dos Números - Nível 2. O Teorema Chinês dos Restos. Prof. Samuel Feitosa
Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Prof. Samuel Feitosa Aula 11 O Teorema Chinês dos Restos Iremos estudar um antigo teorema descoberto pelos chineses no início século
Material Teórico - Módulo Matrizes e Sistemas Lineares. Sistemas Lineares - Parte 2. Terceiro Ano do Ensino Médio
Material Teórico - Módulo Matrizes e Sistemas Lineares Sistemas Lineares - Parte 2 Terceiro Ano do Ensino Médio Autor: Prof Fabrício Siqueira Benevides Revisor: Prof Antonio Caminha M Neto 1 A representação
Roteiro da segunda aula presencial - ME
PIF Enumerabilidade Teoria dos Números Congruência Matemática Elementar Departamento de Matemática Universidade Federal da Paraíba 29 de outubro de 2014 PIF Enumerabilidade Teoria dos Números Congruência
Produtos Notáveis. Vejamos alguns exemplos para diversos produtos notáveis que auxiliarão na formação de ideias para problemas futuros mais difíceis.
Polos Olímpicos de Treinamento Curso de Álgebra - Nível 2 Prof. Marcelo Mendes Aula Produtos Notáveis Vários problemas de Álgebra para alunos do Ensino Fundamental utilizam Produtos Notáveis, que são identidades
JOGOS Bruno Holanda, Fortaleza CE
JOGOS Bruno Holanda, Fortaleza CE Nível Iniciante Problemas sobre jogos estão entre os mais atrativos para a maioria dos alunos que estão iniciando o seu gosto pela matemática e, por isso, vêm ganhando
Tabuleiros. Problema 1. Determine se é possível cobrir ou não o tabuleiro abaixo (sem sobreposições) usando apenas dominós?
Polos Olímpicos de Treinamento Curso de Combinatória - Nível Prof. Bruno Holanda Aula 9 Tabuleiros Quem nunca brincou de quebra-cabeça? Temos várias pecinhas e temos que encontrar uma maneira de unir todas
Polos Olímpicos de Treinamento. Aula 9. Curso de Teoria dos Números - Nível 2. O Teorema de Euler. Prof. Samuel Feitosa
Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Prof. Samuel Feitosa Aula 9 O Teorema de Euler Nesta aula, obteremos uma generalização do teorema de Fermat. Definição 1. Dado n N,
Operações com Números Naturais. 6 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Resolução de Exercícios Operações com Números Naturais 6 ano E.F. Professores Cleber Assis e Tiago Miranda Resolução de Exercícios Operações com Números Naturais 1 Exercícios Introdutórios Exercício
Bases Matemáticas. Como o Conhecimento Matemático é Construído. Aula 2 Métodos de Demonstração. Rodrigo Hausen. Definições Axiomas.
1 Bases Matemáticas Aula 2 Métodos de Demonstração Rodrigo Hausen v. 2012-9-21 1/15 Como o Conhecimento Matemático é Construído 2 Definições Axiomas Demonstrações Teoremas Demonstração: prova de que um
NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA
NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA NOTAS DE AULA: REPRESENTAÇÕES DECIMAIS A representação decimal é a forma como escrevemos um número em uma única base, e como essa
Se mdc(a,m) = 1, como a é invertível módulo m, a equação. ax b (mod m)
Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 8 Equações lineares módulo n e o teorema chinês dos restos 1 Equações Lineares Módulo m Se mdc(a,m) = 1,
SOLUÇÕES OBMEP 2ª. FASE 2016
SOLUÇÕES OBMEP 2ª. FASE 2016 N1Q1 Solução Carolina escreveu os números 132 e 231. Esses são os únicos números que cumprem as exigências do enunciado e que possuem o algarismo 3 na posição central. Para
Raciocínio Lógico II. Solução. Vamos assumir que todos os retângulos são distintos. Os retângulos de menor
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 4 Raciocínio Lógico II Nesta aula continuaremos o processo de desenvolvimento do raciocínio lógico. Inicialmente,
Desigualdades - Parte I. n a 1 a 2...a n,
Polos Olímpicos de Treinamento Curso de Álgebra - Nível Prof. Marcelo Mendes Aula 8 Desigualdades - Parte I Fatos Elementares i) Nenhum quadrado de número real é negativo. ii) Desigualdade de Cauchy (Médias
ALGORITMO DE EUCLIDES
Sumário ALGORITMO DE EUCLIDES Luciana Santos da Silva Martino lulismartino.wordpress.com [email protected] PROFMAT - Colégio Pedro II 25 de agosto de 2017 Sumário 1 Máximo Divisor Comum 2 Algoritmo
Módulo de Progressões Aritméticas. Soma dos termos de uma P.A. 1 a série E.M. Professores Tiago Miranda e Cleber Assis
Módulo de Progressões Aritméticas Soma dos termos de uma PA 1 a série EM Professores Tiago Miranda e Cleber Assis Progressões Aritméticas Soma dos termos de uma PA 1 Exercícios Introdutórios Exercício
Resoluções. Aula 1 NÍVEL 2. Classe
www.cursoanglo.com.br Treinamento para Olimpíadas de Matemática NÍVEL 2 Resoluções Aula 1 Classe 1. Observe que: 14 1 = 14 14 2 = 196 14 par termina em 6 e 14 ímpar termina em 4 14 3 = 2.744 14 4 = 38.416...
TEOREMA FUNDAMENTAL DA ARITMÉTICA: APLICAÇÕES
4. TEOREMA FUNDAMENTAL DA ARITMÉTICA: APLICAÇÕES 1). Achando os divisores de um número natural 2). Quantidade de divisores de um número natural 3). Decidindo se um número natural divide outro 4). Extrema
OBMEP ª fase Soluções - Nível 1
OBMEP 009 ª fase Soluções - Nível 1 Nível 1 questão 1 a) Há apenas três maneiras de escrever 1 como soma de três números naturais: 1 = 1+ 0 + 0, 1 = 0 + 1+ 0 e 1 = 0 + 0 + 1, que nos dão as possibilidades
XXI Olimpíada de Matemática do Estado do Rio Grande do Norte. Prova do Nível I Em 25/09/2010
XXI Olimpíada de Matemática do Estado do Rio Grande do Norte Prova do Nível I Em 25/09/2010 Problema 1 Um professor de Matemática definiu a seguinte operação entre dois números naturais: Ele exemplificou
Bézout e Outros Bizus
1. Introdução Bézout e Outros Bizus Davi Lopes Olimpíada Brasileira de Matemática 18ª Semana Olímpica São José do Rio Preto, SP Neste material, iremos demonstrar o teorema de Bézout, que diz que, dados
MATEMÁTICA MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA. Professor Matheus Secco
MATEMÁTICA Professor Matheus Secco MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA 1. DIVISIBILIDADE Definição: Sejam a, b inteiros com a 0. Diz-se que a divide b (denota-se por a b) se existe c inteiro tal que
Números Naturais Representação, Operações e Divisibilidade. Múltiplos e Divisores. Tópicos Adicionais
Números Naturais Representação, Operações e Divisibilidade Múltiplos e Divisores Tópicos Adicionais Números Naturais Representação, Operações e Divisibilidade Múltiplos e Divisores 1 Exercícios Introdutórios
Solução da prova da 2.ª Fase
Nível 1 6.º e 7.º anos do Ensino Fundamental 2. a Fase 15 de setembro de 2018 QUESTÃO 1 a) A máquina deve ser usada duas vezes. Inicialmente temos 3 maçãs; colocamos duas dessas maçãs na máquina, elas
38 a OLIMPÍADA BRASILEIRA DE MATEMÁTICA 2 a Fase Nível 1 (6 o ou 7 o ano)
38 a OLIMPÍADA BRASILEIRA DE MATEMÁTICA a Fase Nível 1 (6 o ou 7 o ano) GABARITO PARTE A - Cada problema vale 5 pontos CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta
SOLUÇÕES OBMEP 2ª. FASE 2016 NÍVEL 3
SOLUÇÕES OBMEP 2ª. FASE 2016 NÍVEL 3 N3Q1 Solução item a) Para facilitar, colocamos letras nas casas vazias: O número a deve ser a média dos números 3 e 19: a = O número 8 deve ser a média entre 3 e b,
_32109, _42109, _52109 e (o traço indica onde deve ser colocado o algarismo das centenas de milhar)
Questão 1 Como o algarismo das unidades é 1, para que o número seja aditivado, a soma dos algarismos das casas das dezenas, centenas e unidades de milhar deve ser igual a 1. Existe só um número com quatro
Material Teórico - Inequações Produto e Quociente de Primeiro Grau. Sistemas de inequações. Primeiro Ano do Ensino Médio
Material Teórico - Inequações Produto e Quociente de Primeiro Grau Sistemas de inequações Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 5
Monster. Concursos. Matemática 1 ENCONTRO
Monster Concursos Matemática 1 ENCONTRO CONJUNTOS NUMÉRICOS Conjuntos numéricos podem ser representados de diversas formas. A forma mais simples é dar um nome ao conjunto e expor todos os seus elementos,
Teorema Chinês dos Restos. Tópicos Adicionais
Teorema Chinês dos Restos Teorema Chinês dos Restos Tópicos Adicionais Tópicos Adicionais Teorema Chinês dos Restos 1 Exercícios Introdutórios Exercício 1. Para cada um dos itens abaixo, encontre o menor
Aula 3 - O Algoritmo de Euclides
Polos Olímpicos de Treinamento Intensivo (POTI) Curso de Teoria dos Números - Nível 2 Aula 3 - O Algoritmo de Euclides Prof. Samuel Feitosa Arquivo Original 1 1 Documento:...gaia/educacional/matematica/teoria
Análise Combinatória AULA 1. Métodos Simples de Contagem
Análise Combinatória AULA 1 Métodos Simples de Contagem Tales Augusto de Almeida 1. Introdução A primeira ideia que surge no imaginário de qualquer estudante quando ele ouve a palavra contagem seria exatamente
