O Teorema Mestre da Complexidade

Tamanho: px
Começar a partir da página:

Download "O Teorema Mestre da Complexidade"

Transcrição

1 O Teorema Mestre da Complexidade Luís Fernando Schultz Xavier da Silveira Departamento de Informática e Estatística - INE - CTC - UFSC 23 de aril de 2010

2 Conteúdo 1 Enunciado 2 Preliminares Peso das Folhas O Primeiro Caso do Teorema Mestre O Segundo Caso do Teorema Mestre Traalho no Nó Raiz O Terceiro Caso do Teorema Mestre

3 Enunciado Enunciado Teorema Seja T : N R + uma função satisfazendo ( n ) T(n) = at + f (n) para valores a, N, a 1 e 2, e uma função f : N R +. Então Θ ( n log a), ε > 0 : f O ( n log a ε) Θ ( n T log a log n ), f Θ ( n log a) w (0; 1), ( x 0 N : n x 0, Θ(f ), n ) af f (n)

4 Enunciado Tecnicalidades Rigorosamente falando, o enunciado do teorema anterior está informal, pois ele não trata do caso ase de T e a divisão n pode não ser um número inteiro.

5 Enunciado Tecnicalidades Rigorosamente falando, o enunciado do teorema anterior está informal, pois ele não trata do caso ase de T e a divisão n pode não ser um número inteiro. Por outro lado, o enunciado completo não caeria em um slide :-). Vamos então preencher essas lacunas aos poucos.

6 Enunciado Tecnicalidades Por ( n ) T(n) = at + f (n), entendemos que existe um número n 0 N e que, para todo n n 0, existem números k n [0], k n [1],..., k n [a 1] N, tais que n n i, 0 i < a, 0 k n [i] e T(n) = a 1 ( n ) T + k n [i] + f (n). i=0

7 Enunciado Tecnicalidades Por ( n ) T(n) = at + f (n), entendemos que existe um número n 0 N e que, para todo n n 0, existem números k n [0], k n [1],..., k n [a 1] N, tais que n n i, 0 i < a, 0 k n [i] e T(n) = a 1 ( n ) T + k n [i] + f (n). i=0 Como isso não altera a definição, assumiremos n 0 1.

8 Enunciado Tecnicalidades Por ( n ) x 0 N, w (0; 1) : n x 0, af wf (n), entendemos que existem x 0 N, w (0; 1) tais que, para todo n max{n 0, x 0 }, a 1 ( n ) f + k n [i] wf (n). i=0

9 Preliminares Arredondamento para Potências Definição Seja n N \ {0} e N, 2. Definimos { } π (n) = max k : k n k N como a maior potência de menor ou igual a n.

10 Preliminares Arredondamento para Potências Lema Seja n N \ {0} e N, 2. Então π (n) = π (n).

11 Preliminares Arredondamento para Potências Lema Seja n N \ {0} e N, 2. Então π (n) = π (n).. Claramente π (n) é uma potência de satisfazendo π (n) n, pois π (n) n. Porém, como π (n) > n, por definição, temos 2 π (n) > n, e como 2 π (n) é a menor potência de maior que π (n), o resultado segue.

12 Preliminares Arredondamento para Potências Lema Seja n 2. Então π ( n ) = π (n).

13 Preliminares Arredondamento para Potências Lema Seja n 2. Então π ( n ) = π (n).. Note que π ( n ) = π (n) ( n ) π = π (n) n ) π ( = π (n).

14 Preliminares Arredondamento para Potências. n Basta então mostrar que, k N, k k n. De fato, n n k = k 1 n = k n. Similarmente, como k ou é 1 ou é um múltiplo de e n, temos n k n = k n (n mod ) =. Com isso a demonstração está concluída.

15 Preliminares Arredondamento para Potências Definição Seja n N \ {0} e N, 2. Definimos { } π (n) = min k : k n k N como a menor potência de maior ou igual a n.

16 Preliminares Arredondamento para Potências Lema Seja n N \ {0} e N, 2. Então π (n) = π (n). Seja n 2. Então π ( n ) = π (n).

17 Preliminares Arredondamento para Potências Lema Seja n N \ {0} e N, 2. Então π (n) = π (n). Seja n 2. Então π ( n ) = π (n).. Totalmente análoga à dos resultados para π.

18 Peso das Folhas Peso das Folhas Lema (Peso das Folhas) T Ω ( n log a).

19 Peso das Folhas Peso das Folhas Lema (Peso das Folhas) T Ω ( n log a).. Seja n 0 = n 0 e seja c = { } T(n) min n 0 n<n 0 π (n) log a. Vamos então provar por indução que, para todo n n 0, T(n) cπ (n) log a.

20 Peso das Folhas Peso das Folhas. Para a ase da indução, considere n 0 n < n 0. Então ( π (n) T(n) = T(n) log a ) π (n) log a ( ) T(n) = π (n) log a π (n) log a cπ (n) log a.

21 Peso das Folhas Peso das Folhas. Para o passo indutivo, considere n 0 n. Então T(n) = a 1 ( n ) T + k n [i] + f (n) i=0 a 1 T i=0 ( n ) + k n [i] a 1 ( n cπ i=0 a 1 ( n cπ i=0 ) log a + k n [i] ) log a

22 Peso das Folhas Peso das Folhas. T(n) a 1 ( n ) log a cπ i=0 ( n = acπ ( π (n) = ac = acπ (n) log a log a = cπ (n) log a. ) log a ) log a = acπ (n) log a a

23 Peso das Folhas Peso das Folhas. Segue que ( T Ω π (n) log a). Mas como π (n) n < π (n), ( Θ π (n) log a) = Θ (n log a) e segue que ( T Ω n log a).

24 O Primeiro Caso do Teorema Mestre O Primeiro Caso do Teorema Mestre Com o que já temos até agora é possível demonstrar o primeiro caso do Teorema Mestre. Lema (Primeiro Caso do Teorema Mestre) Se existe ε > 0 tal que ( f O n log a ε), então ( T Θ n log a).

25 O Primeiro Caso do Teorema Mestre O Primeiro Caso do Teorema Mestre. Como f O(n log a ε ), existem x 0, q N tais que, para todo n x 0, f (n) qπ (n) log a ε. Defina m 0 = max{x 0, n 0 }, m 0 = m 0 e c = max m 0 n<m 0 { T(n) + q ( 1 ε 1 π (n)log a ) } π (n) log a ε. Vamos provar por indução que, para n m 0, ( ) T(n) cπ (n)log 1 a q ε π (n) log a ε O(n log a ). 1

26 O Primeiro Caso do Teorema Mestre O Primeiro Caso do Teorema Mestre. Para a ase da indução, assuma m 0 n < m 0. Então T(n) = T(n) + q ( 1 ( = ε 1 ) T(n)+q( 1 ε 1)π (n) log a ε π (n)log a cπ (n)log a q ) π (n) log a ε q ( ) 1 ε 1 π (n) log a ε ( 1 ε 1 π (n)log a q ( 1 ε 1 ) π (n) log a ε. ) π (n) log a ε

27 O Primeiro Caso do Teorema Mestre O Primeiro Caso do Teorema Mestre. Para o passo indutivo, assuma n m 0. Logo T(n)= a 1 T( i=0 n +k n [i])+f (n) ( a 1 i=0 a 1 i=0 cπ ( n +k n [i]) log a q( 1 ε 1)π ( n +k n [i]) log a ε) +qπ (n) log a ε ( cπ ( n ) log a q( 1 ε 1)π ( n ) log a ε) +qπ (n) log a ε acπ ( n ) log a aq( 1 ε 1)π ( n ) log a ε +qπ (n) log a ε ( ) π log a ac (n) aq( 1 ε 1) ( ) π (n) log a ε +qπ (n) log a ε acπ (n)log a aq( log a 1 ε 1) π (n)log a ε log a ε +qπ (n) log a ε acπ (n)log a aq( log a 1 ε 1) π (n)log a ε log a +qπ ε (n) log a ε

28 O Primeiro Caso do Teorema Mestre O Primeiro Caso do Teorema Mestre. T(n) acπ (n)log a aq( log a 1 ε 1) π (n)log a ε log a +qπ ε (n) log a ε acπ (n)log a a aq( 1 ε 1) ε π (n) log a ε a +qπ (n) log a ε cπ (n)log a q( 1 ε 1) ε π (n) log a ε +qπ (n) log a ε cπ (n)log a q(( 1 ε 1) ε 1)π (n) log a ε cπ (n)log a q( ε ε 1 ε 1 ε 1)π (n) log a ε cπ (n)log a q( 1 ε 1)π (n) log a ε.

29 O Primeiro Caso do Teorema Mestre O Primeiro Caso do Teorema Mestre. Com isso, segue que T O(n log a ). Pelo lema do peso das folhas, T Ω(n log a ). Portanto T Θ(n log a ).

30 O Segundo Caso do Teorema Mestre O Segundo Caso do Teorema Mestre Lema Se então f Θ(n log a ), T Θ(n log a log n).

31 O Segundo Caso do Teorema Mestre O Segundo Caso do Teorema Mestre Lema Se então f Θ(n log a ), T Θ(n log a log n).. Iremos mostrar que T O(n log a log n) e que T Ω(n log a log n).

32 O Segundo Caso do Teorema Mestre O Segundo Caso do Teorema Mestre. A fim de mostrar que T O(n log a log n), oserve que, como f O(n log a ), existem constantes x 0, q N tais que, para todo n x 0, f (n) qn log a. Assim sendo, defina m 0 = max{n 0, x 0 }, m 0 = m 0 e c = max m 0 n<m 0 { } T(n) π (n)log a log π (n), q. Vamos provar, por indução, que, para todo n m 0, T(n) cπ (n)log a log π (n).

33 O Segundo Caso do Teorema Mestre O Segundo Caso do Teorema Mestre. Para a ase da indução, assuma que m 0 n < m 0. Então ( π T(n) = T(n) (n) log a log π (n) ) π (n)log a log π ( ) (n) T(n) = π (n)log a log π (n) π (n)log a log π (n) cπ (n)log a log π (n).

34 O Segundo Caso do Teorema Mestre O Segundo Caso do Teorema Mestre. Para o passo indutivo, suponha n m 0. Então T(n) = a 1 i=0 T ( n + kn [i] ) + f (n) a 1 i=0 cπ ( n + kn [i] ) log a log π ( n + kn [i] ) + f (n) a 1 ( i=0 cπ n ) log a log π ( n ) + f (n) ( π ) ac (n) log a ( π ) log (n) + qn log a = acπ (n)log a (log log a π (n) 1) + qnlog a = acπ (n)log a a (log π (n) 1) + qnlog a = cπ (n)log a (log π (n) 1) + qnlog a

35 O Segundo Caso do Teorema Mestre O Segundo Caso do Teorema Mestre. T(n) = cπ (n)log a (log π (n) 1) + qnlog a = cπ (n)log a log π (n) cπ (n)log a + qn log a cπ (n)log a log π (n) cπ (n)log a + qπ (n)log a = cπ (n)log a log π (n) + (q c)π (n)log a cπ (n)log a log π (n). Portanto T O(n log a log n).

36 O Segundo Caso do Teorema Mestre O Segundo Caso do Teorema Mestre. A fim de mostrar que T Ω(n log a log n), oserve que, como f Ω(n log a ), existem constantes x 0, q N tais que, para todo n x 0, f (n) qπ (n) log a. Assim sendo, defina m 0 = max{n 0, x 0 }, m 0 = m 0 e c = min m 0 n<m 0 { } T(n) π (n) log a log π (n), q. Vamos provar por indução que, para todo n m 0, T(n) cπ (n) log a log π (n).

37 O Segundo Caso do Teorema Mestre O Segundo Caso do Teorema Mestre. Para a ase da indução, suponha m 0 n < m 0. Então ( ) π (n) log a log T(n) = T(n) π (n) π (n) log a log π (n) ( ) T(n) = π (n) log a π (n) log a log log π (n) π (n) cπ (n) log a log π (n).

38 O Segundo Caso do Teorema Mestre O Segundo Caso do Teorema Mestre. Para a prova do passo indutivo, assuma n m 0. Então T(n) = a 1 ( n ) T + k n [i] + f (n) i=0 a 1 ( n cπ i=0 a 1 ( n cπ i=0 = acπ ( n ) log a ( n ) + k n [i] log π + k n [i] + f (n) ) log a log π ( n ) + qπ (n) log a ) log a log π ( n ) + qπ (n) log a

39 O Segundo Caso do Teorema Mestre O Segundo Caso do Teorema Mestre. ( n ) log a ( n ) T(n) = acπ log π + qπ (n) log a ( ) = π (n) log a ( ) π (n) ac log + qπ (n) log a = acπ (n) log a ( log π (n) 1 ) + qπ (n) log a log a = cπ (n) log a ( log π (n) 1 ) + qπ (n) log a = π (n) log a ( c log π (n) + (q c) ) cπ (n) log a log π (n). Portanto T Ω(n log a log n).

40 O Segundo Caso do Teorema Mestre O Segundo Caso do Teorema Mestre. Temos que e que e portanto T O(n log a log n) T Ω(n log a log n), T Θ(n log a log n).

41 Traalho no Nó Raiz Traalho no Nó Raiz Lema (Traalho no Nó Raiz) T Ω(f ).

42 Traalho no Nó Raiz Traalho no Nó Raiz Lema (Traalho no Nó Raiz) T Ω(f ).. Para n n 0, T(n) = a 1 ( n ) T + k n [i] + f (n) f (n). i=0

43 O Terceiro Caso do Teorema Mestre O Terceiro Caso do Teorema Mestre Lema (O Terceiro Caso do Teorema Mestre) Se existem w (0; 1), x 0 N tais que, para todo n max{x 0, n 0 }, a 1 ( n ) f + k n [i] wf (n), i=0 então T Θ(f ).

44 O Terceiro Caso do Teorema Mestre O Terceiro Caso do Teorema Mestre. Seja m 0 = max{n 0, x 0 }, m 0 = m 0 e c = Vamos provar por indução que para todo n m 0. { } T(n) max m 0 n<m 0 f (n), 1. 1 w T(n) cf (n)

45 O Terceiro Caso do Teorema Mestre O Terceiro Caso do Teorema Mestre. Para o caso ase, considere m 0 n < m 0. Então ( ) f (n) T(n) = T(n) f (n) ( ) T(n) = f (n) f (n) cf (n).

46 O Terceiro Caso do Teorema Mestre O Terceiro Caso do Teorema Mestre. Para o passo indutivo, considere n m 0. Segue que T(n) = a 1 ( n ) T + k n [i] + f (n) i=0 a 1 cf i=0 cwf (n) + f (n) = (cw + 1)f (n) cf (n). ( n ) + k n [i] + f (n)

47 O Terceiro Caso do Teorema Mestre O Terceiro Caso do Teorema Mestre. Então temos que T O(f ). Pelo lema do traalho no nó raiz, temos que T Ω(f ). Logo T Θ(f ).

Luís Fernando Schultz Xavier da Silveira. 12 de maio de 2010

Luís Fernando Schultz Xavier da Silveira. 12 de maio de 2010 Monóides e o Algoritmo de Exponenciação Luís Fernando Schultz Xavier da Silveira Departamento de Informática e Estatística - INE - CTC - UFSC 12 de maio de 2010 Conteúdo 1 Monóides Definição Propriedades

Leia mais

BCC202 - Estrutura de Dados I

BCC202 - Estrutura de Dados I BCC202 - Estrutura de Dados I Aula 05: Análise de Algoritmos (Parte 2) ASN Universidade Federal de Ouro Preto, UFOP Departamento de Computação, DECOM Material elaborado com base nos slides do Prof. Reinaldo

Leia mais

Busca Binária. Aula 05. Busca em um vetor ordenado. Análise do Busca Binária. Equações com Recorrência

Busca Binária. Aula 05. Busca em um vetor ordenado. Análise do Busca Binária. Equações com Recorrência Busca Binária Aula 05 Equações com Recorrência Prof. Marco Aurélio Stefanes marco em dct.ufms.br www.dct.ufms.br/ marco Idéia: Divisão e Conquista Busca_Binária(A[l...r],k) 1:if r < lthen 2: index = 1

Leia mais

BCC202 - Estrutura de Dados I

BCC202 - Estrutura de Dados I BCC202 - Estrutura de Dados I Aula 05: Análise de Algoritmos (Parte 2) Reinaldo Fortes Universidade Federal de Ouro Preto, UFOP Departamento de Ciência da Computação, DECOM Website: www.decom.ufop.br/reifortes

Leia mais

Aula 02 Notação Assintótica p. 4. Usodanotação O. Notação O. Notação O, Ω, ΘeExemplos. Intuitivamente... O(f(n)) funções que não crescem mais

Aula 02 Notação Assintótica p. 4. Usodanotação O. Notação O. Notação O, Ω, ΘeExemplos. Intuitivamente... O(f(n)) funções que não crescem mais Notação O Aula 02 Notação Assintótica Notação O, Ω, Θe Prof. Marco Aurélio Stefanes marco em dct.ufms.br www.dct.ufms.br/ marco Intuitivamente... O() funções que não crescem mais rápido que funções menores

Leia mais

Aula 06: Análise matemática de algoritmos recursivos

Aula 06: Análise matemática de algoritmos recursivos Aula 06: Análise matemática de algoritmos recursivos David Déharbe Programa de Pós-graduação em Sistemas e Computação Universidade Federal do Rio Grande do Norte Centro de Ciências Exatas e da Terra Departamento

Leia mais

Análise de algoritmos

Análise de algoritmos Análise de algoritmos Recorrências Conteúdo Introdução O método mestre Referências Introdução O tempo de execução de um algoritmo recursivo pode frequentemente ser descrito por uma equação de recorrência.

Leia mais

Análise de Algoritmos

Análise de Algoritmos Análise de Algoritmos Estes slides são adaptações de slides do Prof. Paulo Feofiloff e do Prof. José Coelho de Pina. Algoritmos p. 1 Introdução CLRS 2.2 e 3.1 AU 3.3, 3.4 e 3.6 Essas transparências foram

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/30 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

Princípio da boa ordenação. Aula 03. Princípio da boa ordenação. Princípio da boa ordenação. Indução Finita e Somatórios

Princípio da boa ordenação. Aula 03. Princípio da boa ordenação. Princípio da boa ordenação. Indução Finita e Somatórios Princípio da boa ordenação Aula 0 Indução Finita e Somatórios Prof. Marco Aurélio Stefanes marco em dct.ufms.br www.dct.ufms.br/ marco Aula 0 p. 1 Aula 0 p. Princípio da boa ordenação Princípio da boa

Leia mais

Projeto e Análise de Algoritmos

Projeto e Análise de Algoritmos Projeto e Análise de Algoritmos A. G. Silva Baseado nos materiais de Souza, Silva, Lee, Rezende, Miyazawa Unicamp Ribeiro FCUP Manber, Introduction to Algorithms (1989) Livro 06 de abril de 2018 Conteúdo

Leia mais

André Vignatti DINF- UFPR

André Vignatti DINF- UFPR Notação Assintótica: O André Vignatti DINF- UFPR Notação Assintótica Vamos expressar complexidade através de funções em variáveis que descrevam o tamanho de instâncias do problema. Exemplos: Problemas

Leia mais

Probabilidade IV. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período

Probabilidade IV. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período Probabilidade IV Ulisses U. dos Anjos Departamento de Estatística Universidade Federal da Paraíba Período 2014.2 Ulisses Umbelino (DE-UFPB) Probabilidade IV Período 2014.2 1 / 20 Sumário 1 Apresentação

Leia mais

Complexidade Assintótica

Complexidade Assintótica Complexidade Assintótica ACH2002 - Introdução à Ciência da Computação II Delano M. Beder Escola de Artes, Ciências e Humanidades (EACH) Universidade de São Paulo dbeder@usp.br 08/2008 Material baseado

Leia mais

Teoremas de uma, duas e três séries de Kolmogorov

Teoremas de uma, duas e três séries de Kolmogorov Teoremas de uma, duas e três séries de Kolmogorov 13 de Maio de 013 1 Introdução Nestas notas Z 1, Z, Z 3,... é uma sequência de variáveis aleatórias independentes. Buscaremos determinar condições sob

Leia mais

Conjuntos Numéricos Aula 6. Conjuntos Numéricos. Armando Caputi

Conjuntos Numéricos Aula 6. Conjuntos Numéricos. Armando Caputi Conjuntos Numéricos Aula 6 Conjuntos Numéricos E-mail: armando.caputi@ufabc.edu.br Página: http://professor.ufabc.edu.br/~armando.caputi Sala 549-2 - Bloco A - Campus Santo André Conjuntos Numéricos Aula

Leia mais

5. Invólucros Convexos no Plano (cont )

5. Invólucros Convexos no Plano (cont ) 5. Invólucros Convexos no Plano (cont ) Antonio Leslie Bajuelos Departamento de Matemática Universidade de Aveiro Mestrado em Matemática e Aplicações Complexidade Algorítmica Notação O Sejam T(n) e f(n)

Leia mais

André Vignatti DINF- UFPR

André Vignatti DINF- UFPR Notação Assintótica: Ω, Θ André Vignatti DINF- UFPR Limitantes Inferiores Considere o seguinte trecho de código: void main () { /* trecho que le N da entrada padrao */ for (i = 0 ; i< N; i++) puzzle(i);

Leia mais

Estruturas de Dados 2

Estruturas de Dados 2 Estruturas de Dados 2 Recorrências IF64C Estruturas de Dados 2 Engenharia da Computação Prof. João Alberto Fabro - Slide 1/31 Recorrências Análise da Eficiência de Algoritmos: Velocidade de Execução; Análise

Leia mais

BCC202 - Estrutura de Dados I

BCC202 - Estrutura de Dados I BCC202 - Estrutura de Dados I Aula 06: Análise de Algoritmos (Parte 3) Reinaldo Fortes Universidade Federal de Ouro Preto, UFOP Departamento de Ciência da Computação, DECOM Website: www.decom.ufop.br/reifortes

Leia mais

Algoritmos e Estrutura de Dados. Aula 04 Recorrência Prof. Tiago A. E. Ferreira

Algoritmos e Estrutura de Dados. Aula 04 Recorrência Prof. Tiago A. E. Ferreira Algoritmos e Estrutura de Dados Aula 04 Recorrência Prof. Tiago A. E. Ferreira Esta Aula... Nesta aula veremos três métodos para resolver recorrência: Método da substituição É suposto um limite hipotético

Leia mais

Análise de Algoritmos

Análise de Algoritmos Algoritmos p. 1/28 Análise de Algoritmos Parte destes slides são adaptações de slides do Prof. Paulo Feofiloff e do Prof. José Coelho de Pina. Algoritmos p. 2/28 Análise de Algoritmos CLRS 7 Essas transparências

Leia mais

Aula 2. Divisão e conquista. Exemplo 1: Número de inversões de uma permutação (problema 2-4 do CLRS; veja também sec 5.4 do KT)

Aula 2. Divisão e conquista. Exemplo 1: Número de inversões de uma permutação (problema 2-4 do CLRS; veja também sec 5.4 do KT) Aula 2 Divisão e conquista Exemplo 1: Número de inversões de uma permutação (problema 2-4 do CLRS; veja também sec 5.4 do KT) Exemplo 2: Par de pontos mais próximos (sec 33.4 do CLRS) Essas transparências

Leia mais

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que:

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que: Matemática Discreta 2008/09 Vítor Hugo Fernandes Departamento de Matemática FCT/UNL Axioma (Princípio da Boa Ordenação dos Números Naturais) O conjunto parcialmente (totalmente) ordenado (N, ), em que

Leia mais

Introdução à Análise Algoritmos

Introdução à Análise Algoritmos Introdução à Análise Algoritmos Notas de aula da disciplina IME 4-182 Estruturas de Dados I Paulo Eustáquio Duarte Pinto (pauloedp arroba ime.uerj.br) abril/218 Ordenação por SELEÇÃO: Idéia: Dado um vetor

Leia mais

Lista de Exercícios 6: Soluções Funções

Lista de Exercícios 6: Soluções Funções UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios 6: Soluções Funções Ciências Exatas & Engenharias o Semestre de 06 Conceitos. Determine e justifique se a seguinte afirmação é verdadeira ou não

Leia mais

ANÁLISE DE ALGORITMOS

ANÁLISE DE ALGORITMOS ANÁLISE DE ALGORITMOS Paulo Feofiloff Instituto de Matemática e Estatística Universidade de São Paulo agosto 2009 Introdução P. Feofiloff (IME-USP) Análise de Algoritmos agosto 2009 2 / 102 Introdução

Leia mais

Binomiais e Primos. p p 2 + p 3 + p k. Demonstração. No produto n! = n, apenas os múltiplos de p contribuem com um fator p.

Binomiais e Primos. p p 2 + p 3 + p k. Demonstração. No produto n! = n, apenas os múltiplos de p contribuem com um fator p. Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 16 Binomiais e Primos Começamos lembrando a Proposição 1 (Fatores do Fatorial) Seja p um primo Então a maior

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/27 4 - INTROD. À ANÁLISE COMBINATÓRIA 4.1) Arranjos

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/81 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional

Leia mais

Forma Fechada para os Números de Catalão

Forma Fechada para os Números de Catalão Departamento de Informática e Estatística - INE - CTC - UFSC 13 de abril de 2010 O Problema Alice gostaria de se deslocar até onde Bob está permanecendo sempre em cima de uma linha de um grid n n, indo

Leia mais

Demonstrações. Terminologia Métodos

Demonstrações. Terminologia Métodos Demonstrações Terminologia Métodos Técnicas de Demonstração Uma demonstração é um argumento válido que estabelece a verdade de uma sentença matemática. Técnicas de Demonstração Demonstrações servem para:

Leia mais

Resposta da pergunta 2: Θ(n 3 ). Resposta da pergunta 8: 1. 7 O(n). Sim. 22. n log n O(1). Não. 3. n + 7 O(n). Sim. 4. n + 7 O(1). Não.

Resposta da pergunta 2: Θ(n 3 ). Resposta da pergunta 8: 1. 7 O(n). Sim. 22. n log n O(1). Não. 3. n + 7 O(n). Sim. 4. n + 7 O(1). Não. SSC0503 - Introdução à Ciência de Computação II Respostas da 1 a Lista Professor: Claudio Fabiano Motta Toledo (claudio@icmc.usp.br) Estagiário PAE: Jesimar da Silva Arantes (jesimar.arantes@usp.br) Resposta

Leia mais

σ-álgebras, geradores e independência

σ-álgebras, geradores e independência σ-álgebras, geradores e independência Roberto Imbuzeiro M. F. de Oliveira 15 de Março de 2009 Resumo Notas sobre a σ-álgebra gerada por uma variável aleatória X e sobre as condições de independência de

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/26 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

Mergesort. Aula 04. Algoritmo Mergesort. Divisão e Conquista. Divisão e Conquista- MergeSort

Mergesort. Aula 04. Algoritmo Mergesort. Divisão e Conquista. Divisão e Conquista- MergeSort Mergesort Aula 0 Divisão e Conquista- MergeSort Prof. Marco Aurélio Stefanes marco em dct.ufms.br www.dct.ufms.br/ marco Mergesort é um algoritmo de ordenação recursivo Ele recursivamente ordena as duas

Leia mais

1 Conjuntos, Números e Demonstrações

1 Conjuntos, Números e Demonstrações 1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para

Leia mais

Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches

Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches CT-234 Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural Carlos Alberto Alonso Sanches CT-234 2) Algoritmos recursivos Indução matemática, recursão, recorrências Indução matemática Uma

Leia mais

ENFOQUE USANDO CORTES DE DEDEKIND

ENFOQUE USANDO CORTES DE DEDEKIND Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit CONSTRUÇÃO DOS REAIS: UM ENFOQUE

Leia mais

Análise de algoritmos

Análise de algoritmos Análise de algoritmos Introdução à Ciência da Computação 2 Baseado nos slides do Prof. Thiago A. S. Pardo Algoritmo Noção geral: conjunto de instruções que devem ser seguidas para solucionar um determinado

Leia mais

Divisão e Conquista. Fernando Lobo. Algoritmos e Estrutura de Dados II. É uma técnica para resolver problemas (veremos outras técnicas mais adiante).

Divisão e Conquista. Fernando Lobo. Algoritmos e Estrutura de Dados II. É uma técnica para resolver problemas (veremos outras técnicas mais adiante). Divisão e Conquista Fernando Lobo Algoritmos e Estrutura de Dados II 1 / 27 Divisão e Conquista É uma técnica para resolver problemas (veremos outras técnicas mais adiante). Consiste em 3 passos: Dividir

Leia mais

Projeto e Análise de Algoritmos

Projeto e Análise de Algoritmos Projeto e Análise de Algoritmos A. G. Silva Baseado nos materiais de Souza, Silva, Lee, Rezende, Miyazawa Unicamp Ribeiro FCUP 18 de agosto de 2017 Conteúdo programático Introdução (4 horas/aula) Notação

Leia mais

Referências e materiais complementares desse tópico

Referências e materiais complementares desse tópico Notas de aula: Análise de Algoritmos Centro de Matemática, Computação e Cognição Universidade Federal do ABC Profa. Carla Negri Lintzmayer Conceitos matemáticos e técnicas de prova (Última atualização:

Leia mais

Convergência, séries de potência e funções analíticas

Convergência, séries de potência e funções analíticas Convergência, séries de potência e funções analíticas Roberto Imbuzeiro Oliveira March 13, 2015 1 Algumas palavras sobre convergência em C Tudo o que descreveremos aqui é análogo ao que se define e prova

Leia mais

Indução Matemática. Matemática Discreta. Indução Matemática. Mayara Midori Omai e Sheila Morais de Almeida UTFPR-PG. Abril

Indução Matemática. Matemática Discreta. Indução Matemática. Mayara Midori Omai e Sheila Morais de Almeida UTFPR-PG. Abril Matemática Discreta Indução Matemática Mayara Midori Omai e Sheila Morais de Almeida UTFPR-PG Abril - 2017 Indução Matemática Se desejamos provar que A(n) B(n) é verdade para números inteiros k maiores

Leia mais

Provas de Análise Real - Noturno - 3MAT003

Provas de Análise Real - Noturno - 3MAT003 Provas de 2006 - Análise Real - Noturno - 3MAT003 Matemática - Prof. Ulysses Sodré - Londrina-PR - provas2006.tex 1. Definir a operação ϕ entre os conjuntos A e B por ϕ(a, B) = (A B) (A B). (a) Demonstrar

Leia mais

Indução Matemática. Profa. Sheila Morais de Almeida. junho DAINF-UTFPR-PG

Indução Matemática. Profa. Sheila Morais de Almeida. junho DAINF-UTFPR-PG Indução Matemática Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Indução Matemática junho - 2018 1 / 38 Este material é preparado usando como referências os

Leia mais

Algoritmos de ordenação Quicksort

Algoritmos de ordenação Quicksort Algoritmos de ordenação Quicksort Sumário Introdução Descrição do quicksort Desempenho do quicksort Pior caso Melhor caso Particionamento balanceado Versão aleatória do quicksort Análise do quicksort Pior

Leia mais

Invariância da integral por homotopia, fórmula de Cauchy e séries de Taylor

Invariância da integral por homotopia, fórmula de Cauchy e séries de Taylor Invariância da integral por homotopia, fórmula de Cauchy e séries de Taylor Roberto Imbuzeiro Oliveira 6 de Abril de 20 Preliminares Nestas notas, U C sempre será um aberto e f : U C é contínua. Duas curvas

Leia mais

Análise de Algoritmos

Análise de Algoritmos Análise de Algoritmos Estes slides são adaptações de slides do Prof. Paulo Feofiloff e do Prof. José Coelho de Pina. Algoritmos p. 1 Aula 3 Transformada rápida de Fourier Secs 30.1 e 30.2 do CLRS e 5.6

Leia mais

Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II

Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II 1 Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II 1 O Anel dos Inteiros Módulo n Consideremos um número natural n 2 fixado Para cada número inteiro a definimos a = {x Z; x a mod n} Como

Leia mais

Estruturas Discretas

Estruturas Discretas Estruturas Discretas 2017.2 Marco Molinaro > Indução Forte Corretude de Algoritmos 1/20 Indução Forte > Indução Forte Corretude de Algoritmos 2/20 Indução Forte X Indução Fraca Para provar Propriedade

Leia mais

Aritmética dos Restos. Pequeno Teorema de Fermat. Tópicos Adicionais

Aritmética dos Restos. Pequeno Teorema de Fermat. Tópicos Adicionais Aritmética dos Restos Pequeno Teorema de Fermat Tópicos Adicionais Aritmética dos Restos Pequeno Teorema de Fermat 1 Exercícios Introdutórios Exercício 1. Encontre os restos da divisão de 2 24 por a) 5

Leia mais

ALGORITMO DE EUCLIDES

ALGORITMO DE EUCLIDES Sumário ALGORITMO DE EUCLIDES Luciana Santos da Silva Martino lulismartino.wordpress.com lulismartino@gmail.com PROFMAT - Colégio Pedro II 25 de agosto de 2017 Sumário 1 Máximo Divisor Comum 2 Algoritmo

Leia mais

PCC104 - Projeto e Análise de Algoritmos

PCC104 - Projeto e Análise de Algoritmos PCC104 - Projeto e Análise de Algoritmos Marco Antonio M. Carvalho Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto 7 de outubro de 2016 Marco Antonio

Leia mais

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3 Problema (a) (3 pontos) Sendo f(x) = sen 2 (x) sen(2x), uma função π-periódica, temos que f (x) = 2 sen(x) cos(x) sen(2x) + sen 2 (x) 2 cos(2x) = 2 sen(x) (cos(x) sen(2x) + sen(x) cos(2x) ) = 2 sen(x)

Leia mais

Convergência, séries de potência e funções analíticas

Convergência, séries de potência e funções analíticas Convergência, séries de potência e funções analíticas Roberto Imbuzeiro Oliveira March 16, 2011 1 Algumas palavras sobre convergência em C Tudo o que descreveremos aqui é análogo ao que se define e prova

Leia mais

Polinômio Mínimo e Operadores Nilpotentes

Polinômio Mínimo e Operadores Nilpotentes Capítulo 9 Polinômio Mínimo e Operadores Nilpotentes Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula

Leia mais

1 Congruências de Grau Superior. Dado um polinômio f(x) Z[x] e um número natural n, vamos estudar condições para que a congruência. f(x) 0 (mod n).

1 Congruências de Grau Superior. Dado um polinômio f(x) Z[x] e um número natural n, vamos estudar condições para que a congruência. f(x) 0 (mod n). Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 10 Congruências de Grau Superior 1 Congruências de Grau Superior Dado um polinômio f(x Z[x] e um número

Leia mais

Mais uma aplicação do teorema de isomorfismo. Sejam G um grupo, H um subgrupo de G e N um subgrupo normal de

Mais uma aplicação do teorema de isomorfismo. Sejam G um grupo, H um subgrupo de G e N um subgrupo normal de Obs: tem exercícios na página 6. Mais uma aplicação do teorema de isomorfismo. Sejam G um grupo, H um subgrupo de G e N um subgrupo normal de G. Seja HN = {hn : h H, n N}. Então HN G, H N H e H/H N = HN/N.

Leia mais

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Fundamentos de Análise

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Fundamentos de Análise Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Fundamentos de Análise Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 1. Prove que para todo x 0 IR

Leia mais

MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08

MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08 MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08 Neste curso, consideraremos o conjunto dos números naturais como sendo o conjunto N = {0, 1, 2, 3,... }, denotando por N o conjunto N \ {0}. Como

Leia mais

) a sucessão definida por y n

) a sucessão definida por y n aula 05 Sucessões 5.1 Sucessões Uma sucessão de números reais é simplesmente uma função x N R. É conveniente visualizar uma sucessão como uma sequência infinita: (x(), x(), x(), ). Neste contexto é usual

Leia mais

Lista de Exercícios 6 Funções

Lista de Exercícios 6 Funções UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios 6 Funções Ciências Exatas & Engenharias o Semestre de 06 Conceitos. Determine e justifique se a seguinte afirmação é verdadeira ou não para todas

Leia mais

Programação Estruturada

Programação Estruturada Programação Estruturada Recursão Professores Emílio Francesquini e Carla Negri Lintzmayer 2018.Q3 Centro de Matemática, Computação e Cognição Universidade Federal do ABC Recursão Recursão 1 Recursão 2

Leia mais

Teorema. Existe alguma raiz primitiva módulo n se, e só se, n = 2, n = 4, n = p k ou n = 2p k onde p é primo ímpar.

Teorema. Existe alguma raiz primitiva módulo n se, e só se, n = 2, n = 4, n = p k ou n = 2p k onde p é primo ímpar. raízes primitivas Uma raiz primitiva módulo n é um inteiro b tal que {1, b, b 2,... ( mod n)} = U(n). Teorema. Existe alguma raiz primitiva módulo n se, e só se, n = 2, n = 4, n = p k ou n = 2p k onde

Leia mais

Aula 1. Teoria da Computação III

Aula 1. Teoria da Computação III Aula 1 Teoria da Computação III Complexidade de Algoritmos Um problema pode ser resolvido através de diversos algoritmos; O fato de um algoritmo resolver um dado problema não significa que seja aceitável

Leia mais

Corretude e Completude da Dedução Natural. Thiago Alves Rocha

Corretude e Completude da Dedução Natural. Thiago Alves Rocha Lógica para Computação Corretude e Completude da Dedução Natural Thiago Alves Rocha thiagoalvesifce@gmail.com Thiago Alves Rocha Lógica para Computação 1 / 15 Tópicos 1 Introdução 2 Corretude 3 Completude

Leia mais

Se mdc(a,m) = 1, como a é invertível módulo m, a equação. ax b (mod m)

Se mdc(a,m) = 1, como a é invertível módulo m, a equação. ax b (mod m) Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 8 Equações lineares módulo n e o teorema chinês dos restos 1 Equações Lineares Módulo m Se mdc(a,m) = 1,

Leia mais

Análise de Algoritmos

Análise de Algoritmos Análise de Algoritmos CLRS 2.2 e 3.1 AU 3.3, 3.4 e 3.6 Essas transparências foram adaptadas das transparências do Prof. Paulo Feofiloff e do Prof. José Coelho de Pina. Algoritmos p. 1 Intuitivamente...

Leia mais

Aritmética. Somas de Quadrados

Aritmética. Somas de Quadrados Aritmética Somas de Quadrados Carlos Humberto Soares Júnior PROFMAT - SBM Objetivo Determinar quais números naturais são soma de dois quadrados. PROFMAT - SBM Aritmética, Somas de Quadrados slide 2/14

Leia mais

MA14 - Aritmética Unidade 2 Resumo. Divisão Euclidiana

MA14 - Aritmética Unidade 2 Resumo. Divisão Euclidiana MA14 - Aritmética Unidade 2 Resumo Divisão Euclidiana Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte da disciplina e o seu estudo não garante o domínio do assunto. O material

Leia mais

Lista 1 - Bases Matemáticas

Lista 1 - Bases Matemáticas Lista 1 - Bases Matemáticas Elementos de Lógica e Linguagem Matemática Parte I 1 Atribua valores verdades as seguintes proposições: a) 5 é primo e 4 é ímpar. b) 5 é primo ou 4 é ímpar. c) (Não é verdade

Leia mais

Capítulo 1. Introdução

Capítulo 1. Introdução Capítulo 1 Introdução O objeto de estudo de Mat-1 são as funções reais de variável real. Estudaremos nesta disciplina os conceitos de limite, continuidade, derivabilidade e integrabilidade de funções reais

Leia mais

Módulo Tópicos Adicionais. Recorrências

Módulo Tópicos Adicionais. Recorrências Módulo Tópicos Adicionais Recorrências Módulo Tópico Adicionais Recorrências 1 Exercícios Introdutórios Exercício 1 Considere a sequência definida por x 1 d e x n r + x n 1, para n > 1 Trata-se de uma

Leia mais

XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º. e 9º. anos) GABARITO

XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º. e 9º. anos) GABARITO XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (8º. e 9º. anos) GABARITO GABARITO NÍVEL 1) B 6) D 11) B 16) C 1) A ) E 7) E 1) B 17) D ) D 3) B 8) B 13) D 18) C 3) D 4) B 9) E 14) D 19) C

Leia mais

Análise e Síntese de Algoritmos. Revisão CLRS, Cap. 4, 6

Análise e Síntese de Algoritmos. Revisão CLRS, Cap. 4, 6 Análise e Síntese de Algoritmos Revisão CLRS, Cap. 4, 6 Contexto Revisão Algoritmos e complexidade Notação Fundamentos: somatórios, logaritmos, etc. Exemplos de algoritmos Ordenação Procura Selecção 2007/2008

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO DEPARTAMENTO DE ESTATÍSTICA. Medida e Probabilidade

UNIVERSIDADE FEDERAL DE PERNAMBUCO DEPARTAMENTO DE ESTATÍSTICA. Medida e Probabilidade UNIVERSIDADE FEDERAL DE PERNAMBUCO DEPARTAMENTO DE ESTATÍSTICA Medida e Probabilidade Aluno: Daniel Cassimiro Carneiro da Cunha Professor: Andre Toom 1 Resumo Este trabalho contem um resumo dos principais

Leia mais

Diferenciais em Série de Potências

Diferenciais em Série de Potências Existência de Soluções de Equações Diferenciais em Série de Potências Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://www.mat.ufmg.br/ regi 0 de julho de

Leia mais

Jogos e invariantes. 6 de Janeiro de 2015

Jogos e invariantes. 6 de Janeiro de 2015 Jogos e invariantes 6 de Janeiro de 2015 Resumo Objetivos principais da aula de hoje: continuar com a ideia de explorar problemas. Apresentar a ideia de invariantes. 1 O jogo de apagar - introdução Quem

Leia mais

Séries de Laurent e Teoremas de Cauchy

Séries de Laurent e Teoremas de Cauchy Séries de Laurent e Teoremas de Cauchy Roberto Imbuzeiro Oliveira 3 de Abril de 20 A maior parte destas notas tem como refererência o livro de David Ullrich, Complex Made Simple. Preliminares sobre séries

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/29 5 - RELAÇÕES 5.1) Relações e Dígrafos 5.2) Propriedades

Leia mais

Lista 4. Esta lista, de entrega facultativa, tem três partes e seus exercícios versam sobre séries, funções contínuas e funções diferenciáveis em R.

Lista 4. Esta lista, de entrega facultativa, tem três partes e seus exercícios versam sobre séries, funções contínuas e funções diferenciáveis em R. UFPR - Universidade Federal do Paraná Departamento de Matemática CM095 - Análise I Prof José Carlos Eidam Lista 4 INSTRUÇÕES Esta lista, de entrega facultativa, tem três partes e seus exercícios versam

Leia mais

Projeto e Análise de Algoritmos

Projeto e Análise de Algoritmos Projeto e Análise de Algoritmos A. G. Silva Baseado nos materiais de Souza, Silva, Lee, Rezende, Miyazawa Unicamp Ribeiro FCUP Manber, Introduction to Algorithms (989) Livro de abril de 08 Conteúdo programático

Leia mais

SMA333 8a. Lista - séries de Taylor 07/06/2013

SMA333 8a. Lista - séries de Taylor 07/06/2013 SMA333 8a Lista - séries de Taylor 7/6/213 Definição Para qualquer n = 1, 2, 3,, se uma função f tiver todas as derivadas até ordem n em algum intervalo contendo a como ponto interior, então o polinômio

Leia mais

3. ANÁLISE DE COMPLEXIDADE PESSIMISTA

3. ANÁLISE DE COMPLEXIDADE PESSIMISTA 3. ANÁLISE DE COMPLEXIDADE PESSIMISTA Este capítulo introduz uma metodologia para analisar a complexidade pessimista (i. e. no pior caso) de um algoritmo com base em sua estrutura. O processo de construção

Leia mais

MA14 - Aritmética Unidade 3. Divisão nos Inteiros (Divisibilidade)

MA14 - Aritmética Unidade 3. Divisão nos Inteiros (Divisibilidade) MA14 - Aritmética Unidade 3 Divisão nos Inteiros (Divisibilidade) Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio

Leia mais

Notas Sobre Sequências e Séries Alexandre Fernandes

Notas Sobre Sequências e Séries Alexandre Fernandes Notas Sobre Sequências e Séries 2015 Alexandre Fernandes Limite de seqüências Definição. Uma seq. (s n ) converge para a R, ou a R é limite de (s n ), se para cada ɛ > 0 existe n 0 N tal que s n a < ɛ

Leia mais

Universidade Federal de Santa Catarina Centro de Ciẽncias Físicas e Matemáticas Departamento de Matemática. Liana Garcia Ribeiro

Universidade Federal de Santa Catarina Centro de Ciẽncias Físicas e Matemáticas Departamento de Matemática. Liana Garcia Ribeiro Universidade Federal de Santa Catarina Centro de Ciẽncias Físicas e Matemáticas Departamento de Matemática Liana Garcia Ribeiro Introdução aos Números Algébricos Florianópolis 2018 2 Introdução Para fazer

Leia mais

1 Números Complexos. Seja R o conjunto dos Reais. Consideremos o produto cartesiano R R = R 2 tal que:

1 Números Complexos. Seja R o conjunto dos Reais. Consideremos o produto cartesiano R R = R 2 tal que: Números Complexos e Polinômios Prof. Gustavo Sarturi [!] Esse documento está sob constantes atualizações, qualquer erro de ortografia, cálculo, favor comunicar. Última atualização: 01/11/2018. 1 Números

Leia mais

Análise e Projeto de Algoritmos

Análise e Projeto de Algoritmos Análise e Projeto de Algoritmos Mestrado em Ciência da Computação Prof. Dr. Aparecido Nilceu Marana Faculdade de Ciências I think the design of efficient algorithms is somehow the core of computer science.

Leia mais

Divisão e Conquista. Norton T. Roman. Apostila baseada nos trabalhos de Cid de Souza, Cândida da Silva e Delano M. Beder

Divisão e Conquista. Norton T. Roman. Apostila baseada nos trabalhos de Cid de Souza, Cândida da Silva e Delano M. Beder Divisão e Conquista Norton T. Roman Apostila baseada nos trabalhos de Cid de Souza, Cândida da Silva e Delano M. Beder Divisão e Conquista Construção incremental Ex: Consiste em, inicialmente, resolver

Leia mais

Teoria dos Conjuntos. (Aula 6) Ruy de Queiroz. O Teorema da. (Aula 6) Ruy J. G. B. de Queiroz. Centro de Informática, UFPE

Teoria dos Conjuntos. (Aula 6) Ruy de Queiroz. O Teorema da. (Aula 6) Ruy J. G. B. de Queiroz. Centro de Informática, UFPE Ruy J. G. B. de Centro de Informática, UFPE 2007.1 Conteúdo 1 Seqüências Definição Uma seqüência é uma função cujo domíno é um número natural ou N. Uma seqüência cujo domínio é algum número natural n N

Leia mais

Semana 3 MCTB J Donadelli. 1 Técnicas de provas. Demonstração indireta de implicação. indireta de. Demonstração por vacuidade e trivial

Semana 3 MCTB J Donadelli. 1 Técnicas de provas. Demonstração indireta de implicação. indireta de. Demonstração por vacuidade e trivial Semana 3 por de por de 1 indireta por de por de Teoremas resultados importantes, Os rótulos por de por de Teoremas resultados importantes, Os rótulos Proposições um pouco menos importantes, por de por

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/20 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II

Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II 1 Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II. 1 O Anel dos Inteiros Módulo n Consideremos um número natural n 2 fixado. Para cada número inteiro a definimos a = {x Z; x a mod n}. Como

Leia mais

Polinômios Ciclotômicos e o Teorema dos Primos de Dirichlet

Polinômios Ciclotômicos e o Teorema dos Primos de Dirichlet Polinômios Ciclotômicos e o Teorema dos Primos de Dirichlet Antonio Caminha 15 de fevereiro de 2003 Resumo Neste artigo definimos e provamos as principais propriedades dos polinômios ciclotômicos, objetivando

Leia mais

Polos Olímpicos de Treinamento. Aula 1. Curso de Teoria dos Números - Nível 2. Divisibilidade I. Samuel Barbosa Feitosa

Polos Olímpicos de Treinamento. Aula 1. Curso de Teoria dos Números - Nível 2. Divisibilidade I. Samuel Barbosa Feitosa Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Samuel Barbosa Feitosa Aula 1 Divisibilidade I Teorema 1. (Algoritmo da Divisão) Para quaisquer inteiros positivos a e b, existe um

Leia mais

PUC-Rio Desafio em Matemática 1 de outubro de 2017

PUC-Rio Desafio em Matemática 1 de outubro de 2017 PUC-Rio Desafio em Matemática 1 de outubro de 017 Nome: GABARITO Assinatura: Inscrição: Identidade: Questão Valor Nota Revisão 1 1,5 1,5 3 1,5 4 1,5 5,0 6,0 Nota final 10,0 Instruções Mantenha seu celular

Leia mais

03 Análise de Algoritmos (parte 3) SCC201/501 - Introdução à Ciência de Computação II

03 Análise de Algoritmos (parte 3) SCC201/501 - Introdução à Ciência de Computação II 03 Análise de Algoritmos (parte 3) SCC201/501 - Introdução à Ciência de Computação II Prof. Moacir Ponti Jr. www.icmc.usp.br/~moacir Instituto de Ciências Matemáticas e de Computação USP 2010/2 Moacir

Leia mais