SIMULAÇÕES NUMÉRICAS TRIDIMENSIONAIS DE ESTRUTURAS COM TRINCAS

Documentos relacionados
3. Materiais e Métodos

Figura 4.1: a)elemento Sólido Tetraédrico Parabólico. b)elemento Sólido Tetraédrico Linear.

2 Análise do Colapso de Estruturas através do Método dos Elementos Finitos

Programa de Pós-graduação em Engenharia Mecânica da UFABC. Disciplina: Fundamentos de Mecânica dos Sólidos II. Lista 2

2 Fundamentos para a avaliação de integridade de dutos com perdas de espessura e reparados com materiais compósitos

Introdução à Mecânica da Fratura Linear Elástica. Aplicações ao Projeto Mecânico.

3 Implementação Computacional

3 Modelagem numérica.

4 Modelo Numérico Computacional

ANÁLISE NÃO LINEAR GEOMÉTRICA DE TRELIÇAS PLANAS POR MEIO DO MÉTODO DOS ELEMENTOS FINITOS. Luiz Antonio Farani de Souza 1

UENF - COORDENAÇÃO ACADÊMICA -

Os modelos numéricos propostos foram elaborados a partir do elemento Shell 63 disponibilizado na biblioteca do programa ANSYS.

ESTIMATIVAS DE ZONAS PLÁSTICAS OBTIDAS A PARTIR DE UM CAMPO DE TENSÕES DETERMINADO NUMERICAMENTE

AVALIAÇÃO DO ENRIQUECIMENTO POLINOMIAL NO MÉTODO DOS ELEMENTOS FINITOS GENERALIZADOS EM ELEMENTOS TRIANGULARES

5 Análise numérica dos parâmetros usados na reconstrução do crescimento da trinca

TRELIÇA C/ SISTEMA TENSOR DE CABO

Professor: Estevam Las Casas. Disciplina: MÉTODOS DE ELEMENTOS FINITOS MEF TRABALHO

MÉTODO DE RUNGE-KUTTA APLICADO À DEFLEXÃO DE VIGA 1 RUNGE-KUTTA METHOD APPLIED TO BEAM DEFLECTION

Resistência dos Materiais

4 Modelo Constitutivo de Drucker-Prager para materiais rochosos

Desenvolvimento de um Modelo de Contato de uma Superfície Idealmente Lisa Contra uma Rugosa pelo Método dos Elementos Finitos

Tabela 1 Características gerais dos corpos de prova escolhidos. RI=Rocha intacta; ZD=Zona de dano; NF=Núcleo da falha

Estabilidade. Marcio Varela

Resumo. Palavras-chave. Pontes; distribuição transversal de carga; modelo bidimensional. Introdução

0RGHODJHP&RPSXWDFLRQDO$WUDYpVGR3URJUDPD$%$486

Análise da estabilidade de taludes

UNIDADE 9 Propriedades Mecânicas I

Capítulo 3: Propriedades mecânicas dos materiais

4 Deslocamentos gerados pela escavação

Por fim, deve-se mencionar o problema da geometria 2D complexa. Segundo a MFLE, as taxas de propagação das trincas por fadiga dependem

Análise Experimental de Apoios para Simulação de Condições de Contorno Livre no Espaço de Placas Retangulares

Lista de Exercício 3 Elastoplasticidade e Análise Liimite 18/05/2017. A flexão na barra BC ocorre no plano de maior inércia da seção transversal.

Base de Aerogeradores: Comparativo de Dimensionamento Modelo MEF e Modelo Biela/Tirante André Puel 1

DIMENSIONAMENTO PARA TRELIÇAS DE MODO A MINIMIZAR CUSTOS MATERIAIS E OTIMIZAR A RESISTÊNCIA A DESLOCAMENTO

ANÁLISE DE PLACAS LAMINADAS UTILIZANDO ELEMENTOS HÍBRIDOS DE TENSÕES TRIDIMENSIONAIS. Domingos Sávio R. Jr. (PG) & Flávio L. S.

Análise de assentamento do terreno

ANÁLISE DO COMPORTAMENTO DE MANCAIS ELASTO-HIDRODINÂMICOS ATRAVÉS DO MÉTODO DOS ELEMENTOS FINITOS

Propriedades mecânicas dos materiais

Introdução ao Método dos Elementos Finitos

Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013

AVALIAÇÃO DA COMPRESSÃO DE UMA LIGA DE ALUMÍNIO: EXPERIMENTAL X NUMÉRICO

7 Análise Método dos Elementos Finitos

Professor: Juan Julca Avila. Site:

Comportamento Elastoplástico

Comparação de Desempenho entre o Método dos Elementos de Contorno com Integração Direta e o Método dos Elementos Finitos em problemas de Poisson

6 Formulação para Problemas da Mecânica da Fratura Linear Elástica

4 Mecanismos de Fratura

PROGRAMA COMPUTACIONAL PARA ANÁLISE DINÂMICA DE ESTRUTURAS TRELIÇADAS Computational Program for dynamic analysis of lattice structures

2 Casca cilíndrica delgada

3 Modelagem Numérica 3.1

ANÁLISE NÃO LINEAR FÍSICA DE TRELIÇAS PLANAS POR ELEMENTOS FINITOS CONSIDERANDO A MECÂNICA DO DANO. Luiz Antonio Farani de Souza 1

Simulação computacional de estruturas de concreto por meio da mecânica do dano. Resumo

7 RESULTADOS EXPERIMENTAIS

UNIVERSIDADE FEDERAL DO ABC MATERIAIS E SUAS PROPRIEDADES (BC 1105) ENSAIOS MECÂNICOS ENSAIOS DE TRAÇÃO E FLEXÃO

MÉTODO DA PARTIÇÃO NA ANÁLISE DE MÚLTIPLAS FISSURAS SPLITTING METHOD IN THE ANALYSIS OF MULTIPLE CRACKS

Capítulo 4 Propriedades Mecânicas dos Materiais

UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03

PME-2350 MECÂNICA DOS SÓLIDOS II AULA #7: VASOS DE PRESSÃO DE PAREDE ESPESSA 1

LOM Teoria da Elasticidade Aplicada

1. Introdução 1.1. Considerações Gerais

UFABC - Universidade Federal do ABC. ESTO Mecânica dos Sólidos I. as deformações principais e direções onde elas ocorrem.

Análise do revestimento de um coletor

Análise do revestimento de um coletor

ANÁLISE NUMÉRICA DE PLACA DE MATERIAL COMPÓSITO DE APLICAÇÃO NA INDÚSTRIA DE ENERGIA EÓLICA

Projeto: Análise Numérica de Integridade Estrutural de uma Prancha. Cliente: ZINQUE IND. COM. LTDA.

Programa Analítico de Disciplina MEC494 Introdução à Análise por Elementos Finitos

Assentamento da fundação de um silo circular

Estudo de Pontes de Madeira com Tabuleiro Multicelular Protendido O PROGRAMA OTB

SIMULAÇÃO DOS PROBLEMAS DE CONTATO PARA A OTIMIZAÇÃO DA ESPESSURA DE REVESTIMENTO Luciano de Oliveira Castro Lara; José Daniel Biasoli de Mello.

Prof. Willyan Machado Giufrida Curso de Engenharia Química. Ciências dos Materiais. Propriedades Mecânicas dos Materiais

ESTUDO DO COMPORTAMENTO DE UM SÓLIDO ELÁSTICO-LINEAR TRANSVERSALMENTE ISOTRÓPICO VIA MHA E VIA MEF

DETERMINAÇÃO DO FATOR DE INTENSIDADE DE TENSÃO DINÂMICO EM TRINCAS PLANAS

Figura Elemento Solid 187 3D [20].

RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica

6 Análise Dinâmica. 6.1 Modelagem computacional

UMA FERRAMENTA COMO AUXÍLIO NO ENSINO DO MÉTODO DOS ELEMENTOS FINITOS NA ENGENHARIA

OTIMIZAÇÃO E ANÁLISE ESTRUTURAL POR ELEMENTOS FINITOS DE UMA CAÇAMBA DE ENTULHOS

São as vigas que são fabricadas com mais de um material.

2 Procedimentos para Análise de Colisão de Veículos Terrestres Deformáveis

Professor: José Junio Lopes

5 Formulação Dinâmica Não Linear no Domínio da Frequência

Fratura por Clivagem

ANÁLISE NÃO LINEAR DE SISTEMAS TRELIÇADOS ESPACIAIS UTILIZADOS PARA ESCORAMENTOS DE ESTRUTURAS DE AÇO E MISTAS

MÉTODO NUMÉRICO PARA A SOLUÇÃO NÃO LINEAR DE PÓRTICO PLANO COM CONVERGÊNCIA DE QUARTA ORDEM

Modelagem Numérica de Flexão de Placas Segundo a Teoria de Kirchhoff

petroblog Santini Página 1 de 6

As equações governantes do problema poroelástico têm duas parcelas:

UFRJ SR-1 - CEG FORMULÁRIO CEG/03. CENTRO: de Tecnologia UNIDADE: Escola Politécnica DEPARTAMENTO: de Engenharia Mecânica.

MEMÓRIA DE CÁLCULO. Figura 1 - Dimensões e eixos considerados no provete submetido a ensaio.

8º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA Cusco, 23 a 25 de Outubro de 2007

Avaliação da Resistência de Painéis Enrijecidos Fabricados em Aços Carbono e Inoxidável

PEF 3302 Mecânica das Estruturas I Segunda Prova (22/11/2016) - duração: 160 minutos Resolver cada questão em uma folha de papel almaço distinta

AVALIAÇÃO DE MODELO DE BIMODULARIDADE EM ENSAIOS DA MECÂNICA DA FRATURA

ANÁLISE NUMÉRICA DA VARIAÇÃO DAS TENSÕES LOCAIS COM A ESPESSURA EM ENTALHES

Simulação Numérica do Ensaio Vickers em Materiais com Características Frágeis

RESISTÊNCIA DOS MATERIAIS

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I. Capítulo 6 Flexão

4 Modelo analítico 84

UNIVERSIDADE FEDERAL DE MINAS GERAIS ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ELEMENTOS FINITOS PARA ANÁLISE DE ESTRUTURAS

Transcrição:

Silvia Corbani corbani@poli.ufrj.br SIMULAÇÕES NUMÉRICAS TRIDIMENSIONAIS DE ESTRUTURAS COM TRINCAS Universidade Federal do Rio de Janeiro/ Escola Politécnica/ DES André Maués Brabo Pereira andremaues@id.uff.br Universidade Federal Fluminense/ Escola de Engenharia/ LSC Luiz Fernando Martha lfm@tecgraf.puc-rio.br Pontifícia Universidade Católica do Rio de Janeiro Resumo. Este artigo tem como objetivo analisar o comportamento do campo de deslocamentos e de tensões em frentes de trincas, a partir de investigações numéricas e comparações com resultados disponíveis na literatura. Para avaliar os efeitos tridimensionais do estado de tensões nas frentes da trinca, dois estudos numéricos utilizando o método dos elementos finitos tridimensional são realizados. O método dos elementos finitos é largamente usado em problemas de mecânica da fratura. Entretanto, as malhas de volume geradas para discretizar o domínio do modelo tridimensional nem sempre é uma tarefa simples, além de sua forma influenciar nos resultados das simulações. Neste trabalho, após estudo do refinamento da malha de domínio, avalia-se os deslocamentos em uma análise linear-elástica e uma análise com comportamento elasto-plástico do material. Como o comportamento do material é estudado com abordagens diferentes, compara-se a eficiência de ambos os métodos em problemas da mecânica da fratura. As comparações são baseadas na avaliação dos deslocamentos na frente da trinca. Os resultados numéricos obtidos são confrontados com os resultados da literatura. Keywords: Mecânica da fratura linear-elástica, Método dos elementos finitos, Mecânica da fratura elasto-plástica. XXXVII Iberian Latin-American Congress on Computational Methods in Engineering

Simulações numéricas de estruturas com trincas de superfícies 1 INTRODUÇÃO Frequentemente, estruturas de engenharia apresentam trincas devido carregamento de fadiga gerado por ações de vento e/ou de utilização, por exemplo. A vida a fadiga destas estruturas é considerada separadamente por dois períodos de iniciação de trinca e período de crescimento da trinca. Entretanto, o projeto de qualquer estrutura sob ação de carregamento de fadiga prevê inspeções em determinados intervalos de tempo. Muitas vezes, no momento da inspeção, as estruturas podem apresentar trincas ainda que pequenas e que não atravessam toda a espessura do componente. Tais trincas ainda podem se iniciar e crescer embebecidas nas estruturas ou parcialmente passantes. Desta maneira, a trinca cresce sem ser detectada em inspeções, porém quando se tornar completamente passante ou mesmo durante seu processo de crescimento pode ocorrer a falha da estrutura. Portanto, simulações que envolvam crescimento de trincas são importantes em projeto de fadiga. Estas trincas demandam uma análise tridimensional do problema. Assumindo as hipóteses de mecânica da fratura linear elástica (MFLE) em problemas bidimensionais, é possível estimar com precisão a vida das estruturas sob carregamento de fadiga. Entretanto, em problemas tridimensionais, ainda existem muitas questões que despertam interesse. Enquanto que em um problema bidimensional modela-se ponta de trinca (que corresponde a extremidade do comprimento da trinca e ligamento residual) e, consequentemente, o fator de intensidade de tensão é um parâmetro único associado também a geometria do componente trincado e as tensões remotamente aplicadas. Em um problema tridimensional, existe frente de trinca e, assim, existe uma distribuição de fator de intensidade de tensão ao longo de toda esta frente. Desta forma, o primeiro desafio na modelagem tridimensional pode ser a geometria da frente da trinca. Este artigo trata de um primeiro estudo para avaliar o fator de intensidade de tensão (FIT) na frente de trincas. Como a ponta da trinca em uma modelagem bidimensional é assumida constante ao longo da espessura, faz-se esta mesma hipótese para a modelagem tridimensional. Para tanto, pretende-se calcular o FIT a partir dos resultados numéricos de deslocamentos de abertura da frente da trinca, obtidos em simulações tridimensionais distintas, considerando o comportamento elástico linear (EL) do material e comportamento elasto-plástico (EP). Assim, utiliza-se um programa de elementos finitos (EF) tridimensional, o programa Nastran In-Cad (Nastran, 2004). Finalmente, FIT obtidos por simulações numéricas são comparados com resultados disponíveis na literatura. 2 PROCEDIMENTOS NUMÉRICOS 2.1 Método dos elementos finitos com comportamento linear-elástico Por ser um método de domínio, o MEF requer a discretização do domínio do problema por meio de elementos. A seguir é descrita de maneira sucinta MEF conforme Bathe (1996). A equação de equilíbrio resultante da formulação clássica do MEF pode ser obtida por meio do princípio dos trabalhos virtuais, resultando em T T B σd F N b d 0. (1) onde, b e F denotam, respectivamente, as tensões internas, forças de volume/carregamento distribuído e forças externas aplicadas; enquanto N e B referem-se as

S. Corbani, A. Pereira, L. F. Martha funções de forma e a matriz que relaciona o campo de deformações com os deslocamentos nodais ( = BU). O sistema de equações globais de equilíbrio para problemas elásticos linear, em termos de deslocamentos, tem a seguinte forma: K U = F; onde K é matriz de rigidez global, U são os deslocamentos nodais e F é o vetor de carregamentos. A matriz de rigidez global K é montada a partir das matrizes de rigidez dos elementos T e k B DB d. (2) e onde D é a matriz constitutiva (=D) do elemento. Portanto, as tensões elásticas são determinadas pela relação: = DBU. 2.2 Método dos elementos finitos com comportamento elasto-plástico O cálculo da resposta com comportamento elasto-plástico depende do histórico de tensões e deformações. Uma breve introdução sobre a metodologia envolvida em EF com não-linearidade do material é descrita a seguir. As referências usadas foram Borst et al. (2012) e Crisfield (2000). Admite-se a decomposição de deformação t em duas componentes. Uma componente elástica t e e outra componente plástica t p, tal que, t = t e + t p. As tensões e deformações elásticas são relacionadas na forma incremental como t =D t. As deformações plásticas ocorrem quando são verificadas as condições de escoamento, ou seja, as tensões atuantes eff se igualam a tensão de escoamento y. A hipótese usual para caracterizar materiais como aço e alumínio é comportamento elasto-plástico bi-linear do material e critério de resistência de Von-Mises é o critério que atende eficientemente as características deste material. Desta forma, as tensões efetivas eff são determinadas com a expressão 1 eff = 2 2 2 2 1 2 2 3 3 1. (3) onde 1, 2 e 3 são as tensões principais. Assim, o comportamento plástico se inicia quando eff atingir a tensão de escoamento y. Para determinar as deformações plásticas, é necessária uma análise incremental da resposta não-linear. Assim, o carregamento deve ser aplicado em pequenos incrementos de carga (passos) até, finalmente, alcançar a carga total aplicada. O tratamento básico em uma solução incremental passo-a-passo assume que a solução para um instante t é conhecida e que a solução para o instante t+t é calculada, onde dt é um incremento de tempo adequado escolhido. Então, considera que no instante t+t tem-se t+t R= t+t F=0. Desde que a solução no instante t, pode escrever t+t F= t F + F, onde F é o incremento de forças no ponto nodal correspondente ao incremento de deslocamento e tensões do elemento do instante t para o instante t+t. Este vetor pode ser aproximado usando a matriz de rigidez tangencial t K que corresponde as condições do material e geometria no instante t. F= t K U, onde U é um vetor deslocamento nodal incremental e t K t F t U. Assim, o equilíbrio é estabelecido em cada instante, usando este método incremental e estabelecendo o equilíbrio com a seguinte equação

Simulações numéricas de estruturas com trincas de superfícies KU R F. (4) t tt t e determinando U, calcula-se uma aproximação do deslocamento para o instante t+t. Avaliada uma aproximação de deslocamento no instante t+t, pode-se determinar as tensões neste nós no instante t+t e seguir para o próximo instante. Entretanto, antes é necessária uma análise iterativa para se ter uma solução precisa nesta igualdade t+t R= t+t F=0, aplicando a técnica clássica de Newton-Raphson e Newton-Raphson modificado. 2.3 Mecânica da fratura linear-elástica Na mecânica da fratura linear elástica, o fator de intensidade de tensão (FIT) é o parâmetro que controla o crescimento da trinca. Para computar o valor deste parâmetro utiliza-se o método de extrapolação do deslocamento, conforme descrito em Mohammadi (2008). Neste caso, o componente trincado está em estado plano de deformação pois atende as seguintes restrições 2 K I B, a, ( w a), h 2,5. (5), y onde B é a espessura do componente, a é o comprimento da trinca, w é a largura e h é a distância entre o carregamento remotamente aplicado e a trinca. K I A expressão analítica de FIT para problemas em estado plano de deformação é u ji y 2 41 E r. (6), 2 onde r é a distância da frente da trinca e o Nó j-i. Estes nós (Nó j-i) pertencem a face superior da trinca, onde o índice i assume valores iguais a 1 até n. Na Fig. 1 é ilustrado um esquema detalhado com o nós que compõem a face superior da trinca. Neste modelo, o Nó j é a ponta da trinca (ou frente da trinca em um modelo tridimensional). Desta forma, para se conhecer o FIT na ponta da trinca, faz-se a extrapolação dos resultados obtidos em diferentes distancias r a partir da frente da trinca. Este procedimento é ilustrado esquematicamente na Fig. 2. Figura 1. Esquema para cálculo do FIT (adaptado de Mohammadi, 2008).

S. Corbani, A. Pereira, L. F. Martha Figura 2. Extrapolação do FIT (adaptado de Mohammadi, 2008). 2.4 Mecânica da fratura elasto-plástica Cottrell (1961) e Wells (1963) propuseram um critério local baseado no deslocamento da abertura (CTOD) em torno da ponta da trinca para comportamento elasto-plástico. A primeira ordem da solução de CTOD (Crack Tip Opening Displacement) é baseada na solução de Irwin para Modo I de fratura, ou seja, deslocamento vertical da trinca (conforme ilustrado na Fig. 3). K CTOD. (7) 2 I 2u y E y Figura 3. Estimativa do CTOD.

Simulações numéricas de estruturas com trincas de superfícies 3 RESULTADOS As análises de elementos finitos foram realizadas no programa Autodesk Nastran In-CAD (Nastran, 2004). Foram analisadas duas geometrias: um componente sob tração e um componente com uma trinca de borda. As análises são feitas considerando o comportamento linear-elástico do material e o comportamento elasto-plástico do material. O material usado nas análises é uma liga de alumínio 7075 T6, pois é largamente usado em aviões e em estruturas aeroespaciais. Com base em catálogo da empresa Alcoa (ALCOA Mill Products), adotou-se tensão de escoamento y de 434 MPa, tensão última a tração t igual a 510 MPa, módulo de elasticidade longitudinal E de 70GPa e coeficiente de Poisson igual a 0,33. Por se tratar de geometrias com um eixo de simetria, apenas modelou-se metade do componente. Assim, foram atribuídas restrições de translação associadas a este eixo de simetria. Foram adicionadas restrições que impedissem o movimento de corpo-rígido. O carregamento de tração é aplicado remotamente. A geometria foi discretizada tridimensionalmente com elementos tetraedros (CTETRA) quadráticos (ou seja, 10 nós). 3.1 Corpo-de-prova tracionado Em uma primeira análise, modelou-se um componente tracionado com seção transversal variável. O carregamento aplicado é igual a 50 kn. A seção transversal no eixo de simetria é 10mm x 10mm, enquanto que na superfície do carregamento é 10mm x 30mm. São realizadas duas análises diferentes: na primeira análise, assume-se o comportamento linear-elástico do material; na segunda análise, o comportamento do material é elástico perfeitamente plástico com comportamento plástico a partir das tensões calculadas pelo critério de resistência de Von Mises alcançarem tensão de escoamento igual a 434 MPa. Na Fig. 4 é apresentada a malha de elementos finitos modelada até seção de simetria e com restrições de deslocamento aplicadas nesta seção para garantir a simetria e evitar movimento de corpo-rígido. Figura 4. Malha gerada para modelagem de componente sob tração. Na Fig. 5 são apresentados os resultados de tensões de Von Mises obtido em cada análise. Na Fig. 6 e Fig. 7 são mostrados os resultados de deslocamentos total e deslocamentos na direção do carregamento aplicado (direção y), respectivamente.

S. Corbani, A. Pereira, L. F. Martha Figura 5. Tensões de Von Mises: Elástico linear e Elasto-plástico. Figura 6. Deslocamento total: Elástico linear e Elasto-plástico. Figura 7. Deslocamento na direção y: Elástico linear e Elasto-plástico 3.2 Trinca passante O componente de alumínio com largura w de 50 mm e uma trinca de borda de comprimento a igual a 17,5 mm tem 25 mm (B) de espessura, conforme ilustrado na Fig. 8. Como existe um eixo de simetria, aplicou-se restrições de simetria neste eixo. O carregamento de tração remotamente aplicado é igual a 33,3 kn, que corresponde a tensões de tração remotas iguais a 26,6 MPa.

Simulações numéricas de estruturas com trincas de superfícies Figura 8. Geometria do componente com uma trinca de borda esboço e geometria 3D até superfície de simetria. A expressão aproximada de fator de intensidade de tensão (Tada et al., 2000) é K = a. (8) onde são as tensões remotamente aplicadas, a é comprimento da trinca passante e é um parâmetro função da geometria, que para esta geometria especifica é a 4 0,857 0, 265 a w 0,265 1. (9) 3 w a 2 1 w Assim, assumindo as hipóteses da Mecânica da fratura linear elástica, o FIT obtido pela Eq. (8) é 11,6 MPa m 0,5. Após a verificação do refinamento da malha de EF, utilizou-se a malha ilustrada na Fig. 9 com 10000 elementos na frente da trinca. Analisou-se o modelo com comportamento elástico linear e comportamento elástico perfeitamente plástico, conforme descrito previamente na seção 3.1. Figura 9. Modelo com 10000 elementos na frente da trinca.

S. Corbani, A. Pereira, L. F. Martha Na Fig. 10 são apresentados os resultados de tensões de Von Mises obtido em cada análise. Na Fig. 11 e Fig. 12 são mostrados os resultados de deslocamentos totais e deslocamentos na direção do carregamento aplicado (direção y), respectivamente. Figura 10. Distribuição das tensões de Von Mises: Elástico-linear e Elasto-plastico. Figura 11. Deslocamentos totais: Elástico-linear e Elasto-plastico. Figura 12. Deslocamentos na direção Y: Elástico-linear e Elasto-plastico.

Simulações numéricas de estruturas com trincas de superfícies Na Fig. 13 são ilustrados os deslocamentos na direção y em relação a coordenada x na análise com comportamento linear-elástico do material. Estes deslocamentos são utilizados no cálculo do FIT com método de extrapolação do deslocamento para estado plano de deformação. Nesta estimativa de FIT são usados os deslocamentos nos nós pertencentes interseção da face da trinca com a superfície do material e nos nós localizados aproximadamente a metade da espessura do componente trincado. Com base na Eq. (6), determina-se o FIT na análise com comportamento elástico linear do material nestas duas diferentes localizações ao longo da espessura (direção z). Os resultados obtidos são ilustrados na Fig. 14. Figura 13. Deslocamentos na direção Y vs. Coordenada x do Nó LE e EP.

S. Corbani, A. Pereira, L. F. Martha Figura 14. Cálculo do FIT com comportamento LE. De maneira análoga ao procedimento descrito para comportamento linear-elástico, o procedimento do FIT com método de extrapolação do deslocamento utiliza os deslocamentos na direção y mostrados na Fig. 13 para comportamento elasto-plástico do material. Estes deslocamentos são utilizados no cálculo do FIT para estado plano de deformação nas mesmas duas localizações ao longo da espessura (direção z). Com base na Eq. (7), determina-se o FIT na análise com comportamento elasto-plástico do material. Os resultados obtidos são ilustrados na Fig. 15. Finalmente, o resumo dos valores de FIT calculados é apresentado na Tabela 1. Figura 15. Cálculo do FIT com comportamento EP.

Simulações numéricas de estruturas com trincas de superfícies Tabela 1. Comparação do fator de intensidade de tensão. KI [MPa m 0,5 ] Erro [%] Eq. (8) 11,6 - Modelo 2 EL Nós no Meio da Espessura Modelo 2 EL Nós na Superfície do material Modelo 2 EP Nós no Meio da Espessura Modelo 2 EP Nós na Superfície do material 12,0 3,4 11,8 1,7 19,0 63,8 12,0 3,4 4 CONCLUSÕES Neste trabalho, avaliou-se um componente trincado. O comportamento do material foi assumido inicialmente linear-elástico e, em uma segunda análise, utilizou um comportamento elasto-plástico do material. O comportamento elasto-plástico é uma abordagem mais realista do problema e, assim, esperava-se que nesta análise os resultados de FIT fossem mais precisos. Entretanto, o fator de intensidade de tensão obtido com comportamento elastoplástico alcançou erro de 63,8% quando estimado em nós localizados na espessura média do material. Este erro pode ser atribuído hipótese inicial da geometria da trinca. Neste caso, foi assumido que o comprimento da trinca é constante ao longo da espessura do material. Sabe-se que materiais dúcteis tendem a uma frente de trinca curva. Assim, em trabalhos futuros, deve-se estudar uma geometria curva para representar a frente da trinca. Com base nesta geometria, deve-se avaliar o FIT em diversos nós contidos na frente da trinca. Uma vez que, em uma análise tridimensional, o FIT depende da geometria da frente da trinca.

S. Corbani, A. Pereira, L. F. Martha REFERÊNCIAS ALCOA Mill Products. Alloy 7075 Plate and Sheet. Disponível em: <https://www.alcoa.com/mill_products/catalog/pdf/alloy7075techsheet.pdf>. Acesso em: 10 ago 2016. Aliabadi, M. H., & Brebbia, C. A., 1996. Boundary element formulations in fracture mechanics: a review. Transactions on Engineering Sciences, 13. Bathe, K. J., 1996. Finite Element Procedures. 2 nd Edition. Prentice-Hall: New Jersey. Borst, R., Crisfield, M. A., Remmers, J. J. C., Verhoosel, C. V., 2012. Non-Linear Finite Element Analysis of Solids and Structures. 2 nd Edition. John Wiley & Sons: United Kingdom. Crisfield M.A., 2000. Non-Linear Finite Element Analysis of Solids and Structures. Essentials. Vol.1. John Wiley & Sons: New York. Mohammadi, S., 2008. Extended finite element method for fracture analysis of structures. Blackwell Publishing Ltd: UK. NASTRAN, M. S. C., 2004.Quick reference guide. MSC. SOFTWARE, v. 1. Schijve, J., 2009. Fatigue of Structures and Materials. 2 nd Edition. Springer: Dordrecht. Tada, H.; Paris, P.C.; Irwin, G.R., 2000. The Stress Analysis of Cracks Handbook (ASME Press, New York). Wells, A., 1961. Unstable Crack Propagation in Metals - Cleavage and Fast Fracture: Cranfield Crack Propagation Symposium, Vol. 1, September, p. 210.