Fatores Abióticos Limitantes. Fatores Abióticos Limitantes



Documentos relacionados
PROBLEMAS AMBIENTAIS INVERSÃO TÉRMICA INVERSÃO TÉRMICA 14/02/2014. Distribuição aproximada dos principais poluentes do ar de uma cidade (SP)

CICLOS BIOGEOQUÍMICOS

Matéria e Energia no Ecossistema

QUÍMICA QUESTÃO 41 QUESTÃO 42

5ª SÉRIE/6º ANO - ENSINO FUNDAMENTAL UM MUNDO MELHOR PARA TODOS

Objetivo Conteúdos Habilidades

Maxillaria silvana Campacci

Matéria e energia nos ecossistemas

PROTEÇÃO AMBIENTAL. Professor André Pereira Rosa

Parâmetros de qualidade da água. Variáveis Físicas Variáveis Químicas Variáveis Microbiológicas Variáveis Hidrobiológicas Variáveis Ecotoxicológicas

Ecologia. 1) Níveis de organização da vida

São partículas que atravessam o filtro, mas não são dissolvidas

Os constituintes do solo

CLASSIFICAÇÃO DOS AMBIENTES MARINHOS

A IMPORTÂNCIA DA AERAÇÃO NOS SISTEMAS DE PRODUÇÃO AQUÍCOLAS. Kátia Daniele do Nascimento

O Aquecimento Global se caracteriza pela modificação, intensificação do efeito estufa.


PETRÓLEO. Prof. Marcos Colégio Sta. Clara

Unidade IV Ser Humano e saúde. Aula 17.1

PLANIFICAÇÃO CIÊNCIAS NATURAIS (8.º ANO) 2015/2016 Docentes: João Mendes, Madalena Serra e Vanda Messenário

Água e Solução Tampão

Mudanças Cimáticas Globais e Biodiversidade Aquática. Odete Rocha. Departamento de Ecologia Universidade Federal de São Carlos

Atmosfera terrestre: Descrição física e química; emissões atmosféricas naturais e antropogênicas; suas transformações. Transporte atmosférico.

Ciclos Biogeoquímicos

QUÍMICA CELULAR NUTRIÇÃO TIPOS DE NUTRIENTES NUTRIENTES ENERGÉTICOS 4/3/2011 FUNDAMENTOS QUÍMICOS DA VIDA

Profa. Dra. Vivian C. C. Hyodo

Pedologia. Professor: Cláudio Custódio.

1mL/L = 43,3µmol/Kg (S = 34,7, t = 3,5ºC, σ t = 27,96) água do mar média

Os Ciclos Biogeoquímicos. Estágio- Docência: Camila Macêdo Medeiros

Elementos essenciais a vida: Zn, Mo e o Co. - Água; - Macronutrientes: C, H, O, N e o P mais importantes, mas também S, Cl, K, Na, Ca, Mg e Fe;

Ciclos Biogeoquímicos

Elaborado pelos alunos do 8º A da Escola Secundária Infante D. Henrique:

muito gás carbônico, gás de enxofre e monóxido de carbono. extremamente perigoso, pois ocupa o lugar do oxigênio no corpo. Conforme a concentração

Tipos e fontes de energias alternativas e convencionais.

A Ecologia e sua Importância. Componentes Estruturais. Estudo das Relações dos Seres Vivos entre si e com o meio onde vivem

O MEIO TERRESTRE. Profa. Sueli Bettine

QUESTÕES DE CARACTERIZAÇÃO E ANÁLISE AMBIENTAL. O 2(g) O 2(aq)

Sumário. O Sistema Solar. Principais características dos planetas do Sistema Solar 05/01/ e 24

Aula 16 DESEQUILÍBRIO ECOLÓGICO

Processos bioquímicos Típico perfil de CO 2. Fotossíntese CO 2 (dis) Depth

O AR É UMA MISTURA DE GASES QUE FORMAM A ATMOSFERA DO PLANETA TERRA.

CADERNO DE EXERCÍCIOS 2D

ECOLOGIA GERAL FLUXO DE ENERGIA E MATÉRIA ATRAVÉS DE ECOSSISTEMAS

Gestão Ambiental 19/3/2012. MÓDULO Gerenciamento e Controle de Poluição da Água. Tema: DISPONIBILIDADE HÍDRICA: as Águas do Planeta

Realização: Aquecimento Global. Parceiros: Apoiadores:

Aluno (a): Professor:

BIOQUÍMICA DA ÁGUA. Disciplina: Bioquímica, Prof. Dr. Vagne Oliveira

Matéria Orgânica do solo (m.o.s)

Ciclos Biogeoquímicos. Prof. Maximiliano Segala Prof. Antônio Ruas Saneamento Básico e Saúde Pública

Elementos e fatores climáticos

Osmose Reversa Conheça este processo de purificação de água

Introdução à Ecologia Prof. Fernando Belan

FLUXO DE ENERGIA E CICLOS DE MATÉRIA

USOS E Aplicações DE SENSORIAMENTO REMOTO I

Organismos, fatores limitantes e nicho ecológico

Os fenômenos climáticos e a interferência humana

FISIOLOGIA RESPIRATÓRIA

Evitando o Desforestamento na Amazônia: REDD e os Mercados PSA Cuiabá, 1º de abril de 2009

AEROTEC SANEAMENTO BÁSICO LTDA.

ESTADOS FÍSICOS DA MATÉRIA

Química. Resolução das atividades complementares. Q49 Polaridade das moléculas

Cadeias e Teias Alimentares

Geografia. Professor: Jonas Rocha

Ciclo do Carbono. Lediane Chagas Marques

NECESSIDADE BÁSICAS DOS SERES VIVOS. Estágio docência: Camila Macêdo Medeiros

Ø As actividades humanas dependem da água para a agricultura, indústria, produção de energia, saúde, desporto e entretenimento.

Formas do fósforo: -Ortofosfatos: PO 4 3-, HPO 4 2-, H 2 PO 4 -, H 3 PO 4

Mudança do Clima. Luiz Gylvan Meira Filho

MEIOS DE CULTURA DESENVOLVIMENTO OU PRODUÇÃO DE MEIOS DE CULTURA. Necessidade Bactérias Leveduras

A Termoquímica tem como objetivo o estudo das variações de energia que acompanham as reações químicas.

Mecanismos de Armazenamento de CO 2 e Estimativas de Capacidade para Reservatórios Geológicos


Matéria: Química Assunto: Materiais Prof. Gilberto Ramos

Mineração e Sustentabilidade Ambiental. Ricardo Santana Biólogo, MSc

Composição da atmosfera terrestre. Fruto de processos físico-químicos e biológicos iniciados há milhões de anos Principais gases:

AQUECIMENTO GLOBAL E MUDANÇAS CLIMÁTICAS. João Paulo Nardin Tavares

Exploração sustentada de recursos geológicos Recursos energéticos

Emissões Atmosféricas e Mudanças Climáticas

ÁGUA NO SOLO. Geografia das Águas Continentais. Profª Rosângela Leal

A TERRA ONTEM, HOJE E AMANHÃ

Os solos corr espondem ao manto de alter ação das rochas por processos de intemper ismo.

Ciências do Ambiente

EXERCÍCIOS DE CIÊNCIAS (6 ANO)

ECOLOGIA IMPACTOS ANTRÓPICOS (AR E ÁGUA) - AR

CALORIMETRIA, MUDANÇA DE FASE E TROCA DE CALOR Lista de Exercícios com Gabarito e Soluções Comentadas

Qual o nosso lugar no Universo?

CADERNO DE EXERCÍCIOS 2F

O interesse da Química é analisar as...

Sinais. O mundo está a mudar

Climatologia GEOGRAFIA DAVI PAULINO

Introdução à Química Inorgânica

01- O que é tempo atmosférico? R.: 02- O que é clima? R.:

Unidade 8. Ciclos Biogeoquímicos e Interferências Humanas

IX Olimpíada Catarinense de Química Etapa I - Colégios

CAPÍTULO 2 A ATMOSFERA TERRESTRE

SÉRIE: 2º ano EM Exercícios de recuperação final DATA / / DISCIPLINA: QUÍMICA PROFESSOR: FLÁVIO QUESTÕES DE MÚLTIPLA ESCOLHA

A Biosfera e seus Ecossistemas

DISCIPLINA: BIOLOGIA PROFª. CRISTINA DE SOUZA 1ª SÉRIE DO ENSINO MÉDIO

Fluxo de energia. e Ciclos biogeoquímicos. Profª Reisila Mendes. BIOLOGIA 1ª série

TRATAMENTO DA ÁGUA PARA GERADORES DE VAPOR

Transcrição:

Introdução à Oceanografia Química Este material é um material didático de apoio, visando facilitar o estudo do aluno, sem entretanto estar diretamente associado ao plano de curso da disciplina. Ecologia de Ecossistemas Aquáticos Oceanografia Prof. Dr. Jodir Pereira da Silva Temperatura, Água, Luz Solar, Vento Efeito em processos biológicos. A maioria dos organismos não regula a temperatura corporal Aquáticos: equilíbrio osmótico. Terrestres: dessecação. Clima Provê energia aos organismos fotossintéticos. Fotoperíodo: gatilho dos ciclos diários e sazonais. Aumenta o calor e a perda de água; Altera hidrodinâmica e gera correntes de superfície; Afeta a morfologia das plantas. Salinidade, ph, rochas, solo, oxigênio, densidade Adaptações dos organismos ao ambiente marinho O ambiente marinho apresenta muitos desafios aos organismos porque a água do mar: É densa o suficiente para dar suporte aos organismos Possui alta viscosidade Sofre variações na temperatura e salinidade Contém quantidades variáveis de gases dissolvidos Possui elevada transparência Varia drasticamente em pressão de acordo com a profundidade Os organismos marinhos possuem várias adaptações para as condições limitantes do ambiente marinho Oxigênio and hidrogênio formam ligações covalentes Requer muita energia para ser quebrada Compartilhamento de elétrons desigual Elétrons mais perto do oxigênio Polaridade da água Arranjo das moléculas Solubilidade 1

Calor específico Densidade Viscosidade Densidade Necessidade de sustentação mecânica A água do mar é densa o suficiente para dar suporte aos organismos Muitos organismos marinhos não possuem esqueletos rígidos, apêndices, ou extensos sistemas radiculares Em vez disso, eles contam com flutuabilidade e fricção para manter sua posição na coluna d água A Viscosidade da Água do Mar é Controlada pela Temperatura A viscosidade da água do mar (resistência ao fluxo) é fortemente afetada pela temperatura A água do mar possui elevada viscosidade em relação à água aquecida, sendo mais difícil para nadar nela A água mais quente possui menor viscosidade, por isso os organismos tendem a afundar na coluna d água A Viscosidade é controlada pela Temperatura Muitos organismos de águas quentes possuem apêndices extravagantes para manter sua flutuabilidade Muitos organismos de águas frias são hidrodinâmicos para nadar mais facilmente Copépodo de água quente Copépodo de água fria 2

A Viscosidade da Água do Mar e as Adaptações do fitoplâncton O Fitoplâncton deve permanecer em águas superficiais iluminadas A Viscosidade da Água do Mar e as Adaptações do fitoplâncton Pequeno tamanho aumenta a relação área de superfície/volume Apêndices aumentam a resistência friccional Minúsculas vesículas com óleo de baixa densidade aumentam a flutuabilidade A Viscosidade da Água do Mar e as Adaptações do fitoplâncton Salinidade 965,31g H 2 O 34,68g Sal total Salinidade Salinidade X Profundidade 3

Temperatura X Profundidade Fatores Abióticos X Latitude Parâmetros: Tº S D (g/l) Variações de Salinidade Ambientes costeiros apresentam maior variação de salinidade do que em oceano aberto ou em regiões profundas Muitos organismos costeiros de ambientes rasos podem tolerar grandes variações de salinidade (são eurihalinos) Muitos organismos de oceano aberto ou profundo podem tolerar pequenas variações de salinidade (são estenohalinos) Osmose Osmose é o movimento das moléculas de água através de uma membrana semipermeável de ambientes de menor concentração para maior concentração A osmose remove água de organismos hipotônicos Osmose adiciona água a organismos hipertônicos Salinidade: Homeostase regulação interna das condições corporais (equilíbrio) Isosmótico Osmorreguladores Controlam o estado interno Salinidade: Homeostase regulação interna das condições corporais (equilíbrio) Isosmótico Osmorreguladores Controlam o estado interno 4

Osmose Salinidade: Homeostase regulação interna das condições corporais (equilíbrio) Isosmótico Osmoconformados Estado interno muda de acordo com o exterior Salinidade ph (Ação dos carbonatos efeito tampão) Fatores Abióticos Limitantes Influência do Substrato Tipo de fundo Composição Granulometria Tamanho Seleção dos grãos Relação com hidrodinâmica Relação com retenção de matéria orgânica Relação com retenção de oxigênio 5

Radiação Solar e Latitude Topografia de fundo Relação com hidrodinâmica Variações Sazonais Fatores Abióticos Limitantes Luz Temperatura Variações de Temperatura A temperatura de águas costeiras variam mais do que em oceano aberto ou em regiões profundas Muitos organismos costeiros podem tolerar grandes variações de temperatura (são euritérmicos) Muitos organismos de oceano aberto ou profundo podem tolerar pequenas variações de temperatura (são estenotérmicos) Penetração da Luz 6

Pressão Hidrostática Gases dissolvidos Quem pode dissolver mais gases? Água quente ou fria? Dois principais gases Oxigênio Gás Carbônico Por que são importantes? Indicadores de fotossíntese X respiração. Gases Dissolvidos: Oxigênio Os animais marinhos precisam de oxigênio para sobreviver Muitos animais marinhos usam brânquias para extrair o oxigênio da água do mar Mamíferos marinhos devem respirar ar Abundância de oxigênio dissolvido e nutrientes com profundidade Gases e Nutrientes que limitam a Fotossíntese: Em ordem de importância: CO 2 (gás dissolvido) NO 3 (Nitratos) PO 3-4 (Fosfatos) SiO 2 (Silicatos) Ferro Zinco Por que? 1 molécula orgânica marinha tem: 106 unidades de carbono 16 unidades de nitrogênio 1 unidade de fósforo Gases que limitam a Fotossíntese: Bomba de CO 2 7

Gases e Nutrientes na Água do Mar Macronutrientes e micronutrientes na água do mar Oxigênio e Dióxido de Carbono na Água do mar Fotossíntese e Respiração X Concentração Nós poderíamos manipular nutrientes e gases dissolvidos no oceano para combater o efeito estufa? O que é um nutriente? Íons necessários para o crescimento de organismos fotossintetizantes; Substâncias necessárias para a produção de moléculas orgânicas Nutrientes são consumidos IMEDIATAMENTE Nutrientes NÃO obedecem à lei das proporções constantes A abundância dos nutrientes está em constante mudança na água do mar O que é um nutriente? Existem dois tipos de nutrientes: Macronutrientes: requeridos em grandes quantidades: Nitrogênio na forma de nitrato NO 3 Fósforo na forma de fosfato PO 3-4 Sílica na forma de silicato SiO 2 Micronutrients: VITAIS mas necessários em pequenas quantidades: Ferro, Zinco Concentração de Nutrientes X Profundidade Baixa concentração em águas superficiais: (zona fótica) onde fotossintetizantes vivem Alta concentração em águas profundas: (zona afótica) sem fotossintetizantes Nutrientes e Gases dissolvidos são influenciados por processos biológicos no Oceano Enfocaremos o oxigênio (O 2 ) e dióxido de Carbono (CO 2 ); Variações com profundidade Origem e destino dos gases dissolvidos Fontes e Escoamento : turbulência difusão fotossíntese respiração Water depth (km) Gases Dissolvidos e Escoamento Redrawn after Figure 4-14b in Pinet, P. "Invitation to Oceanography," Jones and Bartlett, Sudbury, MA, 1998. Difusão Troca direta de gases na interface ar-oceano De regiões de alta concentração para regiões de baixa concentração 8

Gases Dissolvidos e Escoamento Gases Dissolvidos e Escoamento Water depth (km) Turbulência criada por quebra de ondas e correntes captura bolhas de gás na superfície do mar. Water depth (km) Processos Biológicos Fotossíntese - Plantas e outros organismos Respiração -animais -Ocorre em todas as profundidades Decomposição - Ocorre em todas as profundidades Redrawn after Figure 4-14b in Pinet, P. "Invitation to Oceanography," Jones and Bartlett, Sudbury, MA, 1998. Redrawn after Figure 4-14b in Pinet, P. "Invitation to Oceanography," Jones and Bartlett, Sudbury, MA, 1998. Fotossíntese Conceitos Básicos Respiração Conceitos Básicos Produtores primários consomem dióxido de carbono e liberam oxigênio durante a fotossíntese; Fotossintetizantes precisam de luz solar para a fotossíntese, que só está disponível nos primeiros 100 a 300m na coluna d água. Os organismos absorvem oxigênio e liberam gás carbônico; A respiração ocorre em todos os estratos da coluna d água nos oceanos. Decomposição Conceitos Básicos Quebra bioquímica da matéria orgânica; O oxigênio é consumido e o dióxido de carbono é liberado. [O 2 ] X Profundidade 0-10 ml/litro na superfície: Por que? Fotossíntese Abaixo ~ 200 m O 2 cai para concentrações mínimas: Por que? Consumo: Respiração e decomposição Sem fotossintetizantes Aumento de O 2 em águas profundas: Por que? Poucos animais consumindo O 2 Descida de águas de superfície ricas em O 2 (subdução downwelling) 9

[CO 2 ] X Profundidade [CO 2 ] ~ 45-54 ml/l Pequena concentração em águas superficiais: Por que? Fotossíntese A concentração de CO 2 aumenta abaixo da zona fótica: Por que? Respiração e Decomposição; Águas profundas retém mais gás Por que as águas profundas acumulam mais gases? Influência da Temperatura e Pressão Águas profundas são mais frias: retém mais gás (refrigerantes) Águas profundas com maior pressão: retém mais gás (refrigerantes) Resultado? Águas profundas e frias acumulam mais gases. Ex. Águas polares Por que isso é importante? Dióxido de Carbono + Água = Ácido Carbônico CO 2 combina-se com água para formar o ácido carbônico; Quanto mais CO 2, mais ácido carbônico é formado; Mais corrosiva a água se torna; Resultado: Águas frias e profundas dissolvem carbonato de cálcio Por que isso é importante? O 2 é vital para a respiração de todos os organismos marinhos; Peixes e outros organismos geralmente não conseguem sobreviver em águas com carência de oxigênio; Águas com pouco ou nenhum O 2 (anóxico) são ótimos ambientes para preservar sedimentos (decomposição química, lenta, sob elevada pressão); CO 2 regula indiretamente a presevação e/ou dissolução de carbonatos marinhos no sedimento; Trocas gasosas Atmosfera-Oceano: Podemos (devemos) manipular o oceano para retirar mais CO 2 da atmosfera? CO2 Atmosférico medido no topo do Vulcão Mauna Loa CO2 Atmosférico dos últimos 300 anos: bolhas de ar aprisionadas em blocos de gelo queima de combustíveis fósseis desflorestamento - consumo de 1 bilhão de tons/ano Concentração de CO 2 na atmosfera espera-se que dobre em ~50 anos Courtesy of Lonnie and Ellen Thompson, Byrd Polar Research Center, Ohio State University 10

CO2 Atmosférico dos últimos 300 anos: bolhas de ar aprisionadas em blocos de gelo CO2 Atmosférico dos últimos 150.000 anos Reservatórios mundiais de CO 2 O oceano tem uma grande capacidade de estocar CO 2. A concentração de CO 2 na atmosfera dobraria agora mesmo se o oceano liberasse todo seu reservatório de CO 2. Como funciona? Como uma bomba biológica. A Bomba Biológica Fotossintetizantes consomem CO 2 para produzir moléculas orgânicas. 1 molécula orgânica marinha tem: 106 unidades de carbono 16 unidades de nitrogênio 1 unidade de fósforo. A fotossíntese é eficiente em transformar CO 2 em carbono orgânico sólido que vai para o fundo do mar. NOTE: Por que baniram fosfatos de detergentes detergentes domésticos? A Bomba Biológica Se pudéssemos aumentar a produção primária, mais CO 2 seria removido da superfície da água. Águas com muito nutriente e pouca clorofila Alta concentração de nutrientes sem uutilização Baixas concentrações de clorofila Fitoplâncton não produzindo tanto quanto poderia Pacífico Equatorial e Oceanos ao Sul Concentração de clorofila na superfície do oceano Com menos CO 2 na superfície da água,, o CO 2 atmosférico será absorvido. 11

Benefícios Potenciais do enriquecimento com Ferro Miller, C.B. et al., Limnology and Oceanography, 36, 1600-1615. CO2 na atmosfera Ferro é barato US$ 2-2 5/ton de carbono sequestrado Mais fitoplâncton Mais Zooplâncton Mais Peixe!! Prejuízos Potenciais do enriquecimento com Ferro Aumento de espécies tóxicas indesejáveis de fitoplâncton que poderiam prejudicar outros organismos Aumento do volume de carbono orgânico no fundo, consumindo oxigênio e formando zonas anóxicas ( zonas mortas ), e conseqüente produção de metano e de óxido nitroso gases até mais potentes no efeito estufa do que o CO 2. Elevada Transparência da Água do Mar A água do mar tem elevada transparência Transparência Camuflagem Sombreamento Migração ( DSL - deep scattering layer) Camuflagem Sombreamento Deep scattering layer (DSL) Camada de dispersão por profundidade Organismos da DSL fazem migração vertical para se esconder nas águas profundas e escuras durante o dia Aumento da pressão com profundidade Parâmetros Ambientais e Ótimo Ecológico A pressão aumenta rapidamente com a profundidade (1atm a cada 10m) A maioria dos organismos marinhos armazena ar em compartimentos compressíveis em seus corpos Corpos preenchidos por água exercem a mesma pressão que é empregada para o interior, de modo que os organismos marinhos não sentem alta pressão com a profundidade 12

Competição Recursos Limitantes Luz Alimento Substrato de fixação Resistência à dessecação Efeitos de Sazonalidade no Clima e no Oceano Exemplo: Balanus ocupa mais eficientemente espaço; Chthamalus resiste melhor à dessecação; Resultado: estratificação vertical (Zonação) 13