SEM 0343 Processos de Usinagem. Professor: Renato Goulart Jasinevicius

Documentos relacionados
SEM-0534 Processos de Fabricação Mecânica. Aula 5 Processo de Torneamento. Professor: Alessandro Roger Rodrigues

SEM 0343 Processos de Usinagem. Professor: Renato Goulart Jasinevicius

SEM-0534 Processos de Fabricação Mecânica. Aula 2. Professor Alessandro Roger Rodrigues

TECNOLOGIA DE CONTROLE NUMÉRICO ASPECTOS DE PROCESSOS DE USINAGEM

SEM-0534 Processos de Fabricação Mecânica. Aula 6. Professor Alessandro Roger Rodrigues

Teoria e Prática da Usinagem

SEM 0534 Processos de Fabricação Mecânica. Professor: Renato Goulart Jasinevicius

Processos de Usinagem

informações técnicas

Departamento de Engenharia Mecânica Graduação em Engenharia Aeronáutica

Aula Processos de usinagem de roscas -

SEM 0534 Processos de Fabricação Mecânica. Professor: Renato Goulart Jasinevicius

Processos Mecânicos de Fabricação. Conceitos introdutórios sobre usinagem dos metais

Torno Mecânico. Prof. João Paulo Barbosa, M.Sc.

Tipos de movimento da mesa: discordante: sentido de rotação oposto ao movimento de avanço concordante: mesmo sentido de rotação e avanço

Torneamento. Prof. Régis Kovacs Scalice. UDESC Universidade do Estado de Santa Catarina FEJ Faculdade de Engenharia de Joinville

Concurso Público para Cargos Técnico-Administrativos em Educação UNIFEI 30/08/2009

SEM-0534 Processos de Fabricação Mecânica. Furação Alargamento Roscamento

PROCESSOS DE USINAGEM. Prof. João Paulo Barbosa, M.Sc.

TORNEIRO MECÂNICO TECNOLOGIA

Catálogo de produtos 2013 / 2014

PROCESSOS DE USINAGEM I

OPERAÇÕES MECÂNICAS I

Quanto à forma da trajetória, o torneamento pode ser retilíneo ou curvilíneo.

Torneamento de aço endurecido com superfícies interrompidas usando ferramentas de CBN

FEPI. Fresamento. Surgiu em , Page 1 Tecnologia Mecânica II

EM535 USINAGEM DOS MATERIAIS 1 O. SEMESTRE DE Teste 2

SEM 0343 Processos de Usinagem. Professor: Renato Goulart Jasinevicius

SEM-0534 Processos de Fabricação Mecânica. Furação Alargamento Roscamento Mandrilamento

Soluções em fresamento

NOTAS DE AULAS (Práticas de Oficina)

INSTITUTO FEDERAL DE SANTA CATARINA CNC/CAM. Profº Emerson Oliveira Matéria: CNC/CAM Câmpus Joinville

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA SÃO PAULO Campus Presidente Epitácio

Mecanismo de Formação: O cavaco é formado continuamente, devido a ductilidade do material e a alta velocidade de corte;

FURAÇÃO. FURAÇÃO -Definição. Furadeira com ferramenta e peça furada, 4000 a.c.

Manufatura Assistida por Computador (SEM-0350)

odução / Intr ação Fur

MATERIAIS PARA ENGENHARIA DE PETRÓLEO - EPET069 - Conformação dos Metais - Usinagem

Acesse:

EME005 - Tecnologia de Fabricação IV Brochamento 3

SEM534 Processos de Fabricação Mecânica. Aula: Materiais e Vida da Ferramenta

Para uma operação de usinagem, o operador considera principalmente os parâmetros:

FURAÇÃO: OPERAÇÃO DE TREPANAÇÃO

PRÁTICA DE OFICINA - AULA OPERAÇÕES BÁSICAS NO TORNEAMENTO 1 - TORNEAMENTO

CONTEÚDOS PROGRAMADOS. (Comando Numérico EEK 561)

Definição sobre usinagem

SEM534 Processos de Fabricação Mecânica. Aula: Mecanismo de Formação do Cavaco

NOTAS DE AULAS (Práticas de Oficina)

USINAGEM USINAGEM. Prof. M.Sc.: Anael Krelling

A NOVA GERAÇÃO MINIMASTER

SEM534 Processos de Fabricação Mecânica. Professor - Renato G. Jasinevicius. Aula: Máquina ferramenta- Torno. Torno

Aula: Movimentos e grandezas da Usinagem

ÍNDICE. Square 6 Double Octomill Turbo 10 Fresas de Disco R Quattromill

TORNEIRO MECÂNICO TECNOLOGIA

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA SÃO PAULO Campus Presidente Epitácio

TECNOLOGIA DE CONTROLE NUMÉRICO FUNDAMENTOS DA USINAGEM: FORMAÇÃO DE CAVACOS, TIPOS E FORMAS DE CAVACOS

TOOLS NEWS B228Z. Fresas de topo de cerâmica CERAMIC. Alta produtividade na usinagem de ligas resistentes ao calor à base de níquel.

TECNOLOGIA DE CONTROLE NUMÉRICO GEOMETRIA DA FERRAMENTA

SEM 343 Processos de Usinagem. Professor: Renato Goulart Jasinevicius

AULA 28 PROCESSO DE FRESAMENTO: FRESAS

SEM 0534 Processos de Fabricação Mecânica. Professor: Renato Goulart Jasinevicius

Usinagem com Ferramentas de Geometria Definida - Torneamento - Fresamento - Furação - Alargamento - Rosqueamento - Brochamento

Usando as tabelas enviadas e consultando o mini catalogo Corokey da empresa Sandvik proponha a resolução do problema abaixo.

AULA 23 PROCESSO DE FURAÇÃO: GENERALIDADES

Materiais para ferramenta

Retirado da Apostila DIDATECH - Programação Fanuc21T OS CÓDIGOS DOS PROGRAMAS FORAM ALTERADOS CONFORME O SOFTWARE FANUCL - DENFORD

Aula Nº 3 Mecanismo de Formação do Cavaco

Sistemas de Referência. A parte de corte de uma Ferramenta é formada pelas superfícies de saída,

DETERIORAÇÃO DAS FERRAMENTAS DE CORTE REF.: ISO Tool life testing in milling

Questões para a prova de Tecnologia Aplicada I 03/06/2011

Quebra-Cavacos F30 F50 SN-29. Geometria A11. Robusta. Vivo. Aumento da espessura do chanfro (arestas de corte estáveis)

TECNOLOGIA DE CONTROLE NUMÉRICO PROGRAMAÇÃO CNC CICLOS FIXOS

SEM-0343 Processos de Usinagem. Professores: Renato Goulart Jasinevicius

UNIVERSIDADE SALGADO DE OLIVEIRA Campus RECIFE. Curso: Engenharia de Produção Disciplina: Materiais para Produção Industrial

MAIS QUE PRODUTOS. PRODUTIVIDADE.

SEM 0534 Processos de Fabricação Mecânica. Professor: Renato Goulart Jasinevicius

IFSC. CNC Comando numérico computadorizado. INSTITUTO FEDERAL DE SANTA CATARINA Câmpus Joinville. Curso técnico em Mecânica IFSC campus Joinville

SEM 0560 Fabricação Mecânica por Usinagem. Professor: Alessandro Roger Rodrigues Renato Goulart Jasinevicius

TUS - TECNOLOGIA DE USINAGEM EXERCÍCIOS: REVISÃO PÓS P1

ESTUDO DO DESGASTE EM FERRAMENTA DE METAL DURO NO TORNEAMENTO DOS AÇOS ABNT 1045, 4140 E 4340.

SEM-0534 Processos de Fabricação Mecânica. Retificação

Os insertos desgastam quando o avanço é muito baixo, esfregando na peça ao invés de cortar

Acesse:

SEM 0343 Processos de Usinagem. Professor: Renato Goulart Jasinevicius

AULA 35 QUESTÕES DE REVISÃO: PARTE 2 AULA 36 PROVA P2

Pastilha a 90 de 4 arestas com aplicação em rampa

Acesse:

USINAGEM CNC. Professor: Emerson L. de Oliveira

TECNOLOGIA DE CONTROLE NUMÉRICO PROGRAMAÇÃO CNC CICLOS FIXOS

ADES FERRAMENTAS CATÁLOGO DE PRODUTOS

Ferramentas. Ferramentas de corte geral H11

Furação. Pastilhas intercambiáveis e classes de metal duro. Ferramentas para furação, mandrilamento e mandrilamento em acabamento

TORNEAMENTO. As Melhores Marcas. As Melhores Ferramentas. Fixação e Mandrilamento. Furação e Alargamento. Pastilhas e Cilindros.

USINAGEM CNC. Professor: Emerson L. de Oliveira

março de /6 Nova Solução para Furação de Diâmetros Grandes com Ponta Intercambiável e Pastilhas

Acesse:

Março de /9. Linha otimizada de corte e ranhuramento

Insertos Econômicos com 8 Arestas de Corte. Reduz o Custo no Desbaste de Canto

ENG Processos Discretos de Produção. Movimentos e parâmetros de corte. Heraldo Amorim

Transcrição:

SEM 0343 Processos de Usinagem Professor: Renato Goulart Jasinevicius

Processos de Fabricação por Usinagem Aula Processo: Torneamento Definições Tornos e partes componentes dos tornos Máquinas para produção O Processo e as Operações de Torneamento Sequências de operações Cinemática do Processo Geometria das Ferramentas de Torneamento Parâmetros de Corte Condição de operação

Introdução Qual a semelhança entre as peças apresentadas?

Processo: Torneamento Definições: Torneamento pode ser definido como um processo mecânico de usinagem, destinado à obtenção de superfícies de revolução com o auxílio de uma ou mais ferramentas monocortantes. Torneamento é o processo de usinagem para superfícies cilindricas externas e cônicas com uma ferramenta com geometria monocortante. O processo usa uma máquina ferramenta denominada Torno.

Processo: Torneamento A peça é rotacionada em um eixo (spindle) e a ferramenta é avançada radialmente, axialmente ou simultanemente em ambas direções, para gerar a superfície desejada. Radial + Axial

D Processo: Torneamento Mais especificamente a ferramenta é aplicada para geração de superfície cilíndricas externas orientada preferencialmente paralela ao eixo da peça. A geração de superfície orientadas preferencialmente perpendicular ao eixo da peça é denominado faceamento n Tornear Facear

Processo: Torneamento No torneamento a direção do movimento de avanço é predominantemente axial com relação ao eixo de rotação da máquina (eixo árvore ou spindle). No faceamento, o avanço radial é o movimento predominante. Superfícies chanfradas ou perfiladas exigem os dois modos de avanço simultaneamente, denominado de perfilamento. D n Perfilar Tornear Facear

Processo: Torneamento Operações de torneamento Ferramenta monocortante; Ferramenta fixa em suporte e peça rotaciona; Velocidade de corte constante na operação cilíndrica e variável na operação de faceamento

Acabamento no Processo de Torneamento Rugosidade média, Ra micrometros, m (micropolegadas, in.) Processo Corte maçarico Esmerilhamento rebarba Serra Plaina Furação Fresamento químico Eletro erosão Fresamento Brochamento Alargamento Feixe de elétrons Laser Ataque eletroquímico Mandrilammento, torno Acabamento em tambor Retífica eletrolítica Brunimento cilíndrio Retificação Honing Polimento eletrolítico Polimento Lapidação Superacabamento Fundição em areia Laminação a quente Forjamento Fund. em molde fechado Fund. por cera perdida Extrusão Lamina. a frio, trefilação Fund. Sob pressão As faixas apresentadas acima são típicas dos processos listados Valores menores ou maiores podem ser obtidos sob condições especiais Aplicação Média Aplicação menos freqüentes Rugosidade Ra ( m) Graduação de Rugosidade 50 N12 25 N11 12,5 N10 6,3 N9 3,2 N8 1,6 N7 0,8 N6 0,4 N5 0,2 N4 0,1 N3 0,05 N2 0,025 N1 CARTA DE PROCESSOS VERSUS ACABAMENTOS

Tolerâncias Processo de Torneamento Diâmetro < 25,4 : 13 25 µm (IT6-IT7) 25,4<Diâmetro< 50,8: 50 µm (IT8-IT9) Diâmetro > 50,8 : 75 125 µm (IT10)

Operações realizadas no Torneamento a) Chanfrar b) Sangrar c) Roscar d) Mandrilar e) Furar f) Recartilhar

Operações de Torneamento Operações de Torneamento e Ferramentas Usadas Esquema Operações de Torneamento e Ferramentas Usadas Esquema a - Torneamento Cilíndrico Externo com ferramenta reta b - Torneamento Cilín drico Interno ou Mandrilamento com um bit fixado em uma barra c - Torneamento Cônico Externo com ferramenta reta d - Torneamento Cônico Interno com barra de mandrilar e - Torneamento de Faceamento com peça presa na placa ou entre centros f - Sangramento Radial Externo com ferramenta de sangramento externo g - Sangramento Radial Interno com ferramenta de sangramento interno h - Sangramento Axial com ferramenta de sangramento axial

Operações de Torneamento Operações de Torneamento e Ferramentas Usadas Esquema Operações de Torneamento e Ferramentas Usadas Esquema i - Corte com uma ferramenta bedame j - Torneamento Curvilíneo com ferramenta reta de ponta arredondada k - Perfilamento Radial com ferramenta de forma m - Perfilamento Axial com ferramenta de forma n - Furação com broca helicoidal o - Alargargamento de um furo com broca helicoidal p - Alargamento de um furo com alargador q - Roscamento Exter-no com ferramenta de roscar de ponta única

Componente do Avanço em Operações de Torneamento avanço avanço avanço avanço Avanços alternativos possíveis avanço avanço avanço avanço avanço

EXEMPLOS DE ALGUMAS SEQUÊNCIAS DE OPERAÇÕES DE TORNEAMENTO

TORNEAMENTO CILÍNDRICO EXTERNO

Fixação da peça Ajuste da Ferramenta Primeiro Passe Segundo Passe

TORNEAMENTO DE FACEAMENTO

Seqüência de uma Operação de Faceamento 1 2 3 4 5 6

TORNEAMENTO DE CORTE E SANGRAMENTO

Operação de Corte e Sangramento

Seqüência de Corte

OPERAÇÃO DE FURAÇÃO

Seqüência de Furação

Operação de Roscamento

Operação de Roscamento Primeiro passo Rosca Feita Estratégias de corte dos Filetes Passo Rosca Macho Rosca Fêmea Ferramenta Radial Flanco Incremental

Operação de Roscamento

Operação de Roscamento a) a) Pente reto de abrir rosca b) Pente circular de abrir rosca c) Cossinete b) c)

Operação de Roscamento b) Pente circular de abrir rosca

Operação de Roscamento c) Cossinete Desandador Cossinete

Operação de Roscamento Rosca externa em torno com cossinete

Operação de Roscamento Considerações de projeto: 1. Chamfrar as extremidades da parte roscada para reduzir rebarbas. 2. Fazer saída de ferramenta para o comprimento da rosca. 3. Use ferramentas padrão para fazer as roscas 4. Não interromper seções roscadas com canais, furos, etc. 5. As paredes das peças devem ser espessas o suficiente para suportar as forças de corte e de fixação. 6. Projete a peça para se possa completar as operações de corte com um único set-up.

Considerações de projeto: 1) Chamfrar as extremidades da parte roscada para reduzir rebarbas. 2) Fazer saída de ferramenta para o comprimento da rosca. 1 2

Considerações de projeto: 3. Use ferramentas padrão para fazer as roscas = 55º (Whitworth) = 60º (Métrica)

OPERAÇÃO DE RECARTILHAMENTO

OPERAÇÃO DE RECARTILHAMENTO Usado para criar padrão de textura rugosas em superfícies cilíndricas Feitas em peças onde há necessidade de atrito maior (manopla,etc.)

OPERAÇÃO DE RECARTILHAMENTO Tipos: Recartilhamento Angular cria um padrão de ranhuras piramidal Recartilhamento linear cria um padrão de ranhuras longitudinais retas Padrões de recartilhamento cruzados grande, médio e fino Padrões de recartilhamento paralelos com passo grande, médio e fino

1 Operação de Recartilhamento 3 2 4 5

Fixação da Peça no Torno Pino de arraste (fixado na peça) Peça Contra-Ponto (apoio adicional) Castanhas Ajustáveis (3) Peça Placa de arraste (fixada no eixo) Pinça com três rasgos Peça Placa fixada no eixo Sup. usinada Capa (avança para apertar a pinça) Peça Castanhas independentes (4)

Ação da Ferramenta de Torno Velocidade de corte v c (m/min) ap - Profundidade de usinagem (mm) - Mov. Radial Avanço f (mm/volta) Mov. Axial

Ação da Ferramenta de Torno Ø efetivo Zona primária de cisalhamento Cavaco Ferramenta Zona secundária de cisalhamento

Influência da Geometria no Mecanismo de Corte

Influência da Geometria ângulo de folga, ele pode gerar maior ou menor atrito entre a superfície de folga e a superfície recém formada e pode melhorar a estabilidade da aresta. Geralmente varia de 2º a 12º Ângulo de saída = 0 o 1 2 = 0 o 1 > 0 o 2 > 1 Menor atrito + + =90º

Influência da Geometria ângulo de saída, afeta a formação do cavaco, diminuindo ou aumentando o atrito do cavaco com a superfície de saída, resultando em mudança no ângulo do plano de cisalhamento. Isso implica em redução ou aumento nas forças de corte. Geralmente varia de -10º a 20º = constante - = 0 o + ++

Influência do ângulo de saída =0 o ++ a) + b) c) Ângulo de Saída - e) d)

Influência do Ângulo de Saída positivo negativo h Cav. Fer. h Cav. Fer. h h Peça Peça Recalque Rc h ' h

Influência do Ângulo de Saída ângulo de saída, a variação desse ângulo irá afetar a área do plano de cisalhamento. Onde: h é a espessura do cavaco; b largura de corte ls comprimento do plano de cisalhamento h h = ls b h 0

Influência da Geometria G = 90º B = 15º A C = 90º s = 0º Ferramentas de torno com haste reta e haste deslocada e diferentes ângulos de Posição D = 45º D E = 30º = 60º (Métrica) F = 55º (Whitworth) s = 0º

Influência do ângulo de Posição V f (mm/min) Velocidade de avanço: Vf = f. n Ângulo de Posição Neutro n n V f (mm/min) - V f (mm/min) + Ângulo de Posição Negativo Ângulo de Posição Positivo

Influência do ângulo de Posição Ângulo de Posição Negativo negativo adequado para usinagem com escalonamento ou canto, faceamento. n Deve ser evitado: forças de corte tendem a puxar o inserto fora do assento, levando a erros de dimensionais n Faceamento Escalonamento

Influência do ângulo de Posição f (mm/rev) Ângulo de Posição f (mm/rev) ap : 90º h = f b = ap X Espessura do cavaco ap : 10º, 15º, 30º, 45º, 60, 75º h b f sen ap sen

Influência do ângulo de Posição Força avanço de Direção longitudinal : 90º Força radial Fc = K s1. h 1-z. b Ângulo de Posição h b f X Força de Corte sen ap sen : 10º, 15º, 30º, 45º Força avanço de Distribui as forças ao longo da aresta. Quanto maior, maio pode ser f. Desgaste menor. Quanto maior, maior chance de chatter negativo adequado escalonado, canto, faceamento

Influência do ângulo de Posição Aço 1045: k s1 = 205 kgf/mm 2, 1-z = 0,899 (a p = 2,5 mm, f = 0,5 mm/rev ) Ângulo de posição seno ( ) h (mm) h 1-z b (mm) Área de corte (mm 2 ) F c (N) 10 0,174 0,087 0,111 14,368 1,25 3280 15 0,259 0,129 0,159 9,652 1,25 3150 30 0,500 0,250 0,288 5,000 1,25 2941 45 0,707 0,354 0,393 3,536 1,25 2841 90 1,000 0,500 0,536 2,500 1,25 2748 h b f sen ap sen

Pastilhas de Metal Duro Excelente resistência, permitindo usinar com altas velocidades. Diversas formas e geometrias padronizadas Diversas classes de M.D. para materiais e condições diferentes de usinagem Baixo custo de reposição Dispensa re-afiação

Dureza Tenacidade Classes P M K N S H Aço Aço Inoxidável Ferro Fundido Não Ferroso Ligas Resistentes Temperaturas Materiais Endurecidos 01 10 01 10 01 01 01 01 15 15 20 20 25 25 50 50 50 50 30 30 50 50 Tenacidade

Como identificar os Insertos(Pastilhas)? Existem NORMAS Internacionais : ISO - Internacional ANSI - Americana

Codificação ISO - Insertos C N M G 12 04 08 RN KC9125 Classe do Inserto Tipo de quebra-cavaco Raio do Inserto Espessura do inserto Tamanho do inserto Característica do inserto Tolerância de fabricação Ângulo de folga Geometria do inserto Marketing

Formato dos Insertos Letra ref. inserto Descrição da forma do inserto Ângulo de ponta do inserto ( o ) R REDONDO N/A O OCATGONAL 135 H HEXAGONAL 120 P PENTAGONO 108 S QUADRADO ( SQUARE ) 90 C DIAMANTE 80 T TRIÂNGULO 60 D DIAMANTE 55 V DIAMANTE 35

resistência Formato do Inserto R redondo C rombico 100º equilateral Q quadrado 90º equilateral W hexagonal irregular 80º irregular C rombico 80º equilateral T Triangular 60º equi-angular D rombico 55º irregular V rombico 35º irregular

Formato dos Insertos Insertos de Metal Duro Aumenta a resistência 135º 120º 108º 90º 80º 60º 55º 35º R O H P S C T D V Aumento da chance de lascar e/ou quebrar

Formato dos Insertos Insertos de Metal Duro A A A A A-A A-A Aumento da chance de lascar e/ou quebrar

Formato do Inserto Fatores que afetam a escolha R 35º Vibração Melhor recomendação

Fatores que afetam a escolha R 100 90 80 80 60 55 35 Desbaste pesado Desbaste leve e semiacabamento Acabamento Torneamento e faceamento Perfilamento Versatilidade operacional Potência limitada Tendência a vibração Materiais Endurecidos Corte Interrompidos Melhor recomendação Aceitável

Ângulo de folga T N M G - 4 3 2 T N M G - 22 04 08 3 A 5 B 7 C 20 E 0 11 N P

Tolerância T N M G - 4 3 2 T N M G - 22 04 08

Tolerância Circulo Inscrito Tolerância da Classe ic (mm) M U 3,97 5,0 0,05 5,56 6,0 6,35 8,0 3,525 1,0 12,0 12,7 15,875 16,0 19,05 20,0 25,0 25,4 31,75 32,0 0,05 0,08 0,08 0,13 0,10 0,18 0,10 0,18 0,13 0,25 ic ic ic M ou U

Característica do Inserto: quebra cavaco T N M G - 4 3 2 T N M G - 22 04 08 A *P B R G *S H T M W N X

Tamanho da aresta de corte l (mm) d (ic) 6.35 (1/4 ) 9.52 (3/8 ) 12.70 (1/2 ) 15.88 (5/8 ) 19.05 (3/4 ) 25.40 (1 ) l 11 16 22 27 33 44 l l 06 09 12 15 19 25 55 l 07 11 15 19 80 l 06 09 12 16 11 25 35 l 11 16 22 04 06 08 10 13 17 ic = Círculo Inscrito

Espessura S T N M G - 4 3 2 T N M G - 22 04 08 CPGM - 16 T3 08 1/8 =.125 = 3.18mm = 03 5/32 =.156 = 3.97mm = T3

Espessura S 01 S= 1,59 T1 S= 1,98 02 S= 2,38 03 S= 3,18 T3 S= 3,97 04 S= 4,76 05 S= 5,56 06 S= 6,35 07 S= 7,94 09 S= 9,52 10 S= 10,00 12 S= 12,00 T N M G - 22 04 08 T N M G - 4 3 2 CPGM - 16 T3 08 1/8 =.125 = 3.18mm = 03 5/32 =.156 = 3.97mm = T3

Espessura do Inserto T T T

Raio de Ponta T N M G - 4 3 2 T N M G - 22 04 08

Codificação ISO Porta-ferramenta Externo M C L N L 25 25 M 12 Tamanho do Inserto Comp. do Porta-ferr. Espessura do Porta-ferramenta Altura do Porta-ferramenta Sentido de corte Ângulo de folga Ângulo de Posição Formato do Inserto Sistema de fixação do inserto

Ferramentas para torneamento 90º 55º 60º 35º Assento para inserto de MD

Ferramentas para torneamento Ferramentas de torno Ferramenta esquerda Ferramenta direita Corta da esquerda para direita Corta da direita para esquerda

Ferramentas para Torno Tornear e Chanfrar Facear 75º Rosquear 55º Mandrilar e facear 90º Recartilhar Porta matriz para cossinete http://tool.wttool.com

Parâmetros de Corte Existem dois movimentos de corte: o movimento primário de corte movimento de avanço. Em um torno, o movimento primário de corte é rotativo e é transmitido à peça através do eixo árvore. A peça é presa na placa do torno que por sua vez está fixada ao eixo árvore. n V f = f. n V f

Parâmetros de Corte Velocidade de Corte (Vc) Avanço (f) Profundidade de usinagem (ap)

Parâmetros de Corte Notação Vc: Velocidade de Corte f: Avanço ap: Profundidade de usinagem

D Definição de Velocidade de Corte (Vc) Em torneamento, é a velocidade tangencial da peça, medido em metros por minutos (m/min). É a velocidade com que a peça passa pela Ferramenta (Torneamento) n v c D n 1000

Fórmula para determinar a Vc v c D n 1000 Vc = exemplo: Peça com 200,0 mm 360 rpm rpm x diâmetro x 1000 = rpm x diâmetro 318 Vc = 360 x 200,0 x 3,1416 1000 = 360 x 200,0 318 Vc = 226 m/min rpm = Vc x 1000 = diâmetro x Vc x 318 diâmetro

Velocidades de Corte Recomendadas (aproximadas) Material da Peça Velocidade de Corte (m/min) Aço Rápido Metal Duro Ligas de Alumínio 180-240 300-420 Ligas de Magnésio 240 600 Ligas de Cobre 30-120 60-300 Aços 30-60 60-180 Aços Inoxidáveis 10-30 60-120 Ligas de Titânio 10-60 30-120 Ferro Fundido 10-30 30-120 Termoplásticos 90-120 120-180

Definição de Avanço (f) Vc f ap A quantidade relativa de movimento da ferramenta na peça em cada revolução, ciclo ou unidade de tempo. Normalmente medido em milímetros por rotação (mm/rot.).

Definição de Profundidade de usinagem (ap) D Vc ap a p D 2 d f d A distância entre o fundo do corte e a superfície da peça, medido perpendicularmente à superfície da peça em milímetros.

Cálculo do Tempo de Usinagem l l 3 l 1 l 2 n t c l V f ap l V f l 1 f l 2 n l 3 II I

d Cálculo do Tempo de Usinagem a b l 3 l 1 l 2 l l 3 = 0 l 1 l l 2 Para efeito de cálculo, nessa disciplina, consideraremos que: a) l 2 = l 3 = 2 mm entre pontos b) l 2 = 2 e l 3 = 0 com escalonamento

Exemplo Torneamento externo no comprimento de 100mm, diâmetro de 45mm, com V c =180m/min e f=0,3mm/rev. Solução: l = l 1 + l 2 + l 3 = 100 +2 + 2 = 104mm V f = f x n e n = (1000V c )/( D) = 1273 rpm V f = 0,3 x 1273 = 382 mm/min t c = 104/382 = 0,27 min

Condições de operação As condições de operação controlam 3 variáveis importante no corte dos metais: 1. Taxa de remoção de material 2. Vida da ferramenta e 3. Acabamento

Condições de operação Cada uma dessas variáveis pode através das seguintes fórmulas: ser estimada 1. Q = V c *ap*f (mm 3 /min) Taxa de remoção 2. V c *T y =C Vida da Ferramenta 3. R teorica = f 2 /8R p - Acabamento da peça Onde: V c velocidade de corte (mm/min), f avanço (mm/rev); ap prof. de usinagem (mm), T é a vida da ferramenta (min), C é a velocidade de corte para uma vida de 1 min (m/min).

Condições de operação Estimativa de Vida de ferramenta Desgaste de Cratera Largura do Desgaste de Flanco Entalhe } Prof. de usinagem ap Desgaste de flanco f Desgaste do raio

Desgsate de Flanco (V B ) Condições de operação Estimativa de Vida de ferramenta Critério de Desgaste Flanco VB= 0,5mm v= 100 m/min T y C v= 170 m/min v= 136,3 m/min 0.50 mm v velocidade T tempo ou Tv x K onde 5 12 20 40 Tempo de Corte (min) y 1 x

Velocidade de corte ( m/min) 400 Condições de operação Estimativa de Vida de ferramenta v. T y = C C=? y=? 200 160 130 100 (1) V = 170, T =5 (2) V = 136,3, T =12 (3) V = 100, T = 41 1 2 3 5 10 20 30 50 100 Vida da ferramenta T (min)

Solução: Condições de operação Estimativa de Vida de ferramenta Para Determinar o valor de C e y no gráfico anterior, selecione dois dos três pontos da curva e resolva a equação simultaneamente Escolha os dois pontos extremos: v=170 m/min, T = 5 min, e v = 100 m/min, T=41 min, temos que: 170(5) y =C 100(41) y =C => 170(5) y =100(41) y ln(170)+y(ln5)=1n(100)+y(ln41) => 0.5306=2.1041y y=0.5306/2.1041=0.25217 => C = 170(5) 0.25217 = 255 m/min

Condições de operação Estimativa de Vida de ferramenta Como determinar o valor de K e x a partir dos dados de y e C? Solução: Sabemos que v. T y = C e y = 1/x, portanto se elevarmos toda a equação a 1/y teremos: V 1/y. T y/y = C 1/y, mas x = 1/y. Sendo assim teremos V x. T = C x. Dado que T. v x = K, pode se concluir que: K = C x Em estudos de usinabilidade utiliza-se V 60 ao invés de C. Tabela X.3 pg 466 (Ferraresi) y = 0.3 para MD y = 0.15 para AR

Condições de operação Valores de y para formula de Taylor para diversos materiais de ferramenta (v c T y = C) (valores aprox. em operações de torneamento f = 0,25 mm/ver e ap = 2,5 mm. O Termo Não aço refere-se a Alumínio, latão e ferro fundido Muitas vezes os valores recomendados para Vc referem-se a uma vida de 15 min. Material de Ferramenta/material da peça Aços rápidos Não ferrosos Aços 0,1 Ligas fundidas Não ferrosos Aços Metal duro Sem Cobertura Não ferrosos Aços Metal duro com Cobertura Não aço Aços Cerâmica Não aço Aços CERMET Não aço Aços y 0,1 0,1 0,25 0,1-0,25-0,6 C 120 70 70 20 900 500-700 - 3000-0,25 600

Processo Condições de operação Torneamento de precisão 0,2 Valor de V B (mm) Torneamento de acabamento 0,3-0,4 Torneamento Desbaste Áreas de cavaco convencional Áreas grandes de cavaco 0,6-0,8 1,0-1,5 Aplainamento de Acabamento 0,3-0,4 Aplainamento de Debaste 0,6-0,8 Fresamento de Acabamento Fresamento de Desbaste Distância a ser compensada devido a V B 0,3-0,4 0,6-0,8 V B

Condições de operação Determinação da vida da ferramenta em função do tipo de máquina Máquinas de produção com Setup pequenos. Ex.: Máquinas CN Máquinas com tempos de setup intermediários Ex.: Torno revolver com controle por Cames Máquinas com tempo de Setup longos com processo atrelado e máquinas dedicadas como em linhas transfer T= 15 a 30 min T= 60 min T= 240 min A velocidade para cada uma destas vidas deve ser representada da seguinte forma: T = 15 min T = 60 min T = 240 min v c15 v c60 v c240

Condições de operação

Condições de operação

Condições de operação

Condições de operação

Condições de operação

Condições de operação Rugosidade Ra ( m) Graduação de Rugosidade 50 N12 25 N11 12,5 N10 6,3 N9 3,2 N8 Acabamento de Superfície através de torneamento Valores de referência:0,025 até 25 m Ra Valores comuns: 0,40 até 6,3 m Ra (N5 a N9) 1,6 N7 0,8 N6 0,4 N5 0,2 N4 0,1 N3 0,05 N2 0,025 N1

Condições de operação Os valores de acabamento podem, teoricamente, ser calculados através da seguinte equação: R max f 2 8 R p onde f é o avanço (mm/rev) e Rp é o raio de ponta da ferramenta

Condições de operação f R R f R R f R R R R R f R R R p p t t t t p p p t p p 8 4 2 4 2 2 2 2 2 2 2 2 2 Usando Pitágoras é muito pequeno para Rp ap f Rmax ou R t p a R f R 2,0321 0 R p -R t f/2 R p

Condições de operação R a 18 f 2 3 R p N9 R a 0,0321 R p f 2 N6 Fonte: Boothroyd, 1975, p.139

Condições de operação Superfície ideal obtida com ferramenta com ponta seca f A rugosidade pode ser representada por um índice muito usado denominando de média aritmética Ra. Superfície de trabalho Rmax Rmax/ 2 b a (a) s f/2 s c f/2 d e Superfície usinada No perfil mostrado na figura (b), mostra a área sob análise, uma linha média é traçada paralela a direção da superfície e divide a superfície de tal forma que a soma da área formada acima sejam igual a soma das área formadas abaixo da linha. O valor da rugosidade Ra é dado pela soma dos valores absolutos de todas as áreas acima e abaixo da linha média dividido pelo comprimento amostral. Fonte: Boothroyd, 1975, p.134-37 (b)

Condições de operação Superfície ideal obtida com ferramenta com ponta seca f Assim, para esse exemplo, o valor da rugosidade Ra é dado por: Ra abc f cde (1) Superfície de trabalho Rmax Rmax/2 b a (a) f/2 s s c f/2 d e Superfície usinada onde f é o avanço. Dado que as áreas abc e cde sejam iguais, então R a R 4 2 max f abc (2) Onde Rmax/2 é a altura do triângulo abc. Fonte: Boothroyd, 1975, p.134-37 (b)

Condições de operação Superfície de trabalho Rmax Fonte: Boothroyd, 1975, p.134-37 Rmax/ 2 Superfície ideal obtida com ferramenta com ponta seca f b a (a) s f/2 s c (b) f/2 d e Superfície usinada É interessante observar que o valor da média aritmética da rugosidade para uma superfície tendo triângulos como irregularidades seja igual a ¼ da máxima altura das irregularidades. Geometricamente, R max f cot cot s (3) Substituindo a eq. (3) na eq. (2) tem-se: R a f 4 cot cot (4) A eq. (4) mostra que o valor aritmético médio de tal superfície é diretamente proporcional ao avanço. s

Rugosidade Ideal Ra ( m) Condições de operação 5 s 4 3 2 1 0 0 Fonte: Boothroyd, 1975, p.137 2 6 8 10 12 Ângulo de saída secundário s ( o ) 14

Condições de operação Outros fatores que pode contribuir para rugosidade da peça: 1) Ocorrência de vibração da Máquina 2) Imprecisão nos movimentos da maquinas (folgas) 3) Irregularidade do mecanismo de avanço 4) Defeitos na estrutura do material 5) Cavacos descontínuos na usinagem de materiais frágeis (duros) 6) imperfeições em materiais dúcteis usinados com baixas velocidades de corte 7) Danos causados pelo contato com cavaco.

Fonte: Boothroyd, 1975, p.140 Condições de operação

Condições de operação

Condições de operação

Condições de operação

Condições de operação

peça apresentada neste plano de trabalho é produzida em um torno automático CNC de carros múltiplos dotado de torre revólver estrela indexável de 6 posições. A peça de aço SAE 12L14 é usinada por completo em um tempo de ciclo de trabalho de 29,5 seg. por peça. O gráfico indica as operações que são executadas de forma simultânea.

Problemas em Operações de Torneamento Problema Quebra de ferramentas Desgaste excessivo da ferramenta Superfície acabada com rugosidade alta Causas Possíveis O material da ferramenta não tem rigidez suficiente; ângulos da ferramenta inadequados; máquina ferramenta não tem rigidez adequada; mancais e componentes da máquina com desgaste excessivo; parâmetros de corte com valores muito elevados. Parâmetros de corte com valores muito elevados; Material impróprio da ferramenta; Fluido de corte inadequado; ângulos inadequados da ferramenta. Aresta postiça de corte na ferramenta; avanço muito alto; ângulo da ponta da ferramenta muito pequeno; ferramenta com desgaste acentuado; vibração ocorrendo no processo. Variabilidade dimensional Desgaste acentuado da ferramenta; falta de rigidez no sistema; elevação de temperatura excessiva. Vibrações na ferramenta Falta de rigidez; peça suportada inadequadamente; ferramenta com balanço excessivo.

Sugestões para Evitar Vibrações e Trepidações na Operação de Torneamento Minimize o balanço da ferramenta. Prenda a peça rigidamente. Escolha máquinas com alta rigidez e grande capacidade de amortecimento. Quando a ferramenta começa a vibrar e trepidar, modifique um ou mais dos parâmetros de processo tais como a forma da ferramenta, a velocidade de corte, o avanço, a profundidade de corte e o fluido de corte.

Orientações de Projeto para Peças Torneadas Projetar peças que permitam uma fixação simples em dispositivos de fixação e posicionamento. Peças longas e esbeltas são difíceis de serem fixadas de modo a suportar as forças de fixação e usinagem. A especificação de tolerância e acabamento deve ser a mais aberta possível, respeitando os requisitos funcionais da peça. Cantos vivos, cones e grandes variações de dimensões na peça devem ser evitados. O blanque, de onde a peça será obtida, deve ter dimensões próximas das dimensões finais da peça de modo a evitar corte desnecessário de material e reduzir o tempo de usinagem. As peças devem ser projetadas de modo que as ferramentas possam percorrer a peça sem obstruções. As features ou características projetadas na peça devem ser tais que ferramentas comerciais (padronizadas) possam ser usadas. O material da peça deve ser selecionado com base em sua usinabilidade, respeitando os requisitos funcionais da peça.