Utilização de Ventilador Especializado para Aumento de Capacidade de Insuflação (CI) White Paper

Documentos relacionados
A diferença é clara. O CoughAssist limpa as vias aéreas com a força de uma tosse natural

5 Metodologia. Tabela 4 - Marcas e modelos dos ventiladores avaliados. Ventiladores V1 V2 V3 V4 V5 V6 V7 V8 V9 V10. Marca I I I I I I II II II II

PRINCÍPIOS BÁSICOS DE VENTILAÇÃO MECÂNICA. (Baseado nos consensos e diretrizes brasileiras de VM)

Lígia Maria Coscrato Junqueira Silva Fisioterapeuta HBP/SP

Unidade de Cuidados Intensivos Polivalente. Enf.º Roberto Mendes

Int In e t rpre rpr t e a t ç a ã ç o ã da Prov Pr a ov de função funç Pulmonar (PFP ( )

FISIOLOGIA RESPIRATÓRIA RICARDO LUIZ PACE JR.

Tema: BIPAP em paciente portador de Esclerose Lateral Amiotrófica

FISIOTERAPIA RESPIRATÓRIA NO AVE FT RAFAELA DE ALMEIDA SILVA APAE-BAURU

Programação. Sistema Respiratório e Exercício. Unidade Funcional. Sistema Respiratório: Fisiologia. Anatomia e Fisiologia do Sistema Respiratório

BiLevel/Ventiladores da Série 800

SUPORTE VENTILATÓRIO NO PACIENTE NEUROMUSCULAR. Versão eletrônica atualizada em Março 2009

O efeito da técnica de air stacking em pacientes portadores de doenças neuromusculares

VENT-LOGOS. Ventilação Neonatal. Israel Figueiredo Junior UFF2009.

TÉCNICA DE ANÁLISE DE GASES PARA GANHO DE EFICIÊNCIA ENERGÉTICA.

DOENÇAS PULMONARES OCUPACIONAIS

4 O Modelo Termodinâmico da Turbina a Gás

FISIOTERAPIA NA FIBROSE CÍSTICA DANIELLE BERNINI PERES 2016

Jose Roberto Fioretto

A BOLSA AMBU ORIGINAL. Airway Management Patient Monitoring & Diagnostics Emergency Care

Obesidade: Uma nova organização gera novos desafios para a saúde (Gisela Arsa da Cunha) 4-8

Recursos manuais da Fisioterapia Respiratória

FUNÇÃO assegurar as trocas gasosas (oxigénio e dióxido de carbono) entre o organismo e o ar da atmosfera.

Avaliação da Pressão de Cuff de Vias Aéreas Artificiais antes e após procedimento de aspiração traqueal

Revista Brasileira em Promoção da Saúde ISSN: Universidade de Fortaleza Brasil

UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONHA E MUCURI DISCIPLINA: FISIOLOGIA HUMANA E FISIOLOGIA DOS SISTEMAS

Qual Aparelho devo selecionar para VNI na UTI e no Domicílio?

REANIMAÇÃO DO RN 34 SEMANAS EM SALA DE PARTO - Direitos autorais SBP PRÉ E PÓS-TESTE. Local (Hospital e cidade)

Aula 6: Sistema respiratório

INSTRUÇÃO DE USO THRESHOLD IMT - TREINADOR MUSCULAR INSPIRATÓRIO

Simbologia dos componentes

DPS1035 Gestão Ambiental e Sustentabilidade. CGEP - Morgana Pizzolato, Dr a.

IN-EXSUFLAÇÃO MECÂNICA EM CUIDADOS INTENSIVOS A PROPÓSITO DE UM CASO CLÍNICO DE ATELECTASIA PULMONAR

Complemento do Manual do Operador

FUNÇÃO RESPIRATÓRIA E MECANISMO DA TOSSE NA DISTROFIA MUSCULAR DE DUCHENNE

PERFIL DOS PACIENTES ATENDIDOS PELA FISIOTERAPIA NA UNIDADE DE TERAPIA INTENSIVA DO HOSPITAL DA PROVIDÊNCIA DE APUCARANA

Anatomia e fisiologia respiratória. Ms. Roberpaulo Anacleto

FISIOLOGIA HUMANA UNIDADE V: SISTEMA RESPIRATÓRIO

VÁLVULAS MANIFOLD MANIFOLD 3 VIAS MANIFOLD 5 VIAS

PARADA CARDÍACA PARADA CARDÍACA PARADA CARDIORRESPIRATÓRIA CADEIA DE SOBREVIVENCIA

Espirometria. Espirometria. Espirometria. Espirometria. Relembrando... Volume: quantidade de ar que entra ou sai do pulmão (L)

Especificações Técnicas. Fonte de Alimentação CA Programável Modelo 9801

Unidade de Recuperação de Energia com Bateria DX

CURSO DE HABILIDADES FISIOTERAPÊUTICAS EM TERAPIA INTENSIVA

ELEVADORES VEICULARES LIBERDADE PARA RODAR

[273] O) e/ ou FiO 2. Parte VI P R O T O C O L O S D E P R O C E D I M E N T O S

OS EFEITOS DA FISIOTERAPIA RESPIRATÓRIA EM PACIENTES COM DOENÇA DE PARKINSON

AVALIAÇÃO DO PICO DE FLUXO DE TOSSE APÓS TÉCNICAS FISIOTERAPÊUTICAS EM PACIENTES HOSPITALIZADOS COM ACIDENTE VASCULAR CEREBRAL

Universidade Federal dos Vales do Jequitinhonha e Mucuri - UFVJM

O software conta ainda, com procedimento para geração de relatórios em EXCEL. Para gerar tais relatórios foi utilizado o tollkit Report Generation do

Como ventilar o obeso mórbido com injúria pulmonar aguda? Distúrbios respiratórios. Alterações Funcionais. Módulo VI Ventilação mecânica aplicada

Avaliação respiratória dos pacientes com Distrofia Muscular de Duchenne

Pneumotórax como complicação associada ao recrutamento do volume pulmonar* Pneumothorax as a complication of lung volume recruitment

Guia rápido. BiPAP S/T. Visão geral do painel frontal Iniciar terapia Parar terapia Visualizar informações. Configurações de conforto

O que é instrumentação INSTRUMENTAÇÃO E CONTROLE. Tubo de venturi. Ultrassônico carretel 22/2/2011. Introdução

Disciplina: Sistemas Fluidomecânicos. Características de Desempenho 1ª Parte

Objetivo: Estudar os mecanismos fisiológicos responsáveis pelo controle da ventilação pulmonar

RESUMO. Aline Estrela Meireles

scterapiarespiratoria.com.br

Retirada do Suporte Ventilatório DESMAME

METROLOGIA DE VENTILADORES MECÂNICOS

REGISTRO DE PREÇOS ATA 01 UNIDADE DE COTAÇÃO

DISTROFIA MUSCULAR DE DUCHENNE: REPERCUSSÕES PÓS-TREINAMENTO MUSCULAR RESPIRATÓRIO RELATO DE CASO

1 INDEFERIDO 1 DEFERIDO

Fisiologia do Trato Respiratório

Repense a ventilação na sala de operação Seguro, espontâneo, simples

INSUFICIÊNCIA RESPIRATÓRIA

SUPORTE BÁSICO DE VIDA

& RELAÇÃO ENTRE A FORÇA MUSCULAR RESPIRATÓRIA E O TEMPO DE DIAGNÓSTICO DE DIABETES MELLITUS TIPO 2 1

Como reconhecer uma criança criticamente enferma? Ney Boa Sorte

INSTRUÇÃO DE USO. Aparelho Respiratório Pneumático para Veterinária Conect

Treino muscular respiratório em pacientes com Distrofia Muscular de Duchenne

Bancada para medição de fenômeno hidráulico durante a operação de um grupo gerador como síncrono

SERVIÇO VORTEX DE REENGENHARIA ANTIPOLUIÇÃO

Memória Descritiva. Curso: Suporte Básico de Vida Adulto (SBV-Adulto) Fundamentação:

MÉTODOS DE TRATAMENTO FISIOTERAPÊUTICO NA ESCLEROSE LATERAL AMIOTRÓFICA (ELA): UMA REVISÃO DE LITERATURA

José Machado Resende Filho¹, Roberto da Silva Cotinik².

Como eu faço? INTUBAÇÃO OROTRAQUEAL. Geysa Câmara

LEIA COM ATENÇÃO AS INSTRUÇÕES ABAIXO

TREINO MUSCULAR RESPIRATÓRIO EM INDIVÍDUOS COM ESCLEROSE MÚLTIPLA: UMA REVISÃO SISTEMÁTICA

ATIVIDADE PRÁTICA 02: UTILIZANDO LIMITADORA DE PRESSÃO PROPORCIONAL A) CONHECENDO A VÁLVULA LIMITADORA DE PRESSÃO PROPORCIONAL:

Experimento 4 Indutores e circuitos RL com onda quadrada

CURSO DE FISIOTERAPIA Autorizado pela Portaria nº 377 de 19/03/09 DOU de 20/03/09 Seção 1. Pág. 09 PLANO DE CURSO

ANATOMIA HUMANA. Faculdade Anísio Teixeira Prof. João Ronaldo Tavares de Vasconcellos Neto

Experimento 4 Indutores e circuitos RL com onda quadrada

APRESENTAÇÃO DO KIT CPLD_EE01

Portaria Inmetro/Dimel n.º 153, de 26 de agosto de 2016.

Sistema portátil LIFE-BASE

Já ouviu falar na Tecnologia Inverter?

Transmissor de vazão de ar Modelo A2G-25

Introdução. Finalidade de uso. Descrição ADENDO

RESUMO. Palavras-chave: Oximetria de Pulso. Frequência Respiratória. Fisioterapia Respiratória. Fisioterapia Motora. Enfermaria INTRODUÇÃO

R 7 termômetros clínicos de mercúrio em vidro, com dispositivo de máxima; R 16-1 Esfigmomanômetros mecânicos não-invasivos e R 16-2 Esfigmomanômetros

SISTEMA RESPIRATÓRIO PROF. JAIR

1. Introdução. 1.1.Objetivo

SAOS Síndrome da Apneia Obstrutiva do Sono

FISIOTERAPIA. 2. Um dos escores evidenciados na literatura que auxiliam na avaliação do Desconforto Respiratório (DR) do Recém Nascido, é:

Sistema Respiratório. rio. Componentes

INCIDÊNCIA DE SÍNDROME DA ANGÚSTIA RESPIRATÓRIA AGUDA NA UNIDADE DE TERAPIA INTENSIVA NO PERÍODO DE TRÊS MESES: UM ESTUDO RETROSPECTIVO

Transcrição:

Vent-Logos Sistemas Lógicos Ltda. www.ventlogos.com comercial@ventlogos.com +55 27 3225-6594 i9lab Laboratório de Inovação Tecnológica Ltda. www.i9lab.com i9@i9lab.com +55 27 3020-2539 Rua Edmundo de Oliveira, 39 CEP: 29045-224 Vitória ES Brasil CEAFI www.ceafi.com.br ceafi@ceafi.com.br (62) 3941-3082 0800-600-3082 Utilização de Ventilador Especializado para Aumento de Capacidade de Insuflação (CI) White Paper Felipe B. A. Schneider Alessandra Dorça Rua T-28, 1806, Setor Bueno CEP: 74215-040 Goiânia GO Brasil Este material foi preparado especificamente para clientes da Vent-Logos. As opiniões expressas representam nossa interpretação e análise de informações disponíveis ao público ou divulgadas por indivíduos responsáveis nas empresas em questão. Acreditamos que as fontes de informações nas quais nosso material está baseado são confiáveis e que aplicamos nosso melhor julgamento profissional sobre os dados obtidos. Ver. 01 Vent-Logos/i9lab 18-abr-2017

Resumo UTILIZAÇÃO DE VENTILADOR ESPECIALIZADO PARA AUMENTO DA CAPACIDADE DE INSUFLAÇÃO O treinamento para o fortalecimento dos músculos do sistema respiratório (FMSR) impacta diretamente na capacidade de deglutir, falar e tossir. Esta melhora é resultado do aumento da capacidade de insuflação e da capacidade do sistema respiratório em gerar pressões positivas expiratórias. Tais fatos evidenciam a influência positiva na expectativa e na qualidade de vida de pacientes com doenças neuromusculares (DNM) exercida pelo FMSR. A manobra é tradicionalmente realizada por um profissional de fisioterapia com a utilização de um reanimador manual (também conhecido como bolsa auto-insuflável), uma válvula unidirecional com alivio de pressão de segurança e uma válvula de pressão positiva expiratória (PEEP). Usualmente, a ventilação é feita por meio de máscara, resultando, assim, um vazamento constante. Ademais, a incapacidade dos reanimadores manuais em gerar um fluxo contínuo durante todo o exercício respiratório (ER) impossibilita a equalização das pressões de via aérea e intrapulmonar. Todos estes fatores deterioram o desempenho e a eficácia da técnica implementada. Propõe-se a utilização de um ventilador com controle automático da pressão máxima inspiratória, capaz de gerar um fluxo alto e contínuo durante todo o exercício respiratório, e o emprego de uma única válvula capaz de direcionar corretamente o fluxo e gerar PEEP ajustável, reduzindo o número de componentes e melhorando a qualidade final do ER. Tal cenário fornece mais segurança e conforto ao fisioterapeuta, sendo reduzido, simultaneamente, o desconforto proporcionado ao paciente por pressões de via aérea demasiadamente elevadas. Vent-Logos/i9lab 18-abr-2017 2

Introdução A perda progressiva do tônus muscular em pacientes portadores de doenças neuromusculares (DNM) proporciona um cenário adequado para o surgimento do Distúrbio Ventilatório Restritivo [1]. Ademais, a perda da força muscular expiratória resulta em tosse espontânea ineficiente e no acúmulo de secreção, fato este agravado por infecções respiratórias virais comuns, como afirma Brito et. al. [2]. Sem a adequada conduta clínica, pacientes com DNM evoluem para a falência respiratória, que pode levá-los à morte precoce [2,3]. Esta é a principal causa de mortes em pacientes portadores de Esclerose Lateral Amiotrófica (ELA) [4,5]. Além dos problemas supracitados, a disfagia manifesta-se em cerca de 85% dos portadores de ELA [6,7], sendo um fator que deprecia a socialização e é de grande contribuição para o aumento do índice de mortalidade dos pacientes [8]. Comprovou-se que a melhora da qualidade de vida está associada não somente à ventilação mecânica, mas também a manobras de limpeza das vias aéreas e aumento da capacidade de insuflação (CI), que previnem contraturas da parede torácica e restrições pulmonares, e melhoram a cinemática da deglutição e a capacidade do indivíduo em gerar pressões positivas na expiração [8-9]. Como se pode observar, a qualidade da execução de manobras de auxílio à tosse, o fortalecimento muscular dos músculos do sistema respiratório (FMSR) e o aumento da CI são decisivos no tratamento de pacientes com DNM, exercendo um impacto direto sobre a expectativa e a qualidade de vida de tais pacientes. Considerando a carência de estudos relativos à qualidade das manobras de fisioterapia respiratória [8,10], este texto propõe um experimento de bancada realizado em um simulador de pulmão realístico, capaz de reproduzir as condições respiratórias encontradas em um paciente com DNM. Avalia-se qualitativa e quantitativamente, dentre outros fatores, as pressões de via aérea e intrapulmonar. Metodologia Propõe-se inicialmente um modelo concentrado e reduzido de aparelho respiratório a fim de explicar e ilustrar o que acontece durante o exercício respiratório, o qual busca explorar a Capacidade Inspiratória Máxima (CIM). O modelo proposto é apresentado na Figura 1, com a supressão das válvulas direcionais de entrada e saída da bolsa auto-insuflável. O vazamento e as válvulas de segurança e de PEEP liberam os gases para a atmosfera. Durante o decorrer deste texto, o termo Pressão de Via Aérea corresponde à medida da pressão antes da resistência de via aérea, e o termo Pressão Intrapulmonar corresponde ao valor da pressão logo após esta resistência. Vent-Logos/i9lab 18-abr-2017 3

Figura 1. Modelo reduzido do sistema respiratório durante o exercício estudado. Simulador de Pulmão O simulador de pulmão utilizado durante o experimento é o PMG3000, fabricado pela IngMar Medical (EUA) e mostrado na Figura 2 nas três configurações de equipamento utilizadas nos testes. Os seguintes links são úteis para descrever o simulador utilizado: Manual técnico: http://www.ingmarmed.com/wp-content/uploads/2015/01/pmg- FloTrak-Elite_impositioned.pdf Site do fabricante: http://www.ingmarmed.com/products/adultpediatric-demo-lung/ Em uma rápida descrição, este simulador permite os seguintes ajustes: complacência pulmonar de 40, 30, 20 ml/cmh 2O ou hiperdistensão; resistência inspiratória em 3 diferentes níveis; vazamento do tubo endotraqueal ou da máscara em 3 diferentes níveis; vazamento dentro do pulmão em 3 diferentes níveis; seletividade no entubamento ou redução do volume total do pulmão (simulador de pulmão infantil). Outra importante característica deste simulador é que ele permite a leitura das pressões de via aérea e intrapulmonar separadamente, fato este que não está presente na grande gama de manequins destinados ao treinamento de RCP ou até mesmo de ventilação mecânica. Ademais, os simuladores de pulmão destes manequins não refletem as características de um pulmão humano. Durante os testes, o simulador foi ajustado da seguinte forma: complacência pulmonar igual a 30 ml/cmh 2O; resistência inspiratória média para os dois pulmões; vazamento do tubo endotraqueal ou da máscara médio; sem vazamento dentro do pulmão; e sem seletividade no entubamento. Vent-Logos/i9lab 18-abr-2017 4

Datalogger Para a aquisição das pressões de via aérea e intrapulmonar, foram utilizados dois equipamentos de aquisição de dados (datalogger) desenvolvidos pelo i9lab, configurados para uma taxa de amostragem de 400 Hz (amostras por segundo). As amostras de pressão coletadas são então pós-processadas em ambiente computacional. Os equipamentos foram devidamente calibrados utilizando uma coluna d água como referência (medidor primário) e possuem capacidade de medir pressões até 103 cmh 2O. (a) (b) (c) Figura 2. Simulador de Pulmão e equipamentos nas seguintes configurações: (a) bolsa auto-insuflável com válvula unidirecional tradicional; (b) bolsa auto-insuflável com uso da VUP; (c) VentFisio e VUP. Descritivo dos Cenários Foram estudados quatro diferentes cenários de ER com o objetivo de reproduzir um cenário realístico quando comparado à rotina de um fisioterapeuta. Cenário 1: Utilização da bolsa auto-insuflável com a válvula sem reinalação tradicional e válvula de segurança aberta. Modelo de sistema apresentado na Figura 1 (sem PEEP) e montagem apresentada na Figura 2(a). Cenário 2: Utilização da bolsa auto-insuflável com a válvula sem reinalação tradicional e válvula de segurança fechada. Modelo de sistema apresentado na Figura 1 (sem a válvula de segurança e sem PEEP) e montagem apresentada na Figura 2(a). Vent-Logos/i9lab 18-abr-2017 5

Cenário 3: Utilização da bolsa auto-insuflável com a VUP (Válvula Unidirecional com PEEP, da Vent-Logos). Modelo de sistema apresentado na Figura 1 (com todas as válvulas em um só corpo) e montagem apresentada na Figura 2(b). Cenário 4: Utilização do VentFisio com a VUP (ambos da Vent-Logos). Modelo de sistema apresentado na Figura 3 e montagem apresentada na Figura 2(c). Para os cenários que utilizam uma bolsa auto-insuflável, 8 compressões foram realizadas de forma rápida e ritmada, enchendo as bolsas do simulador de pulmão. Após um breve período de tempo, as compressões foram repetidas, concluindo dois ciclos de ER. Para o Cenário 4, envolvendo o VentFisio, substitui-se os ciclos de compressão ritmados por um longo ciclo inspiratório com fluxo constante. Tal ciclo é realizado pressionando um botão na lateral deste ventilador. Figura 3. Modelo do sistema respiratório para a utilização do VentFisio. Em condições normais, a exaustão do ar é realizada no Venturi do VentFisio ou pela válvula de exaustão da válvula de PEEP. Resultados Os resultados para os quatro cenários são apresentados a seguir. Cenário 1 Conforme descrito na seção anterior, 8 compressões ritmadas foram executadas em duas baterias. O resultado é apresentado na Figura 4. Observou-se picos na pressão de via aérea acima de 100 cmh 2O, no entanto, a pressão intrapulmonar alcançou um nível muito menor, próximo a 40 cmh 2O. Alguns picos de pressão observados superaram a capacidade de aferir a pressão do equipamento utilizado. Vent-Logos/i9lab 18-abr-2017 6

Cenário 2 Figura 4. Resultado do Cenário 1. De forma semelhante ao cenário anterior, 8 compressões ritmadas e rápidas foram realizadas, porém, com a válvula de segurança da bolsa fechada. O resultado é exibido na Figura 5. As pressões de via aérea foram superiores a 100 cmh 2O em todos os ciclos da primeira bateria, chegando a danificar, de maneira temporária, o manômetro analógico do simulador de pulmão utilizado. Cenário 3 Substituindo a válvula tradicional pela VUP (Válvula Unidirecional com PEEP, da Vent-Logos), ajustada com PEEP de 15 cmh 2O, 8 insuflações foram realizadas, repetindo o procedimento dos cenários anteriores. O resultado é observado na Figura 6. Observa-se uma pressão de via aérea inferior ao que se observou nos cenários anteriores, no entanto, a pressão intrapulmonar é equivalente ao que foi previamente observado. Após o final do ciclo, a PEEP é vagarosamente perdida por conta do vazamento (ou simulação de vazamento nível médio) entre a máscara e o paciente. Vent-Logos/i9lab 18-abr-2017 7

Figura 5. Resultado do Cenário 2. Figura 6. Resultado do Cenário 3. Cenário 4 Diferente dos cenários anteriores, o ventilador VentFisio foi utilizado, dispensando as compressões ritmadas por um único ciclo de fluxo constante. O resultado é apresentado na Figura 7. Vent-Logos/i9lab 18-abr-2017 8

Neste cenário, há uma descompressão forçada do paciente, assim como seria realizado durante uma manobra fisioterápica. Observa-se também que a PEEP se mantém, mesmo com a expiração forçada do suposto paciente. Com o final da capacidade pulmonar do mesmo e devido ao vazamento simulado, a PEEP é reduzida vagarosamente, assim como no Cenário 3. Figura 7. Resultado do Cenário 4. Conclusão O modelo de sistema respiratório do paciente em todos os cenários é representado por um sistema/filtro passa-baixa. Resumidamente, as compressões ritmadas e em alta frequência, características dos Cenários 1, 2 e 3, são filtradas pelo sistema, fazendo com que os picos de pressão na via aérea não cheguem ao pulmão. Tal fato implica em perda da eficiência da manobra e, ao mesmo tempo, expõe o paciente a um grande desconforto devido à elevada pressão de via aérea. De forma oposta ao que acontece nos Cenários 1,2 e 3, no Cenário 4, devido ao fluxo constate, a pressão intrapulmonar acompanha a pressão de via aérea e a ação do filtro não ocorre devido ao fluxo constante gerado pelo ventilador. Mesmo reduzindo a pressão de via aérea do paciente, a pressão intrapulmonar se mantém em níveis comparáveis aos cenários anteriores. Isso gera um maior conforto ao paciente enquanto mantém a qualidade da manobra no exercício de fisioterapia respiratória. Conclui-se, portanto, que o incremento da pressão de via aérea não se reflete diretamente em incremento de pressões pulmonares e, por consequência, em expansão pulmonar. A literatura ressalta que, tradicionalmente, é solicitado ao paciente para que ele feche a glote durante o intervalo entre as insuflações. Tal ação é de eficiência limitada, muitas vezes o Vent-Logos/i9lab 18-abr-2017 9

paciente não possui a coordenação motora necessária para realizar esta ação ou simplesmente não é mais capaz de controlar a glote por conta do avançado estágio da doença neuromuscular. Neste caso, equipamentos adicionais podem ser utilizados para substituir a ação da glote [6], o que encarece o sistema e aumenta a complexidade de sua montagem. A utilização de um fluxo contínuo é eficaz mesmo em paciente com problemas de coordenação ou controle da glote, dispensando também o uso de válvulas que substituem a sua ação. Referências [1] - Finder JD, Birnkrant D, Carl J, Farber HJ, Gozal D, Iannaccone ST, et al. Respiratory care of the patient with Duchenne muscular dystrophy: ATS consensus statement. American Journal of Respiratory and Critical Care Medicine. 2004;170(4):456-65. [2] - Brito MF, Moreira GA, Hallinan MP, Tufik S. Empilhamento de ar e compressão torácica aumentam o pico de fluxo da tosse em pacientes com distrofia muscular de Duchenne. J Bras Pneumologia. 2009;35(10):973-9. [3] - Kang SW, Bach JR. Maximum insufflation capacity. Chest. 2000; Volume 118. Páginas 61-65. http://www.sciencedirect.com/science/article/pii/s0012369215390036 [4] - Yang R., Huang R., Chen D., Song W., Zeng Y., Zhao B., Zhou D., Shang H.F.. Causes and places of death of patients with amyotrophic lateral sclerosis in south-west China. Amyotroph Lateral Scler 2011;12:206 209. [5] - Spataro R., Lo R. M., Piccoli T., Piccoli F., La Bella V. Causes and place of death in Italian patients with amyotrophic lateral sclerosis. Acta Neurol Scand. 2010;122:217 23. [6] - Carpenter R.J., McDonald T.J., Howard F.M.Jr. The Otolaryngologic Presentation of Amyotrophic Lateral Sclerosis. Otolaryngology 1978; 86:479 484. [7] - Chen A, Garrett CG. Otolaryngologic Presentations of Amyotrophic Lateral Sclerosis. Otolaryngol Head Neck Surg 2005;132:500 504. [8] - Plowman E. K., Watts S. A., Tabor L., Robison R., Gaziano J., Domer A. S., Richter J.,Vu T., Gooch C.. Impact of Expiratory Strength Training in Amyotrophic Lateral Sclerosis. MUSCLE & NERVE, 2015. DOI 10.1002/mus.24990. [9] - Pitts T., Bolser D., Rosenbek J., Troche M., Okun M. S., Sapienza C.. Impact of Expiratory Muscle Strength Training on Voluntary Cough and Swallow Function in Parkinson Disease. Chest Journal, 2009. [10] - de Lima FM, de Souza MA, Marins NB, Sampaio VR, Gardenghi G. O efeito da técnica de air stacking em pacientes portadores de doenças neuromusculares. Revista Eletrônica de Saúde e Ciência, 2014, Volume 4, Número 2, Páginas 20-28. [11] - Choi WA, Park JH, Kang SW. Cough assistance device for patients with glotis dysfunction and/or tracheostomy. J rehabil Med. 2012;44:351-4. Vent-Logos/i9lab 18-abr-2017 10