V SBQEE. Seminário Brasileiro sobre Qualidade da Energia Elétrica 17 a 20 de Agosto de 2003 Aracaju Sergipe Brasil

Documentos relacionados
Diagrama de Impedâncias e Matriz de Admitância de um Sistema Elétrico

1 Circuitos Pneumáticos

IFRN - Campus Parnamirim Curso de eletricidade turma de redes de Computadores Figura 35 Relé eletromecânico

1-Eletricidade básica

MODELAGEM DE UM CONVERSOR ESTÁTICO PARA APLICAÇÃO EM REDES DE DISTRIBUIÇÃO MONOFÁSICA 1

MANUAL DE INSTRUÇÕES

UNIVERSIDADE CEUMA COORDENAÇÃO DE ENGENHARIA CIVIL CAMPUS ANIL / RENASCENÇA. Professor Leonardo Gonsioroski

CATALOGO TÉCNICO DE PAINÉIS ELÉTRICOS

2. Critério do limite da queda de tensão (qualquer carga):

Índice. N.Documento: Categoria: Versão: Aprovado por: Data Publicação: Página: Instrução 1.1 Ronaldo Antônio Roncolatto 03/07/ de 13

MEMORIAL DESCRITIVO ELÉTRICO. COREN Subseção de Floriano

Estudo de Coordenação e Seletividade

Física Experimental III

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA. Autotransformadores

Sistemas Ininterruptos de Energia

Aluno: Disciplina: FÍSICA. Data: ELETROSTÁTICA

VACUTAP VM VERSATILIDADE E GARANTIA DE FUTURO IMBATÍVEIS. TRANSFORMER CONTROL

MODELAGEM MATEMÁTICA DE UM SISTEMA DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA EM MÉDIA TENSÃO 1. Gabriel Attuati 2, Paulo Sausen 3.

Aula 6 Corrente Alternada e Corrente Contínua

Subestação. Conceito:

MANUAL DE INSTRUÇÕES DO MILIOHMÍMETRO MODELO MO-1200

電 動 車 輛 充 電 設 施 安 全 技 術 指 引

7. A importância do aterramento na Qualidade da Energia.

MODELAGEM A VAZIO DO SISTEMA TESTE DE DISTRIBUIÇÃO DE 34 NÓS IEEE PELO SOFTWARE SIMULINK EM AMBIENTE MATLAB

ENERGIA EM SUA CASA CONHEÇA AS NORMAS E FAÇA UMA INSTALAÇÃO CORRETA E 100% SEGURA.

0.1 Introdução Conceitos básicos

APLICAÇÃO DE PLACAS IDENTIFICADORAS PARA EQUIPAMENTOS DA REDE AÉREA DE DISTRIBUIÇÃO

Esquemas de ligação à Terra em baixa tensão

Disciplina: Eletrificação Rural

QUESTÃO 44 DA UFPE

Disciplina: Eletrificação Rural. Unidade 2 Conceitos básicos de eletricidade voltados às instalações elétricas.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA PLANO DE ENSINO PERÍODO LETIVO: 2008/2

Fundamentos De Hardware

Sistema Trifásico Prof. Ms. Getúlio Teruo Tateoki

Gráfico da tensão em função da intensidade da corrente elétrica.

Guia de instalação VIP S4120

MODELOS INTUITIVOS DE VIGAS VIERENDEEL PARA O ESTUDO DO DESEMPENHO ESTRUTURAL QUANDO SUJEITAS A APLICAÇÃO DE CARREGAMENTOS

SINAPSE MICROELETRONICA LTDA.

LIMITAÇÕES DAS DISTORÇÕES HARMÔNICAS EM INSTALAÇÕES ELÉTRICAS RURAIS

Módulo 8 Entradas Digitais 24 Vdc Monitorado. Os seguintes produtos devem ser adquiridos separadamente para possibilitar a utilização do produto:

VIP X1600 XFM4 VIP-X1600-XFM4A/VIP-X1600-XFM4B. Guia de instalação rápida

STV 8 SET uma polaridade de sincronismo negativa, com os pulsos de sincronismo na posição para baixo, como mostrado na figura abaixo

Transformadores Trifásicos

SÓ ABRA QUANDO AUTORIZADO.

ISEL. Mini-hídrica da Mesa do Galo. Relatório de Visita de Estudo. 3 Junho Secção de Sistemas de Energia

Comandos de Eletropneumática Exercícios Comentados para Elaboração, Montagem e Ensaios

Tecnologia da Construção Civil - I Locação de Obra e Serviços em Terra. Roberto Monteiro

AULA 03 MEDIDAS DE RESISTÊNCIA ELÉTICA

Box POE / Patch Panel POE

SOLICITAÇÕES IMPOSTAS EM DISJUNTORES DE ALTA TENSÃO INSTALADOS PRÓXIMOS A USINAS GERADORAS

Instalações Elétricas de BT. Odailson Cavalcante de Oliveira

INDUÇÃO ELECTROMAGNÉTICA ORIGINADA PELAS LINHAS ELÉCTRICAS E MINIMIZAÇÃO DOS EFEITOS SOBRE AS ESTRUTURAS CONDUTORAS VIZINHAS

Modem ADSL 2+ Modelo GKM Parabéns, você acaba de adquirir um produto com a qualidade e segurança Intelbras.

Melhorando a qualidade de energia elétrica para o sistema de sinalização metroferroviário

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DA PARAÍBA TEMA DA AULA

Aula 5 Projetos elétricos

BluePrinter Manual do Usuário

Instalações Elétricas de BT I. Odailson Cavalcante de Oliveira

MANUAL DO USUÁRIO MP4 PLAYER

CENTRAIS ELÉTRICAS DE RONDÔNIA S.A. CERON PREGÃO MINISTÉRIO DE MINAS E ENERGIA ANEXO XIII DO EDITAL

Edição Data Alterações em relação à edição anterior. 4ª 03/07/2009 Alteração do critério de aplicação e nos desenhos do ANEXO I.

ESPECIFICAÇÃO TÉCNICA PARA BARREIRAS RIGIDAS EM CONCRETO ARMADO

Montagem & Manutenção Oficina de Informática GABINETE. O mercado disponibiliza os seguintes modelos de gabinete para integração de PC s:

Rodovia SC 303, km 05 Bairro Campo Experimental Videira/SC Fone (49)

CRITÉRIOS BÁSICOS DE PROJETO PARA OS SISTEMAS DE SERVIÇOS AUXILIARES EM CORRENTE ALTERNADA E CORRENTE CONTÍNUA

Equivalentes de Thévenin e Norton

2.0 O PROJETO DE LAJES PROTENDIDAS - SÍNTESE

REQUISITOS MÍNIMOS PARA INSTALAÇÃO DE MEDIÇÃO EM GRUPO GERADOR PARA ATENDER A RESOLUÇÃO NORMATIVA ANEEL N 690 DE 8 DE DEZEMBRO DE 2015

Clube Automovel de Lousada REGULAMENTO TÉCNICO. II Edição TROFÉU DE RESISTENCIAS CLUBE AUTOMOVEL DE LOUSADA

DESCRIÇÃO PARA IMPLEMENTAÇÃO DA INFRA-ESTRUTURA DAS IVZ s

PLANILHA DE NIVELAMENTO

Modulação. Modulação e Codificação. Modulação. Modulação. Técnicas de Modulação

LINEAR-HCS RUA SÃO JORGE, TELEFONE: Revisado em 24/10/2006 SÃO CAETANO DO SUL - SP - CEP:

-ESTRUTURA VIÁRIA TT048 SUPERELEVAÇÃO

Modelagem simultânea do óptico e raios X de CP Tuc

Cálculo do Acidente Postulado de Perda de Refrigerante por uma Ruptura na Linha de Surto do Pressurizador da Central Nuclear Angra 2

Índice. tabela das versões do documento. GPOP - Gerenciador POP _ /01/2016 1/14. título: GPOP. assunto: Manual de utilização

16/Nov/2012 Aula Circuitos RL (CC). Corrente alternada 16.1 Circuitos RL em corrente

FONTE DE ALTA TENSÃO Hipot 60KV CC-5mA

ENERGIA SOLAR EDP AGORA MAIS DO QUE NUNCA, O SOL QUANDO NASCE É PARA TODOS MANUAL DO UTILIZADOR

Edição Data Alterações em relação à edição anterior. Nome dos grupos

TRAVESSIA AÉREA Informações para Apresentação de Projeto Revisão 26/06/12

Instituto Superior Técnico

Suporte Técnico Web Energy

UNESP - Faculdade de Engenharia de Guaratinguetá 1

FÍSICA EXPERIMENTAL 3001

Obtenção Experimental de Modelos Matemáticos Através da Reposta ao Degrau

Capítulo II. Elementos de Circuitos

Guia de Instalação. Driver Gráfico de Impressão for WINDOWS

Sobre Sisteme de Iluminação de Emergência

Manual das Biseladoras Externas ISD/ ISF/ SKD/ HYD

CONHECIMENTOS ESPECÍFICOS

Lista de exercícios Linhas de transmissão

Área de Distribuição e Comercialização Identificação do Trabalho: BR-53 São Paulo, Brasil, Setembro de 2002

Instruções de segurança VEGAPULS PS61.D****D/H/K/ L/P/F/G/M/B/I****

G.P.A.A. AEAMESP AGOSTO 2007

Chave Fusível Religadora Tipo MR

Universidade Federal de Pernambuco Mestrado em Ciência da Computação

Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Pato Branco Departamento de Projetos e Obras MEMORIAL DESCRITIVO

Resolução Comentada Fuvest - 1ª fase 2014

Transcrição:

V SBQEE Seminário Brasileiro sobre Qualidade da Energia Elétrica 17 a 2 de Agosto de 23 Aracaju Sergipe Brasil Código: AJU 4 115 Tópico: Análise, Diagnósticos e Soluções ANÁLISE DA INFLUÊNCIA DO ATERRAMENTO DOS DISPOSITIVOS DE ALTA TENSÃO SOBRE O ATERRAMENTO DO NEUTRO DO TRANSFORMADOR DE DISTRIBUIÇÃO: ESTUDO DE CASO Prof. D.Sc. José Tavares de Oliveira * Universidade Federal do Rio Grande do Norte RESUMO Nesse trabalho apresentaremos um estudo de transitórios eletromagnéticos em um alimentador de distribuição em 13,8 KV, para identificar as causas da energização do neutro de um transformador pela alta tensão e os danos causados aos equipamentos de um consumidor. Para efetuar esse estudo, foi utilizado o simulador digital ATP (Alternative Transient Program) na simulação de transitórios eletromagnéticos, ocasionados pelos chaveamentos de religador automático e pelos curtos-circuitos. Para a simulação no tempo, a SE foi modelada pela impedância de curto-circuito na SE, e os trechos da linha de transmissão, por um circuito PI equivalente. O consumidor foi modelado pela impedância de curto-circuito de seu transformador, pelo condutor que liga o transformador ao quadro geral e pelo condutor que liga o quadro geral ao quadro de distribuição. Os resultados obtidos da simulação e os valores registrados das correntes de curto-circuito do alimentador pela concessionária de energia elétrica,cosern,deram as condições necessárias para determinar as causas da energização do neutro do transformador pela alta tensão. PALAVRAS-CHAVES: Transitórios,Simulação,Transformador,Curto- Circuito,Religador. 1. INTRODUÇÃO O objetivo desse trabalho é fazer um estudo de transitório eletromagnético em um alimentador de distribuição de 13.kV a fim de identificar as possíveis causas da energização do neutro do transformador de um consumidor particular pela alta tensão, e verificar se eram justas as reclamações de danos causados a vários equipamentos [1],[2]. No dia 3/9/21, houve duas ocorrências envolvendo o alimentador, conforme informaram os engenheiros que atenderam às ocorrências: às 9:8 h, religamento do alimentador 1P2-RBA que atende ao consumidor atuando as proteções 551 ABC; às 9:1 h, desligamento automático do alimentador 1P2-RBA e desligamento da chave seccionalizadora telecomandada localizada a jusante do consumidor. O religador 1P2-RBA foi normalizado às 9:12 h e o seccionalizador às 9:32. Após a normalização, foi identificado um pára-raios danificado em um transformador localizado a jusante da chave seccionalizadora. Na primeira ocorrência em que houve o religamento automático do alimentador, às 9:8 h, foi registrada uma corrente de 3.265 A na chave seccionalizadora telecomandada, devido a um curto-circuito nas instalações de alta tensão em uma unidade da UFRN, energizada pelo mesmo alimentador. Na segunda ocorrência, houve o desligamento automático do alimentador e da chave seccionalizadora telecomandada às 9:1 h. Há também um registro na chave * CT - DEE - UFRN - Campus Universitário - CEP 5978-9 - Natal - RN - BRASIL Tel.: +55 (84) 215-3731 - FAX: +55 (84) 215-3731 - E-mail: jtavares@ct.ufrn.br

292 seccionalizadora de uma corrente de curtocircuito de 595 A. No período das 9:8 h às 9:12 h, o cliente que denominaremos de N.H, telefonou para o teleatendimento, reclamando de falta de energia. Às 9:3 h, o mesmo cliente telefonou novamente reclamando que suas cargas não estavam energizadas. Mas, como a chave seccionalizadora continuava fora de serviço, foi dada a informação de que havia falta de energia na área. Às 12:1 h, o teleatendimento recebeu outra reclamação do cliente N.H comunicando que as chaves fusíveis de seu transformador haviam atuado. Imediatamente, uma equipe da COSERN se dirigiu até o cliente onde constatou que o suporte de uma das chaves fusível estava danificado com cartucho e fusível queimado e as outras com os fusíveis queimados, o que caracterizava um curto-circuito interno nas instalações do consumidor. 2. CONSIDERAÇÕES BÁSICAS Para executar um estudo mais aprofundado, com o objetivo de reproduzir, através de simulação em computador digital, o que realmente ocorreu naquela ocasião, foi necessário fazer uma vistoria e medições de parâmetros nas instalações do cliente N.H, no alimentador da COSERN e na unidade da UFRN. 2.1 Vistoria e Medições Através de uma vistoria e de medições efetuadas nas instalações do consumidor constatou-se que: 1. O transformador do N.H está instalado em um poste com resistência de terra de 6 ohms; 2. A resistência de terra das instalações elétricas é de 11,72 ohms; 3. Os aterramentos são separados 4. Há interruptores de corrente de fuga no quadro de distribuição; 5. A resistência de aterramento da chave seccionalizadora é de 14, ohms 6. A resistência de terra da unidade da UFRN é de 26,2 ohms; 7. Os pára-raios da unidade da UFRN haviam atuado. Alimentador Impedância de curto-circuito na SE Z 1 =,5637241+ j1,24319232 ohms Z = j,87697662 ohms Fonte equivalente na SE; tensão máxima fase-terra de 11.267 volts Os trechos da linha de distribuição de 13.8 kv foram modelados por um PI equivalente, considerando: resistência, indutância e capacitância. O solo com resistividade média de 1. ohms.m. Os condutores foram colocados com espaçamento assimétrico na horizontal. O religador fecha eletricamente os contatos nos tempos (t 1 =s, t 2 =,555s e t 3 =,111s) e (t 1 =s, t 2 =,555s e t 3 =,286s). As cargas dos consumidores refletidas no lado de 13.8 kv. Os transformadores são considerados lineares. Resistência de curto-circuito envolvendo pára-raios de 3, ohms. Resistência de curto-circuito fase terra de 26, ohms. Cliente N.H Transformador trifásico 13.8/38/22 volts de 225 kva. Impedância de curto-circuito de 4,48%. Distância de 3m do transformador até o quadro geral. Condutores de 24mm 2. Distância de 2m do quadro geral ao quadro de distribuição. Condutores de 12mm 2. 3. - DESENVOLVIMENTO Para reproduzir as ocorrências registradas foi necessário um estudo mais aprofundado, por simulação, em regime transitório. Para isso, foi utilizado o programa de computador digital ATP [4]. Esse programa simula, no domínio do tempo, uma rede elétrica constituída de linhas de transmissão, transformadores, cargas elétricas, entrada e saída de disjuntores em tempos definidos e calcula a tensão e a corrente no local desejado. Na simulação, foi elaborada uma seqüência de condições operacionais no alimentador e nas instalações do cliente N.H, com a finalidade de 2.2 Modelagem Para a simulação no domínio do tempo, o alimentador da COSERN e o cliente N.H foram modelados conforme abaixo:

293 25.. 18.75 12.5 6.25. -6.25 Figura 1 - Diagrama unifilar simplificado da rede COSERN/N.H. -SE/RBA -- Subestação Ribeira -RA -- Religador automático -1P2 -- Alimentador - N.H -- Cliente -QG -- Quadro geral -QD --Quadro de distribuição -CS -- Chave seccionalizadora -UFRN --Unidade da UFRN -CONT --Continuação do alimentador quantificar a amplitude das grandezas produzidas pelas ocorrências registradas. Para isso, utilizaremos um diagrama unifilar simplificado do circuito elétrico envolvido. 4. - RESULTADOS Na simulação, foi executado um conjunto de operações no religador, para a energização do alimentador nos tempos e ocorrências a seguir: 1. Energização do RA nos tempos (t 1 =s, t 2 =,555s e t 3 =,111s) 2. Curto-circuito trifásico na unidade da UFRN. Os resultados dessa simulação estão nos gráficos das Figuras 2 e 3. 3. Energização do alimentador com um curtocircuito fase-terra na unidade da UFRN, seguido de curto-circuito trifásico no quadro de distribuição do cliente N.H. Os resultados dessa simulação estão nos gráficos das Figuras 4 e 5. 4. Energização do RA nos tempos (t 1 =s, t 2 =,555s e t 3 =,286s) 5. Energização do alimentador em condições normais de operação seguido de um curtocircuito na fase b, no lado de alta tensão, envolvendo o neutro do transformador com resistência de terra de 6 ohms, no cliente N.H. O resultado dessa simulação está no gráfico da Figura 6. 6. Idem com resistência de terra de 1 ohms. O resultado dessa simulação está no gráfico da Figura 7-12.5-18.75-25. (file Rba.pl4; x-var v:a133a t) v:a133b v:a133c Figura 2 - Comportamento da tensão no lado de alta tensão do transformador do N.H para um curto-circuito trifásico na unidade da UFRN. (t 1 =s, t 2 =,555s e t 3 =,111s). 3 [A] 2 1-1 -2-3 (file Rba.pl4; x-var c:j13a t) -C29A c:j13b -C29B c:j13c -C29C 7 [A] 525 35 175-175 -35-525 Figura 3 - Comportamento da corrente na chave seccionalizadora telecomandada para um curto-circuito trifásico na unidade da UFRN. (t 1 =s, t 2 =,555s e t 3 =,111s). -7 (file Rba.pl4; x-var c:j13a t) -X31A c:j13b -X31B c:j13c -X31C Figura 4 - Comportamento da corrente na chave seccionalizadora telecomandada para uma energização do alimentador com um curto-circuito fase-terra na unidade da UFRN. (t 1 =s, t 2 =,555s e t 3 =,111s).

294 3 2 1-1 -2-3 (file Rba.pl4; x-var v:x135a t) v:x135b v:x135c Figura 5 - Comportamento da tensão no lado de alta tensão do transformador do N.H para uma energização do alimentador com um curto-circuito fase-terra na unidade da UFRN. (t 1 =s, t 2 =,555s e t 3 =,111s). 15 1 5-5 -1-15 (file Rba.pl4; x-var v:xx323 t) Figura 6 - Comportamento da tensão no neutro do transformador do N.H quando há rompimento do isolamento do suporte do porta fusível. Energização do alimentador em condições normais de operação seguido de um curto-circuito na fase b, no lado de alta tensão. Resistência de terra de 6 ohms. (t 1 =s, t 2 =,555s e t 3 =,286s). 12 8 Figura 8 - Foto das chaves A e B no transformador do N.H. 5. - ANÁLISE DOS RESULTADOS As simulações efetuadas no alimentador 1P2- RBA no sentido de reproduzirem as ocorrências do dia 3/9/21 mostraram, pelos valores das grandezas calculadas nos pontos desejados, que houve concordância com os valores registrados nos equipamentos da COSERN, como mostram os gráficos das Figuras 3 e 4. No gráfico da Figura 2, pode-se observar que, quando ocorre um curto-circuito na unidade da UFRN, não são produzidas sobretensões no consumidor N.H. Entretanto, quando há energização do alimentador na condição de curto-circuito faseterra na unidade da UFRN, simultaneamente com um curto-circuito trifásico no QD do N.H, a tensão fase-terra máxima na alta tensão da fase b, é de 28.345 V no consumidor N.H, como mostra o gráfico da Figura 5. Esse valor de tensão é aceitável para o isolamento de 15 kv com NBI de 95 kv. Nos gráficos das Figuras 6 e 7, temos os valores da tensão no neutro do transformador de 14.644 V e de 11.5 V para resistências de aterramento de 6 ohms e de 1 ohms, respectivamente, quando há o rompimento do suporte da chave fusível da fase b. Portanto, o neutro fica energizado com alta Tensão. 6 - AGRADECIMENTOS 4-4 -8 Este trabalho foi financiado pelo Programa de Pesquisa & Desenvolvimento da COSERN". Projeto "Transitórios Eletromagnéticos em Redes de Distribuição de Energia Elétrica: Ênfase à Qualidade da Energia Elétrica" em convênio a Universidade Federal do Rio Grande do Norte. -12 (file Rba.pl4; x-var t) v:xx323 Figura 7 - Idem. Energização do alimentador em condições normais de operação seguido de um curto-circuito na fase b, no lado de alta tensão. Resistência de terra de 1 ohms. (t 1 =s, t 2 =,555s e t 3 =,286s). 7. - CONCLUSÕES Constata-se pelos valores obtidos na simulação e os valores registrados na CS que, na primeira ocorrência, houve um curto-circuito trifásico na unidade da UFRN, envolvendo o lado de alta

295 tensão do transformador e, posteriormente, na segunda ocorrência, houve um curto-circuito trifásico no QD do N.H simultaneamente com um curto-circuito fase-terra na unidade da UFRN. A razão para a afirmação dos tipos de curto-circuito é a concordância dos valores das correntes obtidas na simulação com os valores registrados na CS. Quanto ao dano do isolador da chave fusível, presume-se que foi por um curto-circuito faseterra na alta tensão envolvendo a fase b, causado pela diminuição da resistência de isolamento devido a danos mecânicos ou pela diminuição da resistência de isolamento, provocada pela salinidade local e rompida por sobretensão transitória, limitada ao valor da tensão de referência do pára-raios. Seja qual foi o motivo do rompimento do isolamento, o curto-circuito envolveu o condutor do neutro do transformador por se encontrar conectado à ferragem da chave fusível, através do condutor de aterramento dos pára-raios, como mostra a foto da Figura 8. Dessa forma, o neutro do transformador ficou energizado com a tensão correspondente à fase b, cujo valor pode ser observado no gráfico da Figura 6. Assim sendo, a energização do neutro do transformador com alta tensão provocou o rompimento do isolamento entre o neutro e o terra dos equipamentos aterrados, o rompimento do isolamento entre o condutor neutro do circuito e um ponto da terra ou a ocorrência dos dois simultaneamente. Dessa forma, foram provocados danos nos equipamentos elétricos ligados a rede elétrica energizado com alta tensão na ocasião do defeito. Esses danos poderiam ter sido evitados se o aterramento do neutro do transformador fosse separado do aterramento dos dispositivos de alta tensão. 8 REFERÊNCIAS BIBLIOGRÁFICAS [1] J. T. Oliveira, Relatório Técnico: Estudo de Transitórios Eletromagnéticos no Alimentador 1P2- RBA da COSERN-Danos em Equipamentos,. COSERN/DEE/UFRN. Nov/21. [2] J. T. Oliveira, Analysis of the Influence of Grounding Device of High Voltage on the Neutral of the Transformer of Distribution: A Case Study. Ground 22. International Conference on Grounding and Earthing. November 4-7,22. Rio de Janeiro- Brazil. Pp. 297-3. [3] J. T. Oliveira, Apostila de Análise de Sistemas de Potência, UFRN, Natal-RN, 1998. [4] Documentação sobre o simulador digital ATP (Alternative Transients Program). http://www.ee.mtu.edu/pub/atp. [5] Matrinez Velasco, Computer Analysis of Electric Power System Transients, Select Readings. IEEE 1997.