O mais simples dos defeitos pontuais é a lacuna. Posição atômica na qual falta um átomo; Todo sólido cristalino contém lacunas; Aumento da entropia.

Documentos relacionados
4- IMPERFEIÇÕES CRISTALINAS

Introdução aos Materiais Imperfeições em Sólidos Metais DEMEC TM229 Prof Adriano Scheid

IMPERFEIÇÕES EM SÓLIDOS. Bento Gonçalves, 2014.

DEFEITOS CRISTALINOS

AULA 04 IMPERFEIÇÕES CRISTALINAS Capítulo 04

ESTADOS EXCITADOS: fonões, electrões livres

Aula 5. Defeitos cristalinos

DEFEITOS CRISTALINOS. Conceitos Gerais

Aula 7: Cristais 0,0,1 1/2,1/2,1/2 0,0,0 0,1/2,0 0,1,0 1/2,1/2,0 1,0,0. Aula 7 - Profa. Adélia

Ligações químicas e estrutura dos materiais

ESTRUTURA DOS SÓLIDOS CRISTALINOS. Mestranda: Marindia Decol

Fundamentos de Ciência e Engenharia de Materiais. DEFEITOS CRISTALINOS Prof. Dr. André Paulo Tschiptschin

IMPERFEIÇÕES EM SÓLIDOS

Centro Universitário da Fundação Educacional de Barretos. Princípio de Ciências dos Materiais Prof.: Luciano H. de Almeida

APONTAMENTOS PRIMEIRA PROVA DE MATERIAIS DE CONSTRUÇÃO I

Materiais e sua propriedades Aula 5

Defeitos cristalinos. (monocristais) Ponto. Superfície

Física dos Materiais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais UNIDADE 6 DEFEITOS DO SÓLIDO CRISTALINO

Estrutura de Sólidos Cristalinos. Profa. Dra Daniela Becker

Universidade Estadual de Ponta Grossa PRÓ-REITORIA DE GRADUAÇÃO DIVISÃO DE ENSINO

ESTRUTURA CRISTALINA E IMPERFEIÇÕES NOS SÓLIDOS ESTRUTURA CRISTALINA E IMPERFEIÇÕES NOS SÓLIDOS

ESTRUTURA CRISTALINA E IMPERFEIÇÕES NOS SÓLIDOS ESTRUTURA CRISTALINA E IMPERFEIÇÕES NOS SÓLIDOS

MATERIAIS ELÉTRICOS - MEL

Ligação iônica Ligação covalente Ligação metálica

LISTA DE EXERCÍCIOS 6 1 (UNIDADE III INTRODUÇÃO À CIÊNCIA DOS MATERIAIS)

TM229 - Introdução aos Materiais

A6 Estrutura não cristalina imperfeição: defeitos lineares, planares e em volume

Principais Tipos de Ligações Químicas. Iônicas Covalentes Metálicas

Introdução à ciência e engenharia dos materiais e classificação dos materiais. Profa. Daniela Becker

Estrutura atômica e ligação interatômica. Profa. Daniela Becker

Programa de Pós-graduação em Ciência e Tecnologia de Materiais 2º semestre de Informações e instruções para a resolução da prova

UNIDADE 6 Defeitos do Sólido Cristalino

Sugestões de estudo para a P1

Programa de Pós-graduação em Ciência e Tecnologia de Materiais 1º semestre de Informações e instruções para a resolução da prova

Programa de Pós-graduação em Ciência e Tecnologia de Materiais 1º semestre de Informações e instruções para a resolução da prova

10 testes - GABARITO. Estrutura Atômica e Ligação Interatômica

CTM P OBS: Esta prova contém 7 páginas e 6 questões. Verifique antes de começar. VOCÊ DEVE ESCOLHER APENAS 5 QUESTÕES PARA RESOLVER.

Estruturas dos Materiais

Universidade Estadual de Ponta Grossa Departamento de Engenharia de Materiais Disciplina: Ciência dos Materiais 1. Imperfeições nos sólidos

Professora: Daniela Becker Mestranda: Jéssica de Aguiar

Introdução a Engenharia e Ciência dos Materiais

Aula 02 (Revisão): Ligação Química e Estruturas Cristalinas

ESTRUTURA DOS SÓLIDOS CRISTALINOS CAP. 03 Parte II

DEFEITOS DO SÓLIDO CRISTALINO DIFUSÃO NO ESTADO SÓLIDO

TP064 - CIÊNCIA DOS MATERIAIS PARA EP. FABIANO OSCAR DROZDA

31/3/2006 CM I 1. Imperfeições em Arranjos Atômicos

Programa de Pós-graduação em Ciência e Tecnologia de Materiais 2º semestre de Informações e instruções para a resolução da prova

Defeitos em Cristais Iônicos. Prof Ubirajara Pereira Rodrigues Filho

Programa de Pós-graduação em Ciência e Tecnologia de Materiais 1º semestre de Informações e instruções para a resolução da prova

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS PRÓ-REITORIA DE GRADUAÇÃO

DIFUSÃO. Conceitos Gerais

MATERIAIS CERÂMICOS E POLIMÉRICOS

Estruturas cristalinas - Reticulado cristalino

ESTRUTURA DOS SÓLIDOS CRISTALINOS CAP. 03

A5 Estrutura nãocristalina. -imperfeição. Materiais são preparados com algum grau de impurezas químicas

ESTRUTURA DOS SÓLIDOS

30 Exercícios Resolvidos CAPÍTULO 3 ESTRUTURA CRISTALINA

Fundamentos de Ciência e Engenharia de Materiais Prof. Dr. André Paulo Tschiptschin

Universidade de Lisboa

Definição e Classificação dos Materiais

QUÍMICA DE MATERIAIS CRISTALINOS AMORFOS AULA 01: INTRODUÇÃO A QUÍMICA DOS MATERIAIS

Centro Universitário da Fundação Educacional de Barretos. Princípio de Ciências dos Materiais Prof.: Luciano H. de Almeida

Física dos Materiais FMT0502 ( )

Difusão em Sólidos TM229 - DEMEC Prof Adriano Scheid

PROGRAMA DE DISCIPLINA

Programa de Pós-graduação em Ciência e Tecnologia de Materiais 2º semestre de Informações e instruções para a resolução da prova

P1 de CTM Nome: Matrícula: Assinatura: Turma:

Difusão Prof. C. Brunetti

Produto amolecido. Produto moldado. moléculas

PROVA FINAL - PMT-5783 FUNDAMENTOS DE CIÊNCIA E ENGENHARIA DE MATERIAIS

6 - Microestrutura Fases

PMT Fundamentos de Ciência e Engenharia dos Materiais 2º semestre de 2014

Ciência dos Materiais. Difusão. Fabiano Thomazi

CORRECÇÃO do 1º Teste de Ciência de Materiais COTAÇÕES. Cotaçãoo

Ciências dos materiais- 232

FUNDAMENTOS DE CIÊNCIA DOS MATERIAIS LISTA DE EXERCÍCIOS CRISTAIS

COMPORTAMENTO MECÂNICO DOS MATERIAIS: DEFEITOS CRISTALINOS E DEFORMAÇÃO PLÁSTICA

Materiais e Reciclagem. 4 Estruturas Cristalinas com Defeitos

Aula 5: Propriedades e Ligação Química

Universidade Técnica de Lisboa

UNIVERSIDADE FEDERAL DO PARÁ - UFPA INSTITUTO DE TECNOLOGIA - ITEC FACULDADE DE ENGENHARIA MECÂNICA - FEM CURSO DE GRADUAÇÃO EM ENGENHARIA NAVAL

ARRANJOS ATÔMICOS. Química Aplicada. Profº Vitor de Almeida Silva

MOVIMENTO DE ÁTOMOS E IONS NOS MATERIAIS DIFUSÃO

28/09/2017. Ewaldo Luiz de Mattos Mehl. Departamento de Engenharia Elétrica

Ciência e Tecnologia de Materiais ENG1015

DEFEITOS CRISTALINOS E DEFORMAÇÃO PLÁSTICA

Prova escrita de: 2º Exame Final de Ciência de Materiais (Correcção) Nome:

Sólidos. Prof. Fernando R. Xavier

Física dos Materiais

Materiais de Engenharia Michel Ashby e David Jones Copyright Elsevier, 2018

A Dualidade Onda-Partícula

Materiais e Reciclagem. 4 Estruturas Cristalinas com Defeitos

UNIDADE 6 - VIBRAÇÕES ATÔMICAS E DIFUSÃO NO ESTADO SÓLIDO

Ciências dos materiais- 232

Aulas Multimídias Santa Cecília. Profº Tiago Quick

CONFIGURAÇÃO DOS GASES NOBRES ÁTOMOS ESTÁVEIS E ISOLADOS

DIAGRAMAS DE FASES DIAGRAMAS DE FASES

DIAGRAMAS DE FASES DIAGRAMAS DE FASES

Nome: Jeremias Christian Honorato Costa Disciplina: Materiais para Engenharia

Transcrição:

O mais simples dos defeitos pontuais é a lacuna Posição atômica na qual falta um átomo; Todo sólido cristalino contém lacunas; Aumento da entropia.

O número de lacunas em equilíbrio depende da temperatura N = nº total de sítios atômicos; Q = energia para formação de uma lacuna; T = temperatura em ºK; k = constante de Bolztman Número de lacunas aumenta exponencialmente em função da temperatura.

Átomo que se encontra comprimido em um sítio intersticial Ocorrem em quantidade significativamente menor que as lacunas

Presentes em todos metais máximo de 99,9999% de pureza Ligas átomos de impurezas intencionalmente adicionados para conferir características específicas Adição de átomos solução sólida

Átomos do soluto são adicionados no solvente sem formar uma nova estrutura Defeitos pontuais devido a presença de impurezas Substitucional Intersticial

Fator do tamanho atômico Pequena diferença entre os tamanhos atômicos Estrutura Cristalina Ambos metais devem ter a mesma estrutura cristalina Eletronegatividade Quanto maior a diferença maior a probabilidade de formar um composto metálico Valência Maior tendência de dissolver outro de maior valência

Materiais metálicos com fator de empacotamento alto tem posições intersticiais pequenas Diâmetro atômico da impureza intersticial tem que ser pequeno Quantidade inferior a 10% Átomos de impurezas geralmente são maiores que os vazios Induzem deformações

IMPUREZAS NAS CERÂMICAS CERÂMICAS DEFINIÇÃO: Cerâmicas são compostos entre elementos metálicos e não-metálicos: eles são muito frequentemente óxidos, nitretos e carbetos. A larga faixa de materiais que caem dentro desta classificação inclui cerâmicas que são compostas de minerais de argilas, cimento e vidro (CALLISTER, 2011); IMPUREZAS: Átomos de impureza podem formar soluções sólidas em materiais cerâmicos da mesma forma que em metais (CALLISTER, 2011); Essas soluções podem ser tanto substitucional quanto intersticial (CALLISTER, 2011);

IMPUREZAS NAS CERÂMICAS Intersticial: o raio iônico da impureza deve ser relativamente pequeno em comparação com o ânion (CALLISTER, 2011); Substitucional: Este tipo de solução sólida em materiais cerâmicos se dá quando há similaridade de carga entre os cátions e ânions da estrutura e as impurezas; ou seja, uma impureza substitucional irá substituir um íon hospedeiro que seja mais semelhante a ela no aspecto elétrico (CALLISTER, 2011) EXEMPLO: no cloreto de sódio, íons de impureza Ca 2+ e O 2-, eles provavelmente substituiriam os íons Na + e Cl -, respectivamente.

IMPUREZAS NAS CERÂMICAS Solubilidade sólida apreciável de impureza substitucional: o tamanho e a carga iônica da impureza devem ser muito próximos daqueles dos íons hospedeiros; Íon de impureza com carga diferente do hospedeiro: o cristal deve compensar para que a eletroneutralidade seja mantida. Um meio de realizar isto é pela formação de defeitos de rede - vacâncias ou intersticiais de ambos os tipos de íons (CALLISTER, 2011) EXEMPLO DE IMPUREZAS EM CERÂMICAS: Pequenas adições de íons de cobalto, cromo, cobre, manganês e ferro causam grandes mudanças de cor em vidros.

IMPUREZAS NAS CERÂMICAS Figura 01 Apresentações das formas de impurezas.

DEFEITO: É uma imperfeição ou um "erro" no arranjo periódico regular dos átomos em um cristal. Podem envolver uma irregularidade: na posição dos átomos; no tipo de átomos. O tipo e o número de defeitos dependem do material, do meio ambiente, e das circunstâncias sob as quais o cristal é processado.

DEFEITOS NOS POLÍMEROS DEFINIÇÃO: Polímeros são macromoléculas formadas a partir de unidades estruturais menores (monômeros - que é um pequeno segmento de uma cadeia, que consiste em moléculas de carbono e hidrogênio, entre outras.); São normalmente combinações de elementos orgânicos, como o Carbono, Hidrogênio além de outros materiais não metálicos.

DEFEITOS NOS POLÍMEROS DEFEITOS: Os defeitos nos polímeros são diferentes dos metais, isso devido as macromoléculas, e à natureza do estado cristalino polimérico (BERTUCCIO et. al, 2012). Defeitos são detectados em lacunas, átomos intersticiais, átomos/íons de impureza e grupos átomos/íons como intersticiais na região cristalina (BERTUCCIO et. al, 2012). Podem ser também: defeitos nas cadeias, cadeias pendentes ou soltas, assim como discordâncias (BERTUCCIO et. al, 2012).

DEFEITOS PLANOS OU INTERFACIAIS Envolvem fronteiras (defeitos em duas dimensões) e normalmente separam regiões dos materiais de diferentes estruturas cristalinas ou orientações cristalográficas. 1.Superfície externa; 2.Contorno de grão; 3.Maclas ou Twins; 4.Defeitos interfaciais diversos (empilhamento).

É um tipo de defeito pontual de uma estrutura de cristal; Envolve um par composto por uma lacuna catiônica e uma lacuna aniônica; É formado pela remoção de um cátion e de um ânion do interior do cristal, seguido pela colocação de ambos os íons em uma superfície externa;

Representações esquemáticas de lacunas catiônicas e aniônicas e de um cátion intersticial

É um tipo de defeito pontual de uma estrutura de cristal; Envolve um par composto por uma lacuna catiônica e uma cátion intersticial; É formado quando um cátion deixa seu lugar na estrutura, criando uma lacuna e ocupando um espaço intersticial; Também pode ser chamado de par de Frenkel ou desordem de Frenkel;

Diagrama esquemático mostrando defeitos de Frenkel e Schottky em sólidos iônicos

DEFEITO DE FRENKEL Sólidos iônicos com grande diferença de tamanho entre cátions e ânions; Exemplos: ZnS, AgCl, AgBr, Agl; DEFEITO DE SCHOTTKY Compostos altamente iônicos; Compostos altamente organizados; Compostos onde existe uma pequena diferença de tamanho entre cátions e ânions; Exemplos: NaCl, KCl, KBr, CsCl, AgCl.

DEFEITO DE FRENKEL Não afeta a densidade do sólidos pois envolve apenas a migração de íons dentro do cristal, então preservam tanto o volume quanto a massa; DEFEITO DE SCHOTTKY O número total de íons em um cristal com esse defeito é menor que o valor teórico de íons, então a densidade deste sólido é menor que o normal;

1.DEFEITOS NA SUPERFÍCIE EXTERNA Um dos contornos mais óbvios; Na superfície os átomos não estão completamente ligados; O estado de energia dos átomos na superfície é maior que no interior do cristal; Os materiais tendem a minimizar está energia A energia superficial é expressa em unidades de energia por unidade de área (erg/cm 2 ou J/m 2 ).

2.CONTORNO DE GRÃO Corresponde à região que separa dois ou mais cristais de orientação diferente; No interior de cada grão todos os átomos estão arranjados segundo um único modelo e única orientação, caracterizada pela célula unitária. Fonte: Costa E.M. IMPERFEIÇÕES CRISTALINAS Notas de aula - PUC-RS.

2.CONTORNO DE GRÃO Há um empacotamento ATÔMICO menos eficiente; Há uma energia mais elevada; Favorece a nucleação de novas fases (segregação); Favorece a difusão; O contorno de grão ancora o movimento das discordâncias.

CONTORNO DE PEQUENO ÂNGULO Ocorre quando a desorientação dos cristais é pequena; É formado pelo alinhamento de discordâncias Ângulo de desalinhamento Contorno de grão de alto ângulo Contorno de grão de baixo ângulo Ângulo de Fonte: Ciência e Engenharia de Materiais: uma introdução Callister, JR., William D., 1940.

3.MACLAS OU CRISTAIS GÊMEOS É um tipo especial de contorno de grão; Os átomos de um lado do contorno são imagens especulares dos átomos do outro lado do contorno; A macla ocorre num plano definido e numa direção específica, dependendo da estrutura cristalina. Fonte: Costa E.M. IMPERFEIÇÕES CRISTALINAS Notas de aula - PUC-RS.

3.MACLAS OU CRISTAIS GÊMEOS O seu aparecimento está geralmente associado com A PRESENÇA DE: tensões térmicas e mecânicas; Impurezas; Etc. Fonte: Costa E.M. IMPERFEIÇÕES CRISTALINAS Notas de aula - PUC-RS.

4.Defeitos interfaciais diversos (empilhamento). Corresponde a interrupção de uma seqüência regular de empacotamento de planos em uma rede cristalina. Fonte: Costa E.M. IMPERFEIÇÕES CRISTALINAS Notas de aula - PUC-RS. As falhas de empacotamento são encontradas em metais CFC quando existe uma interrupção na sequencia de empilhamento ABABAB.

É um defeito linear ou unidimensional em torno do qual alguns átomos estão desalinhado. (Callister, 2011)

É uma porção extra de um plano de átomos, ou semi plano, cuja aresta termina no interior do cristal. (Callister, 2011). Representação esquemática de um defeito linear do tipo discordância em aresta.

A discordância em aresta está centralizada em torno de uma linha definida ao longo da extremidade do semi plano adicional de átomos, conhecida como a linha da discordância. A discordância em aresta pode ser representada pelo símbolo ( ), que também indica a posição da linha da discordância. Também pode ser formada por semi plano adicional de átomos que esteja incluído na fração inferior do cristal, sendo, neste caso representada pelo símbolo ( ). Dpto de Ciência dos Materiais e Metalurgia PUC Rio Disponível: http://www.dcmm.pucrio.br/cursos/cemat_mv/aula9.pdf

Considerada como a consequência da tensão de cisalhamento que aplicada para produzir a distorção. (Callister, William D,.1940). Representação esquemática de um defeito linear do tipo discordância em espiral.

A distorção atômica associada com uma discordância em espiral também é linear ao longo da linha da discordância e está associada com a trajetória helicoidal que é traçada em torno da sua linha pelos planos atômicos; O símbolo discordância; é usado para designar este tipo de Na discordância em espiral, a linha da discordância, a direção do cisalhamento e o vetor de Burgers são paralelos Dpto de Ciência dos Materiais e Metalurgia PUC Rio Disponível: http://www.dcmm.pucrio.br/cursos/cemat_mv/aula9.pdf

Formação de discordância por cisalhamento: a linha da discordância, D, se expande pelo cristal até que o deslizamento se complete. Dpto de Ciência dos Materiais e Metalurgia PUC Rio Disponível: http://www.dcmm.pucrio.br/cursos/cemat_mv/aula9.pdf

As discordâncias encontradas nos materiais cristalinos provavelmente não saem puramente arestas ou puramente espiral, mas exibirão componentes de ambos os tipos, denominadas mistas. (Callister, William D,.1940). Discordância mista (caráter simultâneo de aresta e espiral).

Efeito de deformação da rede cristalina provocada por discordância mista. Dpto de Ciência dos Materiais e Metalurgia PUC Rio Disponível: http://www.dcmm.pucrio.br/cursos/cemat_mv/aula9.pdf

A magnitude e a direção da distorção da rede associada a uma discordância são expressadas em termos de um vetor de Burgers. (Callister, 2011).

Para materiais metálicos, o vetor de Burgers irá apontar para uma direção cristalograficamente compacta e terá uma magnitude igual ao espaçamento interatômico; Determinação do vetor de Burgers em cristal perfeito (a) e em cristal na presença de discordância (b). Dpto de Ciência dos Materiais e Metalurgia PUC Rio Disponível: http://www.dcmm.pucrio.br/cursos/cemat_mv/aula9.pdf

Na discordância em aresta, a linha da discordância e o vetor de Burgers são perpendiculares. Dpto de Ciência dos Materiais e Metalurgia PUC Rio Disponível: http://www.dcmm.pucrio.br/cursos/cemat_mv/aula9.pdf

DETERMINAÇÃO DO TAMANDO DO GRÃO O tamanho do grão d e metais policristalinos é importante, já que a superfície dos contornos entre os grãos tem um efeito importante em muitas propriedades dos metais, especialmente na resistência mecânica. Em temperaturas baixas (inferiores a cerca de metade da temperatura absoluta de fusão), a região do contorno provoca um aumento da resistência mecânica dos metais, porque sob tensão dificulta o movimento das discordâncias. Em temperaturas elevadas pode ocorrer o escorregamento ao longo dos contornos e estes se tornam regiões vulneráveis nos metais policristalinos.

O tamanho do grmétodo de interseção: Uma série de segmentos de linhas retos (todos com o mesmo comprimento) são desenhados sobre uma microfotografia. O comprimento da linha é dividido pelo número médio de interseções de grãos por linha. O diâmetro médio do grão é tomado como sendo esse resultado dividido pela ampliação da fotomicrografia.

Na tabela abaixo, indicam-se os números de tamanho de grão, assim como o número de grãos por pol², numa ampliação de 100X, e o número de grãos por mm², com uma ampliação de 1X. Em geral, um material pode ser classificado como grosseiro quando n < 3, de grão médio, 4 < n < 6; de grão refinado, 7 < n < 9, e com grão ultrafino, n > 10

Na figura abaixo, mostram-se exemplos do tamanho de grão de amostras de chapa de aço de baixo teor de carbono:

Exercício Fez-se a determinação do tamanho de grão ASTM, em uma fotomicrografia de um metal com uma ampliação de 100X. Se existirem 64 grãos por polegada quadrada, qual é o número ASTM de tamanho de grão do metal? N = 2 n-1 N = número de grãos por polegada quadrada em 100X n = número de tamanho de grão ASTM 64 grãos/pol² = 2 n-1 log 64 = (n 1)(log 2) 1,806 = (n 1)(0,301) n = 7

Exercício Se existem 60 grãos por polegada quadrada, em uma fotomicrografia de um metal obtida com uma ampliação de 200X, qual é o número ASTM de tamanho de grão do metal? Se com uma ampliação de 200X existem 60 grãos por polegada quadrada, com uma ampliação de 100X, teremos: log 240 = (n 1)(log 2) 2,380 = (n 1)(0,301) n = 8,91 A razão entre as ampliações tem de ser elevada ao quadrado, porque estamos interessados no número de grãos por polegada quadrada.

Para uma liga que contém dois átomos hipotéticos identificados como 1 e 2, a concentração do átomo 1 em %p é dada por: Onde: C m m m 1 1 100 C 1 Concentração do átomo 1 m 1 + m 2 massa dos elementos 1 e 2 m 1 massa dos elementos 1 e 2 1 2

A base para os cálculos é o número de mols de um elemento em relação ao número total de mols de todos os elementos de uma liga, é dado por: m Onde: m 1 massa (em gramas) A 1 peso atômico n m 1 A 1' 1

A Concentração para o elemento 1 em termos da porcentagem atômica em uma liga contendo os átomos dos elementos 1 e 2, é definida por: n C m1 1' nm 1 nm2 100 Onde: n m1 número de mols

Para converter a % em peso em % atômica, em elementos hipotéticos 1 e 2, as expressões de conversões são: C C A 1 2 1' C1 A2 C2A1 100 C C A 1' 1 1 C1' A1 C2' A2 100 C C A 2 1 2' C1 A2 C2A1 100 C C A 2' 2 2 C1' A1 C2' A2 100

Uma vez que estamos considerando apenas dois elemementos, os cálculos envolvendo as equações anteriores podem ser simplificados quando se observa que: C C 1 1' C 2 C 2' 100 100

As concentrações em termos dessa base serão representadas com a utilização ode duas linhas (isto é C 1 e C 2), e as equações relevantes são as seguintes: Onde: massa específica (ρ) g/cm³ 3 2 2 1 1 1 " 1 10 C C C C 3 2 2 1 1 2 " 2 10 C C C C

A massa específica e o peso atômico de uma liga binária tendo sido dada a composição em termos ou da % em peso ou da % atômica: méd 100 C1 C2 1 2 méd C1' A C1' A 1 1 1 C2' A C2' A 2 2 2 Onde: massa específica (ρ méd )

A massa específica e o peso atômico de uma liga binária tendo sido dada a composição em termos ou da % em peso ou da % atômica: A méd 100 C1 C A A 1 2 2 A méd C A1 C 100 1' 2' A2 Onde: Peso atômico (A méd )

Determine a composição, em porcentagem atômica, de uma liga com 97%p alumínio e 3%p cobre. Solução: Se representarmos as respectivas composições em porcentagem em peso como C al = 97 e C cu = 3, a substituição nas Equações: C1 A2 C1' A1 C1 ' 100 C1 100 C A C A C A C A 1 2 2 1 1' 1 2' 2

a C mol g mol g mol g C A C A C A C C Al Al Al Cu Cu Al Cu Al Al 98,7% 100 ) / (3)(26,98 ) / (97)(63,55 ) / (97)(63,55 100 ' ' ' a C mol g mol g mol g C A C A C A C C Al Al Cu Al Al Cu Al Cu Cu 1,30% 100 ) / (97)(63,55 ) / (3)(26,98 ) / (3)(26,98 100 ' ' '

A Microscopia óptica, também denominada microscopia de luz, consiste em uma técnica de observação de objetos e sistemas com ampliações de algumas dezenas até milhares de vezes das dimensões físicas, tipicamente 10X a 1500X. O microscópio óptico mais simples consiste de duas lentes montadas em uma estrutura, com um suporte para anteparo do material a ser observado. O equipamento conta ainda com um sistema de iluminação, filtros, colimadores, e outras partes, no sentido de otimizar a qualidade da imagem obtida.

Existem diversas variações de modelos, com imagem por luz refletida (materiais opacos), luz transmitida (materiais translúcidos), imagem por fluorescência, dentre outras. A ampliação final de um microscópio óptico será o resultado do produto obtido pela ampliação da lente ocular pela objetiva, situando-se na faixa de ~40X a ~1000X.

A microscopia óptica utiliza as propriedades ondulatórias da radiação eletromagnética, principalmente na faixa de energia da luz visível. Alguns fenômenos de interação da radiação com a matéria são importantes, tais como: Absorção; Refração; Difração.

Na microscopia óptica, para materiais opacos à luz visível, apenas sua superfície é submetida à observação, sendo necessário o uso no modo de reflexão. Para que se possa fazer uma análise estrutural no material, é preciso realizar o processo de preparação das amostras previamente. As etapas do processo de preparação são formadas pela separação da amostra, embutimento, lixamento, polimento e ataque químico.

SOUZA, V.C.G; SAMPAIO H.S.; e TAVARES, M.M.L - 2002

Utiliza feixes de elétrons ao invés de radiação luminosa (microscópio óptico); Existem três tipos: De transmissão (MET): usado para a observação de cortes ultrafinos; De varredura (ou MEV): capaz de produzir imagens de alta ampliação para a observação de superfícies; De varredura por sonda (MVS): para visualização de átomos. FONTE: CONTEUDO, 2014. FONTE: CALLISTER e RETHWISCH, 2012.

A imagem é formada por um feixe de elétrons que passa através da amostra; Os contrastes na imagem são obtidos pelas diferenças na disperção ou difração do feixe produzidas entre os vários elementos da microestrutura ou defeitos; A amostra deve ser preparada na forma de uma folha muito fina, o que assegura a trans missão através da amostra de uma fração aprecíavel do feixe incidente. FONTE: CALLISTER e RETHWISCH, 2012

O feixe transmitido é projetado sobre uma tela fluorescente ou um filme fotográfico; Ampliações de até 1.000.000 de vezes; Empregada no estudo das discordâncias. FONTE: CALLISTER e RETHWISCH, 2012. FONTE: CONTEUDO, 2014.

É uma versão mais recente; A superfície da amostra a ser examinada é varrida com um feixe de elétrons e o feixe de elétrons refletido (retroespalhado) é coletado e, então exibido na mesma taxa de varredura em um tubo de raios catódicos (semelhante a tela de uma TV); A superfície da amostra pode ou não estar polida e ter sido atacada quimicamente, porém deve ser condutora de eletricidade; um revestimento metálico superficial muito fino deve ser aplicado sobre materiais não condutores; FONTE: CALLISTER e RETHWISCH, 2012.

FONTE: DEDAVID et. al, 2007.

Microscopia Eletrônica de Varredura (MEV) FONTE: CONTEUDO, 2014. FONTE: DEDAVID et. al, 2007.

Esquema de componentes do MEV FONTE: DEDAVID et. al, 2007.

Ampliações variam de 10 a 50.000 vezes; São também possíveis profundidades de campo muito grandes; Permitem análises qualitativas e semiquantitativas da composição elementar em áreas muito localizadas da superfície. O MEV é um aparelho que pode fornecer rapidamente informações sobre a morfologia e identificação de elementos químicos de uma amostra sólida. Sua utilização é comum em biologia, odontologia, farmácia, engenharia, química, metalurgia, física, medicina e geologia. FONTE: DEDAVID et. al, 2007.

Existem diversas variedades; Difere dos opticos e eletrônicos pelo fato de que nem a luz nem a elétrons são usados para formar uma imagem; O microscópio gera um mapa topográfico, um uma escala atômica, que é uma representação dos detalhes e das características da superfície da amostra que está sendo examinada. Emprega uma sonda minuscula de extremidade muito fina que é colocada muito próxima (distância em nanometros) da superfície da amostra. FONTE: CALLISTER e RETHWISCH, 2012.

Durante a varredura, a sonda sofre deflexões perpendiculares a esse plano, em resposta a interrações eletrônicas ou de outra natureza, entre a sonda e a superfície da amostra; Os movimentos da sonda no plano da superfície e para fora do plano são controlados por componentes cerâmicos piezelétricos; Adicionalmente, esses movimentos da sonda são monitorados eletronicamente e transferidos e armazenados em um computador, o que gera entao a imagem tridimensional da superfpície. FONTE: CALLISTER e RETHWISCH, 2012.

Análise na escala nanométrica; Ampliações de até 10 9 vezes; São geradas imagens tridimensionais ampliadas; Alguns MVS podem ser operados em diversos ambientes: vácuo, ar, líquidos; Permitem o exame da superfície dos materiais nos níveis atômicos e molecular; Alavancou a entrada na era dos nanomateriais. FONTE: CONTEUDO, 2014. FONTE: CALLISTER e RETHWISCH, 2012

CALLISTER, William D.; RETHWISCH, David G. Ciência e engenharia de materiais: uma introdução. 8. ed. Rio de Janeiro, RJ: LTC, 2012. xxi, 817 p. DEDAVID, Berenice Anina; GOMES, Carmem Isse; MACHADO Giovanna. Microscopia Eletrônica De Varredura - Aplicações E Preparação De Amostras: Materiais Poliméricos, Metálicos E Semicondutores. Pontifícia Universidade Católica do Rio Grande do Sul. EDIPUCRS. Porto Alegre, 2007. CONTEÚDO aberto. In: Wikipédia: a enciclopédia livre. Microscópio eletrônico. Disponível em: <http://pt.wikipedia.org/wiki/mi crosc%c3%b3pio_eletr%c3%b4nico>. Acesso em: 01 de maio de 2014

REFERÊCIAS BERTUCCIO, Antonio; MICHELLINE, Isadora; ROLLA, Lucas; ZAIDAN, Ludmila. Polímeros Estrutura. Trabalho Acadêmico. 2012. Disponível em:< http://prezi.com/l0wwangplykm/polímerosestrutura>. Acesso em março de 2014. JEDYN, Felipe. Materiais Não Metálicos. Aula 01: Revisão de Estrutura Atômica e Ligação Interatômica e Introdução aos Materiais Cerâmicos. Curitiba. Disponível em: <http://ftp.demec.ufpr.br/.../introducao_e_conteud o_ceramicos_v02.pptx >. Acesso em março de 2014.

Referências Shackelford, James F. Introdução à ciência dos materiais para engenheiros / James F. Schackelford; tradução Daniel Vieira; revisão técnica Nilson C. Cruz. São Paulo: Pearson Prentice Hall, 2008. Smith, Willian F.; Hashemi, Javad. Fundamentos de Engenharia e Ciência dos Materiais. Porto Alegre; AMGH Editora, 2012. Ciência dos Materiais Multimídia. http://www.cienciadosmateriais.org

http://projetocienciando.blogspot.com.br/2012/ 12/microscopia-optica-aplicada-ao-estudo.html http://www.biomaterial.com.br/capitulo7part01. pdf http://www.angelfire.com/crazy3/qfl2308/1_mult ipart_xf8ff_6_microscopia_otica.pdf SOUZA, V.C.G; SAMPAIO H.S.; e TAVARES, M.M.L. - Estudo por microscopia óptica e lupa das características mineralógicas e microestruturais do clínquer aplicado ao processo de moagem e qualidade do cimento - Rev. Esc. Minas vol.55 no.2 Ouro Preto - MG - 2002.