IMPERFEIÇÕES EM SÓLIDOS
|
|
|
- Yago Lameira Canário
- 9 Há anos
- Visualizações:
Transcrição
1 IMPERFEIÇÕES EM SÓLIDOS INTRODUÇÃO Ao estudar os materiais cristalinos, tem-se admitido que existe uma perfeita ordem em escala atômica Contudo esse tipo de sólido idealizado não existe, todos os materiais contém grandes números de uma variedade de defeitos e imperfeições As propriedades de alguns materiais são profundamente influenciadas pela presença de imperfeição no sólido cristalino Por defeito cristalino é designada uma irregularidade na rede cristalina O tipo e o número de defeitos dependem do material, do meio ambiente, e das circunstâncias sob as quais o cristal é processado Mesmo sendo poucos eles influenciam muito nas propriedades dos materiais e nem sempre de forma negativa 1 2 IMPERFEIÇÕES ESTRUTURAIS - IMPORTÂNCIA- IMPERFEIÇÕES ESTRUTURAIS Exemplos de efeitos da presença de imperfeições INTRODUÇÃO SELETIVA DEFEITOS CONTROLE DO NÚMERO ARRANJO Permite desenhar e criar novos materiais com a combinação desejada de propriedades 3 O processo de dopagem em semicondutores visa criar imperfeições para mudar o tipo de condutividade em determinadas regiões do material A deformação mecânica dos materiais promove a formação de imperfeições que geram um aumento na resistência mecânica (processo conhecido como encruamento) Ferro (sem imperfeições do tipo discordâncias) apresentam resistência maior que 70GPa, enquanto o ferro comum rompe-se a aproximadamente 270MPa. Ligas: adiciona-se átomos de impureza para aumentar a resistência mecânica e a resistência à corrosão 4
2 IMPERFEIÇÕES ESTRUTURAIS Defeitos Pontuais associados c/ 1 ou 2 posições atômicas Defeitos lineares uma dimensão Defeitos planos ou interfaciais contornos bidimensionais Impurezas âtomos de impurezas podem existir como defeito pontual 1- DEFEITOS PONTUAIS Lacunas ou vacâncias ou vazios Átomos Intersticiais Schottky Frenkel Impurezas Ocorrem em sólidos iônicos, ou seja materiais cerâmicos 5 6 LACUNAS Envolve a falta de um átomo, onde um sítio deveria estar ocupado está com um átomo faltando São formados durante a solidificação do cristal ou como resultado das vibrações atômicas (os átomos deslocam-se de suas posições normais) Não é possível criar um material isento desse tipo de defeito LACUNAS Aumenta exponencialmente com o aumento da temperatura Nv= N exp (-Qv/KT) Nv= número de vacâncias ou lacunas N= número total de sítios atômicos Qv= energia requerida para formação de vacâncias K= constante de Boltzman = 1,38x10 23 J/at.K ou 8,62x10-5 ev/ at.k 7 8
3 Exercicio: Calcule o número de lacunas em equilíbrio por metro cúbico de cobre a uma temperatura de 1000 o C. A energia para a formação de um lacuna é de 0,9V/átomo; o peso atômico e a densidade a (1000 o C) para o cobre são de 63,5 g/mol e 8,4 g/cm 3, respectivamente AUTO INTERSTICIAIS Envolve um átomo extra no interstício (do próprio cristal) Produz uma distorção no reticulado, já que o átomo geralmente é maior que o espaço do interstício A formação de um defeito intersticial implica na criação de uma vacância, por isso este defeito é menos provável que uma vacância IMPUREZAS EM SÓLIDOS Um metal considerado puro sempre tem impurezas (átomos estranhos) presentes Mesmo com técnicas sofisticadas é dificil refinar metais até uma pureza que seja superior a: 99,9999% = a átomos de impurezas por m 3 A presença de impurezas promove a formação de defeitos pontuais Exemplo: prata de lei é uma liga composta por 92,5% de prata e 7,5% de cobre (a prata pura é resistente à corrosão, mas é muito macia)
4 IMPUREZAS EM SÓLIDOS SOLUÇÕES SÓLIDAS A adição de impurezas pode formar: SOLUÇÕES SÓLIDAS Existem vários termos relacionado a impurezas e soluções sólidas. Com relação às ligas os termos normalmente empregados são: SOLUTO E SOLVENTE SOLVENTE: átomo ou composto presente em maior quantidade; ocasionalmente estes são chamados de átomos hospedeiros SOLUTO: é usado para indicar um elemento ou composto presente em menor concentração A estrutura cristalina do material que atua como matriz é mantida e não formam-se novas estruturas As soluções sólidas formam-se mais facilmente quando o elemento de liga (impureza) e matriz apresentam estrutura cristalina e dimensões eletrônicas semelhantes Nas soluções sólidas as impurezas podem ser: - Intersticial - Substitucional SOLUÇÕES SÓLIDAS SUBSTITUCIONAIS Os átomos do soluto ou átomos de impureza tomam o lugar dos átomos hospedeiros ou os substituem Fatores que influem na formação de soluções sólidas substitucionais (REGRA DE HOME-ROTHERY) Raio atômico deve ter uma diferença de no máximo 15%, caso contrário pode promover distorções na rede e assim formação de nova fase Estrutura cristalina mesma Eletronegatividade próximas Valência mesma ou maior que a do hospedeiro EXEMPLO DE SOLUÇÃO SÓLIDA SUBSTICIONAL Cu + Ni são solúveis em todas as proporções Cu Raio atômico 0,128nm=1,28 A 0,125 nm=1,25a Estrutura CFC CFC Eletronegatividade 1,9 1,8 Valência +1 (as vezes +2) +2 Ni 15 16
5 SOLUÇÕES SÓLIDAS INTERSTICIAIS INTERSTICIAL EXEMPLO DE SOLUÇÃO SÓLIDA INTERSTICIAL Os átomos de impurezas ou os elementos de liga ocupam os espaços dos interstícios Como os materiais metálicos tem geralmente fator de empacotamento alto as posições intersticiais são relativamente pequenas. Consequentemente ocorre quando a impureza apresenta raio atômico bem menor que o hospedeiro Geralmente, no máximo 10% de impurezas são incorporadas nos interstícios Fe + C solubilidade máxima do C no Fe é 2,1% a 910 C (Fe CFC) O C tem raio atômico bastante pequeno se comparado com o Fe r C = 0,071 nm= 0,71 A r Fe = 0,124 nm= 1,24 A DEFEITOS LINEARES: DISCORDÂNCIAS É um defeito linear ou unidimensional em torno do qual alguns dos átomos estão desalinhados Podem ser: - Aresta - Espiral - Mista DISCORDÂNCIAS EM ARESTA Uma porção extra de um plano de átomos, ou semi-plano, cuja aresta termina no interior do cristal defeito linear, centralizado em torno da linha que fica definida ao longo da extremidade do semi-plano de átomos adicional. Isto é algumas vezes conhecido por linha de discordância 19 20
6 DISCORDÂNCIAS EM ARESTA Para figura mostrada ao lado é perpendicular ao plano da mesma Os átomos acima da linha de discordância são pressionados uns contra os outros, e, os átomos abaixo são puxados um para longe do outro (envolve zonas de tração e compressão) DISCORDÂNCIAS EM ARESTA Em posições afastadas o retículo cristalino é perfeito A discordância aresta é representada pelo símbolo:, que indica a posição da linha de discordância Se o semi-plano de átomos adicional estiver incluído na fração inferior do cristal a discordância será representado por: T Os planos de átomos verticais se curvam em torno deste semiplano adicional A magnitude dessa distorção diminui com a distância de afastamento da linha de discordância DISCORDÂNCIAS EM ESPIRAL DISCORDÂNCIAS EM ESPIRAL Pode ser considerada como sendo formada por uma tensão cisalhante que é aplicada para produzir a distorção A região anterior do cristal é deslocada uma distância atômica para cima em relação à fração posterior 23 A distorção atômica é linear ao longo de uma linha de discordância AB A discordânciua espiral tirou seu nome da trajetória ou inclinação em espiral ou helicoidal que é traçada em tornao da linha de discordância pelos planos atômnicos de átomos 24
7 DISCORDÂNCIAS MISTA A maioria das discordâncias encontrada em materiais cristalinos não é provavelmente nem uma discordância puramente aresta nem uma discordãncia puramente espiral, porém exibe componentes que são czaracterísticos de ambos os tipos; essas são conhecidas por discordâncias mistas. 25 As discordâncias podem ser observadas em materias cristalinos mediante o uso de técnicas de microscopia eletrônica As discordãncias estão envolvidas na deformação plástica de materiais cristalinos, como será visto posteriormente DISCORDÂNCIAS 26 VETOR DE BURGER (b) Dá a magnitude e a direção de distorção da rede Corresponde à distância de deslocamento dos átomos ao redor da discordância Para os materiais metálicos, o vetor de Burger para uma discordância irá apontar para uma direção cristalográfiaca compacta e terá magnitude igual ao espaçamento interatômico. 27 VETOR DE BURGER (b) Discordância em aresta O vetor de Burger é perpendicular à direção da linha da discordância Discordância em espiral O vetor de burger é paralelo à direção da linha de discordância 28
8 3- DEFEITOS PLANOS OU INTERFACIAIS Possuem duas dimensões e normalmente separam as regiões dos materiais que possuem diferentes estruturas cristalinas e/ou orientações cristalográficas. Essas imperfeições incluem: superfícies externas contornos de grão contornos de macla falhas de empilhamento contornos de fases 29 DEFEITOS NA SUPERFÍCIE EXTERNA É o mais óbvio Na superfície os átomos não estão completamente ligados ao número máximo de vizinhos Então o estado energia dos átomos na superfície é maior que no interior do cristal As ligações desses átomos de superfície que não estão completadas dão origem a uma energia de superfície que é expressa por J/m 2 Os materiais tendem a minimizar está energia Por exemplo, os líquidos assumem uma forma que possuem uma área mínima as gotículas se tornam esféricas, assim diminui sua área superficial. Obviamente isso não é possível nos sólidos, que são mecanicamente rígidos. 30 CONTORNOS DE GRÃO CONTORNOSDE GRÃO Monocristal: Material com apenas uma orientação cristalina, ou seja, que contém apenas um grão Policristal: Material com mais de uma orientação cristalina, ou seja, que contém vários grãos Contorno que separa dois pequenos grãos ou cristais que possuem diferentes orientações cristalográficas em materiais policristalinos. um cristal = um grão 31 Na figura ao lado pode-se observar o contorno sob uma perspectiva atômica Dentro da região do contorno, que possui provavelmente a largura equivalente a distancia de apenas alguns átomos, existem alguns desencontros atômicos na transição da orientação cristalina de um grão para aquela de outro adjacente 32
9 CONTORNOSDE GRÃO São possíveis vários graus de desalinhamento cristalográfico entre grãos adjacentes Ângulo de desalinhamento Ângulo de desalinhamento Contorno de grão de alto angulo Contorno de grão de baixo angulo 33 CONTORNOS DE GRÃO Os átomos estão ligados de maneira menos regular ao longo de um contorno de grão; Conseqüentemente existe uma energia interfacial ou de contorno de grão que é semelhante à energia de superfície; A magnitude dessa energia é função do grau de desorientação, sendo maior para contorno de ângulos grande; Como conseqüência, os contornos de grão são quimicamente mais reativos. Além disso os átomos de impureza com freqüência se segregam preferencialmente ao longo desses contornos; 34 CONTORNOS DE GRÃO A energia interfacial total é menor em materiais com grãos grandes ou grosseiros do que em materiais com grãos mais finos, uma vez que existe menos área de contorno nos primeiros; Os grãos crescem quando se encontram a temperaturas elevadas, a fim de reduzir a energia de contorno total; Materiais com grãos menores apresentarão maior resistência, pois a diferença de orientação resultará em uma descontinuidade de plano de escorregamento; Apesar do arranjo desordenado dos átomos e da falta de uma ligação regular ao longo dos contornos de grãos um material policristalino ainda é muito forte; Forças de coesão estão presentes no interior e através do contorno. Além disso, a densidade de um material policristalino é virtualmente a mesma de um monocristal feito do mesmo material 35 CONTORNOS DE MACLA OU TWIN É um tipo especial de contorno de grão Os átomos em um dos lados do contorno estão localizados em posições em imagem em espelho dos átomos no outro lado do contorno Resultam de deslocamentos atômicos que são produzidos a partir de forças mecânicas de cisalhamento aplicadas (maclas de deformação) e também durante tratamentos térmicos de recozimento realizados após deformações (maclas de recozimento) 36
10 CONTORNOS DE MACLA OU TWIN A maclagem ocorre em um plano cristalográfico definido e em uma direção específica, ambos os quais dependem da estrutura cristalina; As maclas de recozimento são encontradas tipicamente em metais que possuem uma estrutura cristalina CFC, enquanto as maclas de deformação são observadas em metais com estruturas CCC e HC A maclagem pode colocar novos sistemas de escorregamentos em orientações que são favoráveis em relação ao eixo de tensão. DEFEITOS INTERFACIAIS DIVERSOS Falhas de empilhamento: interrupção na seqüência de empilhamento ABCABCABC... dos planos compactos Contornos de fases: existem em materias com múltiplas fases, através dos quais há uma mudança repentina nas características físicas e/ou químicas DEFEITOS VOLUMÉTRICOS OU DE MASSA São introduzidas no processamento do material e/ou na fabricação do componente Estes incluem: poros trincas inclusões exógenas outras fases DEFEITOS VOLUMÉTRICOS OU DE MASSA Inclusões Impurezas estranhas Precipitados são aglomerados de partículas cuja composição difere da matriz Fases forma-se devido à presença de impurezas ou elementos de liga (ocorre quando o limite de solubilidade é ultrapassado) Porosidade origina-se devido a presença ou formação de gases 39 40
11 Porosidade As figuras abaixo apresentam a superfície de ferro puro durante o seu processamento por metalurgia do pó. Nota-se que, embora a sinterização tenha diminuído a quantidade de poros bem como melhorado sua forma (os poros estão mais arredondados), ainda permanece uma porosidade residual. EXEMPLO DE PARTÍCULAS DE SEGUNDA FASE COMPACTADO DE PÓ DE FERRO,COMPACTAÇÃO UNIAXIAL EM MATRIZ DE DUPLO EFEITO, A 550 MPa COMPACTADO DE PÓ DE FERRO APÓS SINTERIZAÇÃO A 1150oC, POR 120min EM ATMOSFERA DE HIDROGÊNIO 41 A MICROESTRUTURA É COMPOSTA POR VEIOS DE GRAFITA SOBRE UMA MATRIZ PERLÍTICA. CADA GRÃO DE PERLITA, POR SUA VEZ, É CONSTITUÍDO POR LAMELAS ALTERNADAS DE DUAS FASES: FERRITA (OU FERRO-A) E CEMENTITA (OU CARBONETO DE FERRO). 42 EXAME MICROSCÓPICO Ocasionalmente, torna-se necessário ou desejável examinar os elementos estruturais e os defeitos que influenciam as propriedades dos materiais. A capacidade de executar tais exames é importante, em primeiro lugar para assegurar que as associações entre as propriedades e a estrutura (e os defeitos) sejam compreendidas de forma apropriada, e em segundo lugar para prever as propriedades dos materiais uma vez que essas relações tenham sido estabelecidas Alguns elementos estruturais possuem dimensões macroscópicas. Contudo, na maioria dos materiais, os grãos constituintes possuem dimensões microscópicas e seus detalhes devem ser investigados utilizando algum tipo de microscópio O microscópio auxilia na investigação das características microestruturais de todos os tipos de materiais. 43
4- IMPERFEIÇÕES CRISTALINAS
ASSUNTO 4- IMPERFEIÇÕES CRISTALINAS - Defeitos pontuais - Defeitos de linha (discordâncias) - Defeitos de interface (grão e maclas) - Defeitos volumétricos (inclusões, precipitados) Eleani Maria da Costa
IMPERFEIÇÕES EM SÓLIDOS. Bento Gonçalves, 2014.
IMPERFEIÇÕES EM SÓLIDOS Bento Gonçalves, 2014. O QUE É UM DEFEITO? É uma imperfeição ou um "erro" no arranjo cristalino dos átomos em um cristal. Podem envolver uma irregularidade: Na posição dos átomos
Aula 5. Defeitos cristalinos
Aula 5 Defeitos cristalinos 1 DEFEITOS - Defeitos pontuais - Defeitos de linha (discordâncias) - Defeitos de interface (grão e maclas) - Defeitos volumétricos (inclusões, precipitados) 2 O QUE É UM DEFEITO?
ESTADOS EXCITADOS: fonões, electrões livres
Capítulo III.1 DEFEITOS (IMPERFEIÇÕES) NOS SÓLIDOS CRISTALINOS ESTADOS EXCITADOS: fonões, electrões livres DEFEITOS TRANSIENTES: fotões, electrões, neutrões tõ IMPERFEIÇÕES ESTRUTURAIS IMPORTÂNCIA DEFEITOS
AULA 04 IMPERFEIÇÕES CRISTALINAS Capítulo 04
AULA 04 IMPERFEIÇÕES CRISTALINAS Capítulo 04 1 IMPERFEIÇÕES CRISTALINAS Estrutura perfeita no arranjo atômico, existe?? Material Cristalino 2 IMPERFEIÇÕES CRISTALINAS 3 Imagem representagva de um plano
Introdução aos Materiais Imperfeições em Sólidos Metais DEMEC TM229 Prof Adriano Scheid
Introdução aos Materiais Imperfeições em Sólidos Metais DEMEC TM229 Prof Adriano Scheid Introdução Os sólidos contém inúmeras imperfeições nas estruturas cristalinas e muitas propriedades são alteradas
DEFEITOS CRISTALINOS
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais DEFEITOS CRISTALINOS PMT 2100 - Introdução à Ciência dos Materiais para Engenharia 2º Semestre de 2005
DEFEITOS CRISTALINOS. Conceitos Gerais
DEFEITOS CRISTALINOS Conceitos Gerais CAPA 1 CAPA 2 1 Defeitos atômicos usados para reduzir a emissão de poluentes 2 Conversor catalítico poluente é retido pelo material que tem esta capacidade em função
Materiais e sua propriedades Aula 5
Materiais e sua propriedades Aula 5 Prof a. Dr a. Vânia Trombini Hernandes Imperfeições nos sólidos cristalinos 2 º Q - 2017 Defeitos Cristalinos Até agora, ao estudar os materiais cristalinos, tem-se
Fundamentos de Ciência e Engenharia de Materiais. DEFEITOS CRISTALINOS Prof. Dr. André Paulo Tschiptschin
Fundamentos de Ciência e Engenharia de Materiais DEFEITOS CRISTALINOS Prof. Dr. André Paulo Tschiptschin Defeitos cristalinos Defeito cristalino: imperfeição do reticulado cristalino Classificação dos
Ligações químicas e estrutura dos materiais
Disciplina : - MFI Professores: Guilherme Ourique Verran - Dr. Eng. Metalúrgica Aula 02 Revisão de alguns conceitos fundamentais da Ciência dos Materiais Ligações químicas e estrutura dos materiais Conceitos
31/3/2006 CM I 1. Imperfeições em Arranjos Atômicos
31/3/2006 CM I 1 Imperfeições em Arranjos Atômicos 31/3/2006 CM I 2 Por quê o rubi é vermelho? A adição de 1% de óxido de cromo em alumina cria defeitos; Uma transição entre os níveis destes defeitos tornam
Aula 7: Cristais 0,0,1 1/2,1/2,1/2 0,0,0 0,1/2,0 0,1,0 1/2,1/2,0 1,0,0. Aula 7 - Profa. Adélia
Aula 7: Cristais Para poder descrever a estrutura cristalina é necessário escolher uma notação para posições, direções e planos As posições são definidas dentro de um cubo com lado unitário. 0,0,1 1/2,1/2,1/2
Sugestões de estudo para a P1
Sugestões de estudo para a P1 1) Considere a curva de energia potencial da ligação entre dois átomos (E) apresentada ao lado, e as três afirmações a Seguir: I. Na distância interatômica r o as forças de
APONTAMENTOS PRIMEIRA PROVA DE MATERIAIS DE CONSTRUÇÃO I
APONTAMENTOS PRIMEIRA PROVA DE MATERIAIS DE CONSTRUÇÃO I Normalização na construção civil Normalizar: É padronizar atividades específicas e repetitivas. Normas técnicas: Documentos aprovados por instituições
Difusão Prof. C. Brunetti
Difusão Prof. C. Brunetti Conceitos fundamentais Definição: Mecanismo pelo qual a matéria é transportada através da matéria. Os átomos, em gases, líquidos e sólidos, estão em movimento constante e migram
Defeitos cristalinos. (monocristais) Ponto. Superfície
[7] Defeitos cristalinos 1> Ligações atômicas propriedades resistência teórica (monocristais) causa da discrepância > resistência experimental defeitos cristalinos Ponto Defeitos cristalinos Linha Superfície
TM229 - Introdução aos Materiais
TM229 - Introdução aos Materiais 2009.2 Ana Sofia C. M. D Oliveira Introdução aos materiais O que determina o comportamento/propriedades dos materiais? Composição química e microestrutura Cada uma destas
UNIDADE 6 Defeitos do Sólido Cristalino
UNIDADE 6 Defeitos do Sólido Cristalino 1. Em condições de equilíbrio, qual é o número de lacunas em 1 m de cobre a 1000 o C? Dados: N: número de átomos por unidade de volume N L : número de lacunas por
Desordem Atômica nos Sólidos Imperfeições Cristalinas
Desordem Atômica nos Sólidos Imperfeições Cristalinas O que se entende por defeito ouimperfeição cristalina? Denomina se dedefeito defeito ouimperfeição as irregularidades quepodemocorrernos ocorrer arranjos
ESTRUTURA CRISTALINA E IMPERFEIÇÕES NOS SÓLIDOS ESTRUTURA CRISTALINA E IMPERFEIÇÕES NOS SÓLIDOS
ESTRUTURA CRISTALINA E IMPERFEIÇÕES NOS SÓLIDOS Prof. Dr.: Anael Krelling 1 CONCEITOS FUNDAMENTAIS Materiais sólidos podem ser classificados de acordo com a regularidade com que os seus átomos ou íons
AULA 07 DEFORMAÇÃO PLÁSTICA DOS METAIS
AULA 07 DEFORMAÇÃO PLÁSTICA DOS METAIS Conceitos fundamentais σ Os materiais experimentam dois tipos de deformação: elástica e plástica. Elástica: retornável. Plástica: permanente. ε Em uma escala microscópica:
COMPORTAMENTO MECÂNICO DOS MATERIAIS: DEFEITOS CRISTALINOS E DEFORMAÇÃO PLÁSTICA
UNIVERSIDADE FEDERAL DO ABC Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS) BC-1105: MATERIAIS E SUAS PROPRIEDADES COMPORTAMENTO MECÂNICO DOS MATERIAIS: DEFEITOS CRISTALINOS E DEFORMAÇÃO
ESTRUTURA CRISTALINA E IMPERFEIÇÕES NOS SÓLIDOS ESTRUTURA CRISTALINA E IMPERFEIÇÕES NOS SÓLIDOS
ESTRUTURA CRISTALINA E IMPERFEIÇÕES NOS SÓLIDOS Prof. M.Sc.: Anael Krelling 1 CONCEITOS FUNDAMENTAIS Materiais sólidos podem ser classificados de acordo com a regularidade com que os seus átomos ou íons
Ciências dos materiais- 232
Aula 1 1 1 Ciências dos materiais- 232 2 a aula - Imperfeições em Sólidos - Propriedades Mecânicas dos Metais - Falhas em Materiais Terça Semana par 19:00 às 20:40 21:00 às 22:40 Professor: Luis Gustavo
Estruturas cristalinas - Reticulado cristalino
Página 1 de 9 MENU PRINCIPAL CONTEUDO TÉCNICO DOWNLOAD CONTATO ENTRETENIMENTO LOGIN search.... Home PAINEL Ciência dos Materiais Estruturas cristalinas - Reticulado cristalino Estruturas cristalinas -
DEFEITOS CRISTALINOS E DEFORMAÇÃO PLÁSTICA
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais DEFEITOS CRISTALINOS E DEFORMAÇÃO PLÁSTICA PMT 2100 - Introdução à Ciência dos Materiais para Engenharia
A6 Estrutura não cristalina imperfeição: defeitos lineares, planares e em volume
A6 Estrutura não cristalina imperfeição: defeitos lineares, planares e em volume Deslocações no KCl. O KCl é transparente e as deslocações (linhas brancas) foram decoradas com impurezas para as tornar
MECANISMOS DE ENDURECIMENTO DE METAIS
1 MECANISMOS DE ENDURECIMENTO DE METAIS Eng. os metalurgistas e Eng. os de materiais visam o "projeto" de ligas com elevadas resistência mecânica (S E 0,2% ), ductilidade (A% e RA%) e tenacidade (resistência
Estruturas dos Materiais
Sumário Conceitos 1 Constituição de um átomo.......................... 1 Propriedade dos átomos........................... 1 Ligações químicas 2 Ligações Primárias............................... 2 Ligação
CTM P OBS: Esta prova contém 7 páginas e 6 questões. Verifique antes de começar. VOCÊ DEVE ESCOLHER APENAS 5 QUESTÕES PARA RESOLVER.
Nome: Assinatura: CTM P1 2014.2 Matrícula: Turma: OBS: Esta prova contém 7 páginas e 6 questões. Verifique antes de começar. VOCÊ DEVE ESCOLHER APENAS 5 QUESTÕES PARA RESOLVER. VOCÊ DEVE RISCAR NA TABELA
Ligação iônica Ligação covalente Ligação metálica
Principais Tipos de Ligações Químicas Ligação iônica Ligação covalente Ligação metálica Iônicas Covalentes Metálicas Ligações químicas A maioria dos compostos situa-se dentro do triângulo Representações
P1 de CTM Nome: Matrícula: Assinatura: Turma:
P1 de CTM 2012.1 Nome: Assinatura: Matrícula: Turma: 1) (1,5) Uma liga de cobre tem limite de escoamento igual a 300 MPa e módulo de elasticidade de 100 GPa. a. (0,5) Qual é a máxima carga (em N) que pode
ESTRUTURA DOS SÓLIDOS CRISTALINOS CAP. 03 Parte II
UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA MECÂNICA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA E ENGENHARIA DE MATERIAIS - PGCEM ESTRUTURA DOS SÓLIDOS
Produto amolecido. Produto moldado. moléculas
ω PROVA FINAL - PMT-5783 FUNDAMENTOS DE CIÊNCIA E ENGENHARIA DE MATERIAIS 1) A respeito dos materiais poliméricos elastoméricos (elastômeros) é errado afirmar que: a) Quando submetidos a tensão, os elastômeros
6 - Microestrutura Fases
24 6 - Microestrutura 6-1. Fases Um cubo de gelo flutuando na água e a atmosfera que os envolve são exemplos dos três estados da matéria, sem dúvida, mas também são exemplos de fases (Figura 6-1). Uma
PROVA FINAL - PMT-5783 FUNDAMENTOS DE CIÊNCIA E ENGENHARIA DE MATERIAIS
PROVA FINAL - PMT-5783 FUNDAMENTOS DE CIÊNCIA E ENGENHARIA DE MATERIAIS 1) Em relação aos defeitos cristalinos qual das seguintes afirmações é incorreta: a) Numa discordância em cunha o vetor de Burgers
DEFEITOS DO SÓLIDO CRISTALINO DIFUSÃO NO ESTADO SÓLIDO
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais DEFEITOS DO SÓLIDO CRISTALINO DIFUSÃO NO ESTADO SÓLIDO PMT 3100 - Fundamentos de Ciência e Engenharia
Aula 17 - Transformações no estado sólido. Transformações Estruturais a nível de tamanho e formato dos grãos
Aula 17 - Transformações no estado sólido Transformações Estruturais a nível de tamanho e formato dos grãos Encruamento Recristalização Crescimento de Grão Encruamento Aumento de dureza ou da resistência
Universidade Estadual de Ponta Grossa Departamento de Engenharia de Materiais Disciplina: Ciência dos Materiais 1. Imperfeições nos sólidos
Universidade Estadual de Ponta Grossa Departamento de Engenharia de Materiais Disciplina: Ciência dos Materiais 1 Imperfeições nos sólidos 1º semestre / 2016 Imperfeições nos Sólidos ASSUNTOS ABORDADOS...
DIFUSÃO. Conceitos Gerais
DIFUSÃO Conceitos Gerais CAPA Os tratamentos térmicos são um conjunto de operações que têm por objetivo modificar as propriedades dos aços e de outros materiais através de um conjunto de operações que
Líquido Sólido Amorfo Sólido Cristalino
INTRODUÇÃO AOS MATERIAIS METÁLICOS Os processos de fabricação que se encarregam de dar forma à matéria-prima, entre outras coisas, modificam a estrutura interna da mesma apresentada em cada etapa do processamento,
Introdução a Ciência dos Materiais IMPERFEIÇÕES NO SÓLIDO. Professora: Maria Ismenia Sodero
Introdução a Ciência dos Materiais IMPERFEIÇÕES NO SÓLIDO Professora: Maria Ismenia Sodero [email protected] Tópicos abordados. Quais os tipos de defeitos podem ocorrer nos sólidos? 2. Como é possível
Disciplina : Metalurgia Física- MFI Professores: Guilherme Ourique Verran - Dr. Eng. Metalúrgica. Aula 03: Difusão Atômica.
Disciplina : - MFI Professores: Guilherme Ourique Verran - Dr. Eng. Metalúrgica Aula 03: Atômica Atômica 1. Introdução é o movimento dos átomos no interior de um material Os átomos tendem a se moverem
TP064 - CIÊNCIA DOS MATERIAIS PARA EP. FABIANO OSCAR DROZDA
TP064 - CIÊNCIA DOS MATERIAIS PARA EP FABIANO OSCAR DROZDA [email protected] 1 AULA 03 ESTRUTURA DOS SÓLIDOS CRISTALINOS 2 BREVE REVISÃO AULA PASSADA LIGAÇÕES QUÍMICAS Ligações primárias ou fortes
Exame Final de Ciência de Materiais. Lisboa, 12 de Julho de Resolução COTAÇÕES
Exame Final de Ciência de Materiais Lisboa, 12 de Julho de 2010 Resolução Pergunta Cotação 1. (a) 0,50 1. (b) 0,50 1. (c) 0,50 1. (d) 0,50 1. (e) 0,50 2. (a) 0,50 2. (b) 0,50 2. (c) 0,50 2. (d) 0,50 3.
LISTA DE EXERCÍCIOS 6 1 (UNIDADE III INTRODUÇÃO À CIÊNCIA DOS MATERIAIS)
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CENTRO DE ENGENHARIAS DEPARTAMENTO DE ENGENHARIA E TECNOLOGIA DISCIPLINA: QUÍMICA APLICADA À ENGENHARIA PROFESSOR: FREDERICO RIBEIRO DO CARMO Estrutura cristalina
DIAGRAMAS DE FASES DIAGRAMAS DE FASES
DIAGRAMAS DE FASES Prof. Dr. Anael Krelling 1 São mapas que permitem prever a microestrutura de um material em função da temperatura e composição de cada componente; Informações sobre fenômenos de fusão,
P1 de CTM Energia Direcionalidade Troca ou Compartilhamento. Covalente Alta Sim Compartilhamento. Metálica Alta Não Compartilhamento
P1 de CTM 2012.2 Nome: Assinatura: Matrícula: Turma: 1) (1,5) Liste e classifique as ligações químicas em termos de a. Energia de ligação b. Direcionalidade c. Troca ou compartilhamento de elétrons COLOQUE
ARRANJOS ATÔMICOS. Química Aplicada. Profº Vitor de Almeida Silva
ARRANJOS ATÔMICOS Química Aplicada Profº Vitor de Almeida Silva 1. Arranjo Periódico de Átomos SÓLIDO: Constituído por átomos (ou grupo de átomos) que se distribuem de acordo com um ordenamento bem definido;
Difusão em Sólidos TM229 - DEMEC Prof Adriano Scheid
Difusão em Sólidos TM229 - DEMEC Prof Adriano Scheid O que é Difusão? É o fenômeno de transporte de material pelo movimento de átomos. Importância? Diversas reações e processos que ocorrem nos materiais
Prova escrita de: 2º Exame Final de Ciência de Materiais (Correcção) Nome:
Prova escrita de: 2º Exame Final de Ciência de Materiais (Correcção) Lisboa, 29 de Janeiro de 2008 Nome: Número: Curso: 1. Aplicou-se uma carga de tracção de 48900N a um varão de aço com 25cm de comprimento
DIAGRAMAS DE EQUILÍBRIO DIAGRAMAS DE EQUILÍBRIO
DIAGRAMAS DE EQUILÍBRIO Prof. Dr.: Anael Krelling 1 São mapas que permitem prever a microestrutura de um material em função da temperatura e composição de cada componente; Informações sobre fenômenos de
Física dos Materiais
4300502 1º Semestre de 2014 Instituto de Física Universidade de São Paulo Professor: Luiz C C M Nagamine E-mail: [email protected] Fone: 3091.6877 homepage: http://disciplinas.stoa.usp.br/course/view.php?id=10070
2 Características e propriedades de um sistema cúbico
Características e propriedades de um sistema cúbico 17 2 Características e propriedades de um sistema cúbico Nesse capítulo serão apresentadas as características e propriedades de um sistema cúbico necessárias
Muitos materiais, quando em serviço, são submetidos a forças ou cargas É necessário conhecer as características do material e projetar o elemento
Muitos materiais, quando em serviço, são submetidos a forças ou cargas É necessário conhecer as características do material e projetar o elemento estrutural a partir do qual ele é feito Materiais são frequentemente
Microestrutura (Fases) Parte 2
Microestrutura (Fases) Parte 2 1. MICROESTRUTURA 1-4 SOLUBILIDADE 1-5 FORMAÇÃO DE FASE EM SÓLIDOS 1 1-44 SOLUBILIDADE Um material pode ser resultado da combinação de diferentes componentes: - por formação
DIAGRAMAS DE FASES DIAGRAMAS DE FASES
DIAGRAMAS DE FASES Prof. MSc: Anael Krelling 1 São mapas que permitem prever a microestrutura de um material em função da temperatura e composição de cada componente; Informações sobre fenômenos de fusão,
DIAGRAMAS TTT DIAGRAMAS TTT
DIAGRAMAS TTT Prof. Dr. Anael Krelling 1 MATERIAIS METÁLICOS Ampla gama de propriedades mecânicas Mecanismos de aumento de resistência Refino do tamanho de grão Formação de solução sólida Encruamento Outras
Fundamentos de Ciência e Engenharia de Materiais Prof. Dr. André Paulo Tschiptschin
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais Fundamentos de Ciência e Engenharia de Materiais Prof. Dr. André Paulo Tschiptschin CONCEITUAÇÃO Difusão:
Ciência dos Materiais Solidificação e imperfeições no sólido. Professora: Maria Ismenia Sodero
Ciência dos Materiais Solidificação e imperfeições no sólido Professora: Maria Ismenia Sodero [email protected] Tópicos abordados 1. Descrição dos processos de solidificação dos metais, mostrando a
Os processos de fabricação mecânica podem ser agrupados em 5 grupos principais.
Os processos de fabricação mecânica podem ser agrupados em 5 grupos principais. a) Fundição d) Metalurgia do pó b) Usinagem c) Soldagem E) CONFORMAÇÃO MECÂNICA Esquema geral dos processos de conformação
Equilíbrio de fases e fortalecimento por solução sólida e por dispersão na solidificação
UNIVESIDADE DE SÃO PAULO EESC SCM5757 Ciência dos materiais I Equilíbrio de fases e fortalecimento por solução sólida e por dispersão na solidificação Prof. Dra. Lauralice Canale 1º. Semestre - 2017 1
A5 Estrutura nãocristalina. -imperfeição. Materiais são preparados com algum grau de impurezas químicas
A5 Estrutura nãocristalina -imperfeição Materiais são preparados com algum grau de impurezas químicas Além das impurezas, existem numerosos tipos de defeitos estruturais que representam uma perda da perfeição
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais DIAGRAMAS DE FASES
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais DIAGRAMAS DE FASES PMT 3100 - Introdução à Ciência dos Materiais para Engenharia 2º semestre de 2014
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS PRÓ-REITORIA DE GRADUAÇÃO
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS PRÓ-REITORIA DE GRADUAÇÃO PLANO DE ENSINO Ano Semestre letivo 2016 1 o 1. Identificação Código 1.1 Disciplina: Ciência dos Materiais 0950003 1.2 Unidade:
10 testes - GABARITO. Estrutura Atômica e Ligação Interatômica
10 testes - GABARITO Estrutura Atômica e Ligação Interatômica 1) Calcule o número de átomos de Cu em um cilindro de cobre maciço com 1 m de altura e 1 m de diâmetro. densidade do Cu = 8,9 g/cm ; massa
Ciência dos Materiais. Difusão. Fabiano Thomazi
Ciência dos Materiais Difusão Fabiano Thomazi Difusão Processo físico dependente do tempo Um elemento penetra em uma matriz Gás Líquido Sólido Variação da concentração de um material em função da posição
Sólidos Cristalinos e Difusão
Universidade de São Paulo Escola de Engenharia de Lorena Departamento de Engenharia de Materiais Sólidos Cristalinos e Difusão Introdução à Ciência dos Materiais Prof. Dr. Cassius O.F.T. Ruchert, Professor
P1 de CTM VOCÊ DEVE ESCOLHER APENAS 5 QUESTÕES PARA RESOLVER. VOCÊ DEVE RISCAR NA TABELA ABAIXO A QUESTÃO QUE NÃO SERÁ CORRIGIDA
P1 de CTM 2014.1 Nome: Assinatura: Matrícula: Turma: OBS: Esta prova contém 7 páginas e 6 questões. Verifique antes de começar. VOCÊ DEVE ESCOLHER APENAS 5 QUESTÕES PARA RESOLVER. VOCÊ DEVE RISCAR NA TABELA
FUNDAMENTOS DE MATERIAIS METÁLICOS I. Engenharia de Materiais 7º Período. Mecanismos de Endurecimento
FUNDAMENTOS DE MATERIAIS METÁLICOS I Engenharia de Materiais 7º Período Mecanismos de Endurecimento Correlação Estrutura-Propriedade-Aplicação- Processamento Mecânicas Magnéticas Térmicas Corrosão Fadiga
Ligação metálica corrente elétrica
Ligações Metálicas Ligação metálica É o tipo de ligação que ocorre entre os átomos de metais. Quando muitos destes átomos estão juntos num cristal metálico, estes perdem seus elétrons da última camada.
Introdução a Engenharia e Ciência dos Materiais
Introdução a Engenharia e Ciência dos Materiais Estrutura Cristalina Prof. Vera L Arantes 2014 25/3/2014 ESTRUTURA CRISTALINA 2 ARRANJO ATÔMICO Por que estudar? As propriedades de alguns materiais estão
Disciplina : Metalurgia Física- MFI Professores: Guilherme Ourique Verran - Dr. Eng. Metalúrgica. Aula 05 - Solidificação e Equilíbrio
Disciplina : - MFI Professores: Guilherme Ourique Verran - Dr. Eng. Metalúrgica Aula 05 - Solidificação e Equilíbrio Desenvolvimento das Microestruturas sob condições de Equilíbrio e de Não Equilíbrio
ES 542 Tratamentos Térmicos. Professor: Felipe Bertelli Site :
ES 542 Tratamentos Térmicos Professor: Felipe Bertelli E-mail: [email protected] Site : www.gps.dema.fem.unicamp.br Pré-requisito para a disciplina: ter cursado a disciplina ES 242 Materiais de
Materiais e Reciclagem. 4 Estruturas Cristalinas com Defeitos
Instituto de Ciência e Tecnologia de Sorocaba Materiais e Reciclagem 4 Estruturas Cristalinas com Defeitos Professor Sandro Donnini Mancini Sorocaba, Março de 2017. Mesmo em materiais considerados 100%
Principais Tipos de Ligações Químicas. Iônicas Covalentes Metálicas
Principais Tipos de Ligações Químicas Iônicas Covalentes Metálicas Principais Tipos de Ligações Químicas Ligações químicas A maioria dos compostos situa-se dentro do triângulo Representações de Lewis Numa
Programa de Pós-graduação em Ciência e Tecnologia de Materiais 1º semestre de Informações e instruções para a resolução da prova
Programa de Pós-graduação em Ciência e Tecnologia de Materiais 1º semestre de 2014 Informações e instruções para a resolução da prova 1. A prova deve ser realizada sem consulta; 2. A duração da prova é
Defeitos cristalográficos e deformação. Rui Vilar Professor Catedrático Instituto Superior Técnico
Defeitos cristalográficos e deformação Rui Vilar Professor Catedrático Instituto Superior Técnico 1 Defeitos em sólidos Não existem cristais perfeitos O que são defeitos cristalográficos? Qual a sua importância?
Disciplina: Ciência dos Materiais. Prof. Alex Bernardi
Disciplina: Ciência dos Materiais Prof. Alex Bernardi 1 Aula Atividade Tele Aula 1 Questão 1. A Ciência dos Materiais é definida como o estudo das relações entre as estruturas e propriedades dos materiais
estrutura atômica cristalino
Aula 0b estrutura atômica cristalina ZEA 1038 Ciência e Tecnologia dos Materiais Prof. João Adriano Rossignolo Profa. Eliria M.J.A. Pallone estrutura atômica cristalino 1 CRISTAL ESTRUTURA CRISTALINA Muitos
Centro Universitário da Fundação Educacional de Barretos. Princípio de Ciências dos Materiais Prof.: Luciano H. de Almeida
Centro Universitário da Fundação Educacional de Barretos Princípio de Ciências dos Materiais Prof.: Luciano H. de Almeida Conteúdo Programático 1. Introdução à ciência dos materiais 2. Ligação química
ESTRUTURA DOS SÓLIDOS CRISTALINOS. Mestranda: Marindia Decol
ESTRUTURA DOS SÓLIDOS CRISTALINOS Mestranda: Marindia Decol Bibliografia Callister Jr., W. D. Ciência e engenharia de materiais: Uma introdução. LTC, 5ed., cap 3, 2002. Shackelford, J.F. Ciências dos Materiais,
DIAGRAMAS DE EQUILÍBRIO DIAGRAMAS DE EQUILÍBRIO
DIAGRAMAS DE EQUILÍBRIO Prof. M.Sc.: Anael Krelling 1 São mapas que permitem prever a microestrutura de um material em função da temperatura e composição de cada componente; Informações sobre fenômenos
RESOLUÇÃO. Universidade Técnica de Lisboa. Instituto Superior Técnico. Ciência de Materiais 1º Teste (21.Abril.2012)
Universidade Técnica de Lisboa Instituto Superior Técnico Ciência de Materiais 1º Teste (21.Abril.2012) RESOLUÇÃO Pergunta Cotação 1. (a) 0,50 1. (b) 0,50 1. (c) 0,50 1. (d) 0,50 1. (e) 0,50 1. (f) 0,50
Programa de Pós-graduação em Ciência e Tecnologia de Materiais 2º semestre de Informações e instruções para a resolução da prova
Programa de Pós-graduação em Ciência e Tecnologia de Materiais 2º semestre de 2015 Informações e instruções para a resolução da prova 1. A prova deve ser realizada sem consulta; 2. A duração da prova é
UNIDADE 6 - VIBRAÇÕES ATÔMICAS E DIFUSÃO NO ESTADO SÓLIDO
UNIDADE 6 - VIBRAÇÕES ATÔMICAS E DIFUSÃO NO ESTADO SÓLIDO 6.1. TAXA DE UM PROCESSO Um grande número de processos que tem a temperatura como força motriz são regidos pela Equação de Arrhenius Q / RT (6.1)
30 Exercícios Resolvidos CAPÍTULO 3 ESTRUTURA CRISTALINA
IFRS - Mestrado em Tecnologia e Engenharia de Materiais DISCIPLINA: Ciência dos Materiais PROFESSOR: Juliano Toniollo ALUNO: PAULO CESAR FRITZEN 30 Exercícios Resolvidos CAPÍTULO 3 ESTRUTURA CRISTALINA
Capítulos 7 e 8 SOLIDIFICAÇÃO E DIFUSÃO ATÓMICA EM SÓLIDOS
Capítulos 7 e 8 SOLIDIFICAÇÃO E DIFUSÃO ATÓMICA EM SÓLIDOS 1*. Considere a nucleação homogénea durante a solidificação de um metal puro. Sabendo que a energia livre de Gibbs de um agregado de átomos aproximadamente
O que são ligas Leves e quando são competitivas?
Ligas Leves O que são ligas Leves e quando são competitivas? Aplicações que requerem controle do peso da estrutura. Propriedades específicas: Resistência/densidade - Resistência específica Tenacidade/densidade
