CATEGORIA: CONCLUÍDO ÁREA: CIÊNCIAS EXATAS E DA TERRA INSTITUIÇÃO: UNIVERSIDADE ANHANGUERA DE SÃO PAULO AUTOR(ES): LÍVIA MARIA DE CASTRO DUARTE

Documentos relacionados
Teste de Laboratórios de Química I e soluções

PRÁTICA 05 - DETERMINAÇÃO DE CLORO ATIVO EM ÁGUA SANITÁRIA E DETERMINAÇÃO IODOMÉTRICA DE ÁCIDO ASCÓRBICO

Relatório: Volumétrica

QUI219 QUÍMICA ANALÍTICA (Farmácia) Prof. Mauricio X. Coutrim

1 Titulação Redox (Volumetria de Oxirredução)

AULA PRÁTICA N 15: DETERMINAÇÃO DE PERÓXIDO DE HIDROGÊNIO NA ÁGUA OXIGENADA Volumetria de oxirredução permanganimetria volumetria direta

QUÍMICA. Prof. Borges VOLUMETRIA - EXERCÍCIOS RESOLVIDOS

Volumetria. Procedimentos gerais

PRÁTICA 01 - INTRODUÇÃO AO TRABALHO NO LABORATÓRIO DE QUÍMICA ANALÍTICA E PREPARO E PADRONIZAÇÃO DE SOLUÇÕES

Aprender a preparar soluções aquosas, realizar diluições e determinar suas concentrações.

Padronizar uma solução aquosa de hidróxido de sódio 0,1mol/L para posteriormente determinar a acidez de amostras.

1. PREPARO DE SOLUÇÕES E TITULAÇÃO

INTRODUÇÃO À TITULOMETRIA PADRONIZAÇÃO DE SOLUÇÕES. META Determinar a concentração de ácido clorídrico por titulometria de neutralização.

QUIO95 - Análises Volumétricas II semestre 2018

RESPOSTAS AOS RECURSOS AO CARGO DE TÉCNICO DE LABORATÓRIO Área: QUÍMICA D

Estudo Estudo da Química

REAGENTES H 2 C N CH 2 CH 2 N CH 2

UÍMICA ANALÍTICA QUANTITATIVA: TITULOMETRIA

VOLUMETRIA DE NEUTRALIZAÇÃO.

QUÍMICA ANALÍTICA QUANTITATIVA: TITULOMETRIA

Universidade Federal de Sergipe Departamento de Química Química Analítica Experimental Prof. Marcelo da Rosa Alexandre Alunos:

Prof a. Dr a. Luciana M. Saran

QUÍMICA ANALÍTICA LISTA DE EXERCÍCIOS SOBRE GRAVIMETRIA, VOLUMETRIA DE NEUTRALIZAÇÃO, VOLUMETRIA DE COMPLEXAÇÃO, OXIDAÇÃO- REDUÇÃO E PRECIPITAÇÃO

Química Analítica I Tratamento dos dados analíticos Soluções analíticas

LISTA DE EXERCÍCIOS # 05 QUÍMICA ANALÍTICA PROF. Wendell

Prof.: Fernanda Turma: TR. Tema da aula: Diluição de Soluções. Figura 1. Diluição de uma solução genérica.

Volumetria de Neutralização

QUIO95 - Análises Volumétricas II semestre 2018

Questões dos exercícios avaliativos para QUI232 t. 43, 44 e 45 em , Prof. Mauricio

Reações em Soluções Aquosas

SOLUÇÕES. C = massa de soluto / volume da solução. A unidade usual para concentração é gramas por litro (g/l). M = mol de soluto / volume de solução

Química Analítica IV INTRODUÇÃO A VOLUMETRIA

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE QUÍMICA

1 a QUESTÃO: (2,0 pontos) Avaliador Revisor

PRÁTICA 07: PADRONIZAÇÃO DE SOLUÇÕES

SOLUÇÕES PREPARO DE SOLUÇÕES. 1. Concentração (C) 3. Percentagem em massa ou em volume. 2. Concentração molar (M)

Introdução aos métodos titulométricos volumétricos. Prof a Alessandra Smaniotto QMC Química Analítica - Farmácia Turmas 02102A e 02102B

MATERIAIS PARA FUNDIÇÃO - DETERMINAÇÃO DO FATOR DA SOLUÇÃO DE AZUL DE METILENO POR TITULAÇÃO COM SOLUÇÃO DE CLORETO TITANOSO (TiCl 3 )

INTRODUÇÃO A TITULAÇÃO

Escolher adequadamente as vidrarias volumétricas a serem utilizadas na titulação;

Calcule o ph de uma solução de HCl 1x10-7 mol L-1

Complemento das Aulas 13 e 14: Os principais equipamentos presentes em um laboratório

TITULAÇÃO EM QUÍMICA ANALÍTICA

Reconhecer as vidrarias volumétricas utilizadas no preparo de soluções;

Química Orgânica Experimental

QUÍMICA. Prof. Borges

DETERMINAÇÃO DE ALGUNS PARÂMETROS CINÉTICOS DA REAÇÃO DE DECOMPOSIÇÃO DO PERÓXIDO DE HIDROGÊNIO.

Introdução aos métodos volumétricos de análise química

TÍTULO: ANÁLISE TITRIMÉTRICA (Volumétrica)

TITULAÇÃO EM QUÍMICA ANALÍTICA

PAG Química Estequiometria

MÉTODOS CLÁSSICOS DE ANÁLISE QUÍMICA QUANTITATIVA A análise química pode ser definida como o uso de um ou mais processos que fornecem informações

EXPERIÊNCIA 7 TITULAÇÃO

PROVA FINAL DE QUÍMICA ANALÍTICA 1 /2015 Departamento de Química - Setor de Química Analítica

AULA 3. Soluções: preparo e diluição. Laboratório de Química QUI OBJETIVOS

Concentração de soluções e diluição

Diluição de soluções

PRÁTICA 02 - DETERMINAÇÃO DA ACIDEZ EM VINAGRE E ÁCIDO FOSFÓRICO EM REAGENTE COMERCIAL

P1 - PROVA DE QUÍMICA GERAL 09/09/11

LABORATÓRIO DE QUÍMICA QUI126 1ª LISTA DE EXERCÍCIOS

INTRODUÇÃO A TITULAÇÃO

Plantão de dúvidas - Lista 12 2 os anos Danilo mai/12. Nome: Nº: Turma: Titulação, ppm, densidade e volumes

Com base nesses dados, calcule: a) Concentração em g/l. b) Título em massa.

Exercícios Complementares - Recuperação Paralela. Soluções parte Dentre as misturas abaixo relacionadas, a que não corresponde a uma solução é

QUI219 QUÍMICA ANALÍTICA (Farmácia)

QUI095 - Análises Volumétricas Aula /3

A análise de muitos cátions metálicos, incluindo o cátion cálcio,

O que você deve saber sobre

AVALIAÇÃO DOS FATORES QUE INFLUENCIAM A VELOCIDADE DAS REAÇÕES QUÍMICAS: PRESENÇA

PROVA FINAL DE QUÍMICA ANALÍTICA 1 /2015 Departamento de Química - Setor de Química Analítica

Prova de Química Analítica

Qui. Professores: Allan Rodrigues Xandão Monitor: Thamiris Gouvêa

QUI201 (145) QUÍMICA ANALÍTICA B (Química Industrial)

PRÁTICA: EQUILÍBRIO QUÍMICO EM SOLUÇÕES. CH3COOCH2CH3 + H2O CH3COOH + CH3CH2OH (1) Acetato de etila água ácido acético etanol

Pb 2e Pb E 0,13 v. Ag 2e Ag E +0,80 v. Zn 2e Zn E 0,76 v. Al 3e Al E 1,06 v. Mg 2e Mg E 2,4 v. Cu 2e Cu E +0,34 v

1. Concentração comum (C) 2. Concentração molar (M) C = massa de soluto / volume da solução. M = mol de soluto / volume de solução

Figura 1: Equilíbrio químico entre as espécies glicose, manose e frutose em meio alcalino

QUÍMICA RECUPERAÇÃO PARALELA. Prof. ALEXANDRE D. MARQUIORETO

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE QUÍMICA PROGRAMA DE PÓS GRADUAÇÃO EM QUÍMICA

Experiência 7. PREPARO DE SOLUÇÃO A PARTIR DE SUBSTÂNCIAS SÓLIDAS, LIQUIDAS E DE SOLUÇÃO CONCENTRADA

Trabalho de Recuperação Final 2018

LABORATÓRIO DE QUÍMICA QUI126 1ª LISTA DE EXERCÍCIOS

EXPERIÊNCIA 8 TITULAÇÃO ÁCIDO-BASE

Reelaboração das aulas práticas de Química Analítica Quantitativa visando diminuir a geração e complexidade dos resíduos

AULA PRÁTICA Nº / Fevereiro / 2016 Profª Solange Brazaca DETERMINAÇÃO DE VITAMINA C

Soluções Curva de solubilidade, concentrações e preparo de soluções Professor Rondinelle Gomes Pereira

RESINA FENÓLICA PARA FUNDIÇÃO - DETERMINAÇÃO DO TEOR DE FENOL LIVRE

QUÍMICA - 3 o ANO MÓDULO 24 DILUIÇÃO DE SOLUÇÕES

MATERIAIS BÁSICOS DO LABORATÓRIO DE QUÍMICA. Tópicos de Química Experimental. Débora Alvim/ Willian Miguel

Experiência 1: Identificação de Amostras Sólidas por densidade 59

VOLUMETRIA DE PRECIPITAÇÃO: DETERMINAÇÃO DE CLORETO DE SÓDIO EM SORO FISIOLÓGICO

Equilíbrio Químico (2)

-0,1-0,2-0,3-0,4-0,5. 0, mol contidos na alíquota de 10 ml. 0,00525 mol contidos no balão de 100 ml. M = 72,0 g/mol

Experiência nº 8: Titulações Ácido-Base

Preparação e padronização de soluções

I semestre Profa. Maria Auxiliadora Costa Matos

ANÁLISE DE MANGANÊS NA PIROLUSITA

FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS FCAV/ UNESP

Química Fascículo 06 Elisabeth Pontes Araújo Elizabeth Loureiro Zink José Ricardo Lemes de Almeida

Transcrição:

TÍTULO: CARACTERIZAÇÃO QUÍMICA DA PALHA DE AÇO E UTILIZAÇÃO DA MESMA NA ELABORAÇÃO DE EXPERIMENTOS DIDÁTICOS E PRODUÇÃO DE SULFATO DE FERRO II (FESO4 ) CATEGORIA: CONCLUÍDO ÁREA: CIÊNCIAS EXATAS E DA TERRA SUBÁREA: QUÍMICA INSTITUIÇÃO: UNIVERSIDADE ANHANGUERA DE SÃO PAULO AUTOR(ES): LÍVIA MARIA DE CASTRO DUARTE ORIENTADOR(ES): SIMONE GARCIA DE ÁVILA

1 RESUMO A palha de aço é um material não-reciclável que é descartado após o uso sem ser empregado a nenhum outro fim senão o da decomposição nos aterros sanitários. Ao utilizarmos esse material como objeto de pesquisa estamos contribuindo com o meio ambiente atribuindo-lhe um destino diferente do acúmulo nos lixões e contribuindo para o aprendizado nas Instituições de Ensino públicas ou privadas em custo acessível. Diante desta problemática, o presente trabalho teve por objetivo a caracterização química da palha de aço, visando a utilização da mesma em experimentos didáticos utilizados no ensino superior de Química, além da obtenção de novas substâncias a partir deste resíduo. O uso desse material servirá também para a produção de substâncias que podem ser empregadas na indústria farmacêutica, em medicamentos de combate a anemia, por exemplo, sendo esse o objetivo principal desse projeto. Palavras-Chave: palha de aço, material não-reciclável, medicamento para anemia. 1. INTRODUÇÃO Este projeto teve início em 04 de Agosto de 2014 e foi desenvolvido através de pesquisa teórica dos métodos analíticos que foram empregados no experimento após terem sidos formulados em reuniões de grupo entre aluno e orientador do projeto. Após as explanações da parte teórica partiu-se para a parte prática do projeto. 2. OBJETIVO Caracterização química da palha de aço para a obtenção de novas substâncias. 3. METODOLOGIA 3.1. Aferição das vidrarias Após tomar nota da temperatura ambiente, adicionou-se H2O à bureta, a pipeta e ao balão para seguir com a aferição. Foi transferido o volume para um béquer (tarado) e pesou-se a massa, anotando o valor. Diminuiu-se a massa do recipiente da massa obtida e aplicou-se o cálculo de densidade da água (d = m/v) para achar o volume real da vidraria. Os dados obtidos por meio da calibração das vidrarias utilizadas estão descritos abaixo:

2 3.1.1 Bureta (50 ml) Massa do béquer vazio (600 ml): 186,164 g H2O (20 C) 0,9982071 g/ml Medições: (a cada 10 ml) 1ª 195,982 g 186,164 g = 9,818 g 2ª 196,128 g 186,164 g = 9,964 g 3ª 196,195 g 186,164 g = 10,031 g 4ª 196,086 g 186,164 g = 9,922 g 5ª 196,061 g 186,164 g = 9,897 g 49,632 g d = m/v 0,9982071 = 49,632 g / v v = 49,632 g / 0,9982071 v = 49,721 ml 3.1.2 Pipeta volumétrica (25 ml) Massa do Erlenmeyer vazio (250 ml): 195,0 g H2O = 20 C = 0,9982071 g/ml Medições: 1ª 220,5 g 195,0 g = 25,5 g 2ª 221,0 g 195,0 g = 25,0 g 25,5 + 25,0 + 25,0 3 = 25,16 g 3ª 221,0 g 195,0 g = 25,0 g d = m/v 0,9982071 = 25,16 g / v v = 25,16 g / 0,9982071 v = 25,20 ml 3.1.3 Balão volumétrico (500 ml) Massa do balão vazio (500 ml): 139,0 g H2O = 20 C = 0,9982071 g/ml Medições: 1ª 636,0 g 139,0 g = 497,0 g 2ª 636,5 g 139,0 g = 497,5 g 497,0 + 497,5 + 497,5 3 = 497,33 g 3ª 636,5 g 139,0 g = 497,5 g d = m/v 0,9982071 = 497,33 g / v v = 497,33 g / 0,9982071 v = 498,22 ml 3.2. Preparo do H2SO4 A 2,0 mol/l Pipetou-se 54,35 ml da solução de H2SO4 concentrado e transferiu-se para um béquer de 250 ml já com 150 ml de água. Transferiu-se o volume contido no béquer para um balão de 500 ml e avolumou-se para o volume do recipiente. Após a homogeneização da solução, transferiu-se o volume do balão para um frasco de vidro âmbar identificando a molaridade e data de preparo. O cálculo do valor (ml) do ácido concentrado para preparo da solução foi:

3 Teor: 98% densidade: 1,840 g/ml Peso molar: 98,1 g/mol 2,0 mol 1000 ml 1,0 mol = 98 g H2SO4 1000 g da solução conc. X 500 ml 1,84 g solução 1,0 ml 100 g X = 54,35 ml 3.3. Preparo do KMnO4 a 0,02 mol/l Pesou-se cerca de 1,6 g de KMnO4 pa. em balança não analítica em um pequeno béquer. Transferiu-se para um erlenmeyer de 1000 ml com cerca de 500 ml de água e após a dissolução a solução foi aquecida a 70 C por duas horas. Após resfriamento, guardou-se a solução em frasco de vidro âmbar. Filtrou-se no dia seguinte em funil de placa porosa de vidro sintetizado com lã de vidro. O frasco escuro foi ambientado com a solução e após descarte dessa quantidade usada a solução foi transferida para o recipiente ambientado para a reserva da mesma. O cálculo utilizado para preparo da solução foi: 1000 ml 0,02 mol 500 ml X = 0,01 mol 1,0 mol 158 g (KMnO4) 0,01 mol X = 1,6 g de KMnO4 3.4. Padronização da solução de KMnO4 a 0,02mol/L Procedeu-se a padronização da solução de KMnO4 com o Na2C2O4, já previamente dessecado em estufa a 110 C até peso constante. Pesou-se em balança analítica uma porção de cerca de 0,2 g de Na2C2O4 diretamente em Erlenmeyer de 250 ml e essa quantidade foi dissolvida em cerca de 70 ml de água destilada. Juntou-se 30 ml de H2SO4 1:5 (v/v) e aqueceu-se a mistura a 70-75 C. Usando um fundo branco, a solução de KMnO4 foi titulada. Manteve-se a temperatura entre 60 75 C durante toda a titulação. O ponto final dessa titulação foi indicado pelo aparecimento de coloração levemente rósea, persistente por 30 segundos.

4 Após a padronização, identificou-se o frasco com a molaridade e a data de preparo da solução. Reações envolvidas: +7-8 +6-8 +2-2 MnO4 - (aq) + 5 C2O 2-4(aq) + 8 H + (aq) Mn 2+ (aq) + 4 H2O(l) + 10 CO2(g) +7-2 +3-2 +1 +2 +4-4 +4-2 Reduziu 5 ē = Agente oxidante Oxidou 1 ē = Agente redutor Cálculo da massa de Na2C2O4 para preparo da solução padrão: Supondo um gasto de 25 ml de KMnO4 pode-se achar a quantidade de mols de Na2C2O4 necessária para reagir com esse volume, 1000 ml 0,02 mol 25 ml X = 5,0 x 10-4 mols KMnO4 Pela equação de reação de oxirredução, seguindo o método de íon-elétron, sabemos que a reação é de 1:5, ou seja, para cada 1 mol de KMnO 4 reagem 5 mols de Na2C2O4, então: 1,0 mol KMnO 4 5,0 mols de Na2C2O4 5,0 x 10-4 mols X = 2,5 x 10-3 mols de Na2C2O4 1,0 mol de Na2C2O4 134 g 2,5 x 10-3 X = 0,335 g de Na2C2O4 Análise titrimétrica de oxirredução do KMnO4: Este método envolve o uso de agentes oxidantes para a titulação de agentes redutores, e vice-versa, e tem como restrição básica a necessidade de grande diferença entre os potenciais de oxidação e redução de modo a ter-se mais nítidos resultados, sendo estes detectados por meio de indicadores químicos ou de vários métodos eletrométricos (indicadores físicos). Para se obter a concentração da solução preparada de KMnO4 foram realizadas três análises e calculada a média dos resultados.

5 1ª) 0,315 g de Na2C2O4 12 ml de H2SO4 100 ml de H2O para um gasto de 28,34* ml de KMnO4 1 mol de Na2C2O4 134 g X 0,315 g = 2,35 x 10-3 mols Na2C2O4 1mol de KMnO4 5 mols de Na2C2O4 X 2,35 x 10-3 mols = 4,70 x 10-4 mols de KMnO4 [KMnO4] = mols [KMnO4] = 4,70 x 10-4 [KMnO4] = 0,016607 mol/l vol (L) 2,83 x 10-2 2ª) 0,349 g de Na2C2O4 12 ml de H2SO4 100 ml de H2O para um gasto de 28,84* ml de KMnO4 1 mol de Na2C2O4 134 g X 0,349 g = 2,60 x 10-3 mols Na2C2O 4 1mol de KMnO4 5 mols de Na2C2O4 X 2,60 x 10-3 mols = 5,21 x 10-4 mols de KMnO4 [KMnO4] = mols [KMnO4] = 5,21 x 10-4 [KMnO4] = 0,018090 mol/l vol (L) 2,88 x 10-2 3ª) 0,326 g de Na2C2O4 12 ml de H2SO4 100 ml de H2O para um gasto de 27,54* ml de KMnO4 1 mol de Na2C2O4 134 g X 0,326 g = 2,43 x 10-3 mols Na2C2O4

6 1mol de KMnO4 5 mols de Na2C2O4 X 2,43 x 10-3 mols = 4,87 x 10-4 mols de KMnO4 [KMnO4] = mols [KMnO4] = 4,87 x 10-4 vol (L) 2,75 x 10-2 [KMnO4] = 0,017709 mol/l Média da [KMnO4] = 0,017468 mol/l *volume real aferido na bureta, conforme cálculo: 50 ml 49,721 ml Vol. gasto X 3.5. Preparo da solução de FeSO4 para obtenção do cristal Pesou-se 3,00 g de palha de aço em um erlenmeyer e acrescentou-se 50 ml de H2SO4 2,0 mols/l. A mistura foi aquecida no bico de Bunsen até a diluição total da palha de aço. Resfriou-se a solução e filtrou-se em papel filtro qualitativo faixa preta. Após a filtração, foi adicionado à solução filtrada 50 ml de etanol para favorecer a precipitação do cristal. O recipiente com a solução foi reservado por 24 hs em uma cuba com gelo para acelerar o processo de precipitação. Após esse período, filtrou-se o sólido obtido. 3.6.Análise do Fe 2+ Pesou-se 0,57 g de palha de aço em um béquer e acrescentou-se 50 ml de H2SO4 2,0 mol/l. Aqueceu-se essa mistura no bico de Bunsen até a dissolução total da palha de aço. Após o resfriamento da solução, filtrou-se diretamente em um balão volumétrico de 100 ml e completou-se com H2O destilada até a marca do balão, homogeneizando a solução. Retirou-se a alíquota de 25 ml desta solução contendo íons Fe 2+ e transferiu-se para um erlenmeyer de 250 ml onde foi adicionado 5 ml de H2SO4 1:5 e 6 ml de H3PO4 para complexar o íon Fe 3+ que aparece na reação de oxirredução e que apresenta coloração amarelada dificultando a visualização do ponto de viragem da reação. Com os dados obtidos calculou-se a concentração de Fe 2+ em g/ml expresso em molaridade. Considerando o Fe como constituinte principal da palha de aço, temos a seguinte reação no processo de dissolução: Fe (s) + 2 H + (aq) + SO4 2- (aq) Fe 2+ (aq) + SO4 2- (aq) + H2 (g)

7 4. RESULTADOS A padronização de uma substância é necessária para se determinar qualitativamente a presença de alguma substância, até então desconhecida, e a concentração real dessa substância na amostra a ser titulada. No caso da padronização do KMnO4, utiliza-se comumente o sal Na2C2O4, em meio ácido concentrado por ser um agente redutor do MnO4 - e um padrão primário, ou seja, pouco higroscópico, não reativo com o ambiente e alterações de temperatura. A reação que ocorre nesse procedimento é demonstrada na equação abaixo: MnO4 - (aq) + 8 H + (aq) + 5 C2O4 2- (aq) Mn 2+ (aq) + 10 CO2 (g) + 4 H2O (l) A solução de H2SO4 à 2,0 mols/l foi utilizada na dissolução da palha de aço pesada (Fig. 1). Essa dissolução foi realizada em duas vezes: para o preparo de solução de FeSO4 para a titulação de determinação do teor de íons Fe 2+ (Fig. 3 a e b) presente na solução e para a obtenção do cristal de FeSO4 (Fig. 4 a e b). Durante a dissolução da amostra foi observado o desprendimento de gás (Fig. 2), sendo decorrente da produção de gás hidrogênio (H2(g)). Entretanto, foi observado também a liberação de um gás com odor irritante, característico do acetileno, decorrente da reação do carvão residual existente no aço com o gás hidrogênio formado, conforme equação abaixo. 2 C(s) + H2 (g) C2H2 (g) Na análise do Fe 2+, descobriu-se a quantidade de FeSO 4 que se pode obter pela porcentagem do íon presente em solução e posteriormente a sua massa, determinando a quantidade de FeSO 4 gerada. Essa quantidade, dependendo da proporção em que for aumentada, poderá ser utilizada em larga escala tanto na produção de medicamentos à base de FeSO 4 tanto quanto em formulação de tintas. (Fig. 1 - Pesagem da amostra de palha de aço para dissolução em H2SO4 2,0 mol/l) (Fig. 2 - Dissolução da amostra em H2SO4 2,0 mol/l, desprendimento de H2(g))

8 (Fig. 3 a - Filtração da solução de FeSO4.) (Fig. 3 b - Solução filtrada de FeSO4 para análise do Fe 2+ ) (Fig. 4 a - Precipitação dos cristais pela ação do gelo.) (Fig. 4 b - Cristais de FeSO4.) Cálculo da quantidade de massa necessária para reagir com determinado volume de KMnO4: Sabendo que a [KMnO4] é igual a 0,017 mol/l e supondo um gasto de 30 ml dessa solução para a reação com o íon Fe 2+, 1000 ml 0,017 mol 30,0 ml X = 0,00051 mols de KMnO4 Como a reação é de 1:5, ou seja, para cada 1 mol de KMnO4 reagem 5 mols de Fe, conforme a equação abaixo

9 +7-8 MnO4 - (aq) + 5 Fe 2+ (aq) + 8 H + (aq) Mn 2+ (aq) + 5 Fe 3+ (aq) + 4 H2O(l) +7-2 2+ +2 3+ +4-4 Reduziu 5 ē = Agente oxidante Oxidou 1 ē = Agente redutor 1,0 mol de KMnO4 5,0 mols de Fe 0,00051 mols X = 0,00255 mols de Fe 1,0 mol de Fe 56 g 0,00255 mols X = 0,1428 g de Fe na alíquota de 25 ml 25 ml 0,1428 g de Fe 100 ml X = 0,5712 g de Fe no balão de 100 ml Cálculo do teor de Fe presente na amostra: 25 ml de FeSO4 2 ml de H2SO4 conc. Volume gasto de KMnO4 = 21,18* ml 6 ml de H3PO4 conc. 1000 ml 0,017468 mol de KMnO4 21,18 ml X = 3,70 x 10-4 mols de KMnO4 1,0 mol de KMnO4 5,0 mols de Fe 3,70 x 10-4 mols X = 1,85 x 10-3 mols de Fe 1,85 x 10-3 mols de Fe 25 ml X 100 ml = 7,40 x 10-3 mols de Fe (no balão) 1,0 mol de Fe 56 g 7,40 x 10-3 mols X = 0, 414 g de Fe

10 0,5852 g 100% 0,414 g X = 70,80% de Fe presente na palha de aço Fe(s) + H2SO4(aq) FeSO4(aq) + H2(g) 56 g de Fe 152 g de FeSO4 0,414 g X = 1,12 g de FeSO4 presente na amostra 5. CONSIDERAÇÕES FINAIS Com as informações obtidas neste relatório é possível admitir que em uma amostra de 0,5852 g de palha de aço há uma porcentagem em teor de Fe de 70,80%, que representa 0,414 g de Fe em massa na amostra. Na obtenção do cristal FeSO4, partindo dos valores encontrados através dos cálculos empregados (demonstrados no item anterior), em 3,00 g de amostra (palha de aço) foi adquirida uma quantidade de 1,12 g dessa substância. Isso nos leva a crer que se aumentarmos a quantidade do material utilizado como fonte de FeSO4 teremos maior rendimento da substância reduzindo significativamente o acúmulo desses materiais nos lixões e beneficiando em maior quantidade a produção de medicamentos para anemia. 6. FONTES CONSULTADAS SARDELLA, Antônio; MATEUS, Edegar; Curso de Química: química geral, Ed. Ática, São Paulo/SP 1995; N. Baccan,.J C de Andrade, O E S Godinho,. J. S. Barone; QUÍMICA ANALÍTICA QUANTITATIVA ELEMENTAR ; Editora Edgard Blücher Ltda; VOGEL, A. I.; Análise Química Quantitativa; DTC Editora; São Paulo, 1992.