Síntese de ácidos gordos e triacilgliceróis

Documentos relacionados
Lipogénese e síntese dos triacilgliceróis

Síntese de ácidos gordos e triacilgliceróis

Síntese de ácidos gordos e triacilgliceróis

Síntese de ácidos gordos e triacilgliceróis

BIOSSÍNTESE DE ÁCIDOS GRAXOS E REGULAÇÃO DO METABOLISMO DE GORDURAS

Anabolismo dos Lípidos. Maria da Glória Esquível 2014

Acetil CoA e Ciclo de Krebs. Prof. Henning Ulrich

Gliconeogénese e Metabolismo do Glicogénio

Introdução e apresentação geral do metabolismo da glicose

Lipídeos e ácidos graxos

Corpos cetônicos. Quais são? A partir de qual composto se formam? Como se formam? Quando se formam? Efeitos de corpos cetônicos elevados?

Resumo esquemático da glicólise

A denominação das cínases não tem em linha de conta o sentido em que a reacção ocorre nos seres vivos

Graxos. Metabolismo dos Lipídios. Oxidação. Degradação dos Triacilgliceróis is (TG) do Tecido Adiposo. Tecido Adiposo. Tecido Adiposo.

Visão geral do metabolismo glicídico

Oxidação dos ácidos gordos

Gliconeogénese. glicose-6-p + H 2 O glicose + Pi (1)

O 2 CO 2 + H 2 O. Absorção da glicose, glicólise e desidrogénase do piruvato. ADP + Pi. nutrientes ATP

Mecanismo de transporte dos grupos acetil da mitocôndria para o citosol.

Biossíntese de Lipídeos. Profa. Alana Cecília

Metabolismo de Lipídeos

Corpos cetônicos e Biossíntese de Triacilglicerois

Bibliografia. BIOQUÍMICA I 2010/2011 Ensino teórico - 1º ano Mestrado Integrado em Medicina. Stryer, Biochemistry, 5ª Ed, 2006, Capítulo 17

26/4/2011. Beta-Oxidação de Ácidos Graxos. Principal fonte de Ácidos Graxos são os TRIGLICÉRIDES

Integração dos metabolismos dos carbohidratos, gorduras e proteínas ao longo do dia e no jejum prolongado

Oxidação dos ácidos gordos

BIOSSÍNTESE DE ÁCIDOS GRAXOS E TRIACILGLICERÓIS. Bianca Zingales IQ-USP

Integração dos metabolismos dos carbohidratos, gorduras e proteínas ao longo do dia e no jejum prolongado

MAPA II POLISSACARÍDIOS PROTEÍNAS LIPÍDIOS GLICOSE AMINOÁCIDOS ÁCIDOS GRAXOS. Leu Ile Lys Phe. Gly Ala Ser Cys. Fosfoenolpiruvato (3) Piruvato (3)

Profa. Alessandra Barone.

Doenças Metabólicas. Revisão Bioquímica. Bruna Mion

Ciclo de Krebs ou Ciclo do ácido cítrico. Prof. Liza Felicori

2- No dia estavam classificadas 4046 enzimas que podem ser consultadas em

FISIOLOGIA VEGETAL 24/10/2012. Respiração. Respiração. Respiração. Substratos para a respiração. Mas o que é respiração?

Metabolismo do azoto dos aminoácidos e ciclo da ureia

Processo de obtenção de energia das células respiração celular

Metabolismo e Regulação

Ciclo do Ácido Cítrico ou Ciclo de Krebs ou Ciclo dos Ácidos Tricarboxílicos

Metabolismo dos corpos cetónicos

Oxidação dos ácidos gordos

Revisão do Metabolismo da Glicose

Processo de obtenção de energia das células respiração celular

Oxidação dos ácidos gordos

5/4/2011. Metabolismo. Vias Metabólicas. Séries de reações consecutivas catalisadas enzimaticamente, que produzem produtos específicos (metabólitos).

Fontes de Ácidos Graxos. Dieta Estoque de gorduras Síntese de outras fontes

Acetil CoA e Ciclo de Krebs. Prof. Henning Ulrich

Via das pentoses-fosfato

Glicogênese, Glicogenólise e Gliconeogênese. Profa. Alessandra Barone

Funções do Metabolismo

Mobilização e Oxidação de Lipídeos

30/05/2017. Metabolismo: soma de todas as transformações químicas que ocorrem em uma célula ou organismo por meio de reações catalisadas por enzimas

Universidade Federal do Pampa Campus Itaqui Bioquímica GLICONEOGÊNESE. Profa. Dra. Marina Prigol

CICLO DE KREBS. Bianca Zingales IQ-USP

Lipídeos de armazenamento. (Gorduras e óleos) Substâncias que originam ácidos graxos e usadas como moléculas que armazenam energia nos seres vivos.

Metabolismo CO 2 + H 2 O O 2 + CH 2 O

Lipólise e Oxidação dos ácidos gordos

Pontifícia Universidade Católica de Goiás Departamento de Biologia Bioquímica Metabólica ENZIMAS

CADEIA DE TRANSPORTE DE ELÉTRONS E FOSFORILAÇÃO OXIDATIVA COMO AS CÉLULAS SINTETIZAM ATP

Bioquímica Fundamentos da Bioquímica Β-Oxidação. Profª. Ana Elisa Matias

Anderson Guarise Cristina Haas Fernando Oliveira Leonardo M de Castro Sergio Vargas Júnior

Gliconeogénese Índice

Metabolismo do azoto dos aminoácidos e ciclo da ureia

CADEIA DE TRANSPORTE DE ELÉTRONS E FOSFORILAÇÃO OXIDATIVA COMO AS CÉLULAS SINTETIZAM ATP

Integração do metabolismo - sugestões de respostas 1

objetivo Ciclo da uréia Pré-requisito Ao final desta aula, você deverá ser capaz de: Entender as etapas de formação da uréia.

Metabolismo de Carboidratos

Dra. Kátia R. P. de Araújo Sgrillo.

Aula Neoglicogênese Gliconeogênese

Metabolismo de Lipídios

Gliconeogênese. Gliconeogênese. Órgãos e gliconeogênese. Fontes de Glicose. Gliconeogênese. Gliconeogênese Metabolismo dos aminoácidos Ciclo da Uréia

Via das pentoses-fosfato

Hoje iremos conhecer o ciclo de Krebs e qual a sua importância no metabolismo aeróbio. Acompanhe!

Universidade Federal do Pampa Campus Itaqui Bioquímica GLICÓLISE AERÓBICA. Ciclo de Krebs e Fosforilação Oxidativa. Profa.

Obtenção de Energia. Obtenção de Energia. Obtenção de Energia. Oxidação de Carboidratos. Obtenção de energia por oxidação 19/08/2014

Digestão e metabolismo energético dos lipídeos. A oxidação do etanol.

Gliconeogénese. glicose-6-fosfato + H 2 O glicose + Pi

Cinética e regulação enzímicas (a velocidade das reacções enzímicas in vivo e in vitro)

12/11/2015. Disciplina: Bioquímica Prof. Dr. Vagne Oliveira

Glicólise. Professora Liza Felicori

BIOSSÍNTESE DE ÁCIDOS GRAXOS

BIOLOGIA. Moléculas, células e tecidos. Respiração celular e fermentação Parte 1. Professor: Alex Santos

Membrana interna. Cristas. Matriz Membrana externa. P i P i P i. 7,3 kcal/mol 7,3 kcal/mol 3,4 kcal/mol

Aula de Bioquímica II SQM Ciclo do Ácido Cítrico

REGULAÇÃO HORMONAL DO METABOLISMO DO GLICOGÊNIO E DE LIPÍDIOS

QBQ 0230 Bioquímica. Carlos Hotta. Metabolismo integrado do corpo 17/11/17

Glicogênio, amido e sacarose

Oxidação parcial o que acontece com o piruvato?

MANUAL DA DISCIPLINA DE BIOQUÍMICA CURSO DE FISIOTERAPIA

Metabolismo dos triacilgliceróis e do etanol

Aula de Bioquímica II. Ciclo do Ácido Cítrico

Exemplos: Exemplos: Síntase da hidroxi-metil-glutaril-coa

A actividade das enzimas e o seu controlo na regulação do fluxo das vias metabólicas

CICLO DE KREBS. Em condições aeróbias: mitocôndria. citosol. Glicólise. ciclo de Krebs. 2 piruvato. 2 Acetil CoA. Fosforilação oxidativa

METABOLISMO DE CARBOIDRATOS METABOLISMO DOS LIPÍDIOS METABOLISMO DE PROTEÍNAS

O ciclo de Krebs ou do ácido cítrico

Transcrição:

Síntese de ácidos gordos e triacilgliceróis Página 1 de 6 Síntese de ácidos e triacilgliceróis; Rui Fontes 1- O termo lipogénese pode utilizar-se para referir genericamente todos os processos que levam à síntese de lipídeos, quer a partir de compostos não lipídicos, quer a partir de componentes lipídicos da dieta. No entanto também pode ser utilizado num sentido mais restrito e referir-se à síntese endógena de palmitato (maioritariamente a conversão de glicose em palmitato) e incluir ou não transformações que o palmitato sintetizado endogenamente pode sofrer (dessaturação e elongação) e a subsequente esterificação (maioritariamente a síntese de triacilgliceróis). O contexto poderá ajudar a perceber o sentido em que o termo lipogénese está a ser utilizado mas para evitar eventuais ambiguidades usa-se, por vezes, a expressão lipogénese de novo para referir a síntese endógena de ácidos gordos e outros lipídeos a partir de precursores não lipídicos. Para evitar eventuais ambiguidades o termo lipogénese será usado com parcimónia no texto que se segue. 2- Embora os ácidos gordos com número par de carbonos (a maioria) não sejam substratos para a síntese de glicose, a glicose pode ser substrato para a síntese de ácidos gordos. Comparativamente com outros tecidos, esta síntese é mais activa no fígado, no tecido adiposo e na glândula mamária activa. Nos músculos esqueléticos não há síntese de ácidos gordos porque, neste tecido, não existe a síntase do palmitato, uma das enzimas da via metabólica que leva à conversão da acetil-coa em palmitato. 3- No homem adulto, a lipogénese de novo é, nas condições das dietas mistas mais comuns nos países sem problemas de défice nutricional, uma via metabólica muito pouco activa; em geral, a massa de palmitato formada endogenamente não chega a 5% da massa dos ácidos gordos provenientes da dieta. O destino metabólico mais importante dos glicídeos é a conversão em glicogénio e, em última análise, a sua oxidação; não é a conversão em ácidos gordos [1]. Contudo, a síntese endógena de palmitato pode ter relevância quando existe ingestão elevada de glicídeos no contexto duma dieta pobre em lipídeos; se o valor calórico dos glicídeos da dieta exceder a despesa energética, os glicídeos em excesso são convertidos em palmitato [1]. O acetil-coa forma-se na mitocôndria a partir do piruvato (produto da glicólise) por acção catalítica da desidrogénase do piruvato e pode originar palmitato. No entanto, as enzimas envolvidas na conversão da acetil-coa em palmitato estão no citoplasma e não na mitocôndria. O transporte de acetil-coa da mitocôndria para o citoplasma envolve a (1º) formação de citrato na mitocôndria (síntase do citrato: ver equação 1), (2º) o transporte de citrato para o citoplasma (ver equação 2) e (3º) a regeneração de acetil-coa no citoplasma (ATP-citrato líase: ver equação 3). acetil-coa + oxalacetato + H 2 O citrato + CoA (reacção na mitocôndria) (1) citrato (mitocôndria) citrato (citoplasma) (2) citrato + CoA + ATP oxalacetato + acetil-coa + ADP + Pi (reacção no citoplasma) (3) 4- O palmitato é um ácido gordo saturado com 16 carbonos e a sua síntese ocorre pela adição sucessiva de unidades de 2 carbonos ao grupo acetilo do acetil-coa. Estas unidades de 2 carbonos também têm origem no acetil-coa mas a sua utilização requer a prévia activação a malonil-coa. A carboxílase de acetil-coa (ver equação 4) é uma lígase que contém como grupo prostético a biotina e que catalisa a formação de malonil-coa. A reacção pode ser entendida como a acoplagem de um processo exergónico (a hidrólise do ATP) com outro endergónico (a de carboxilação da acetil-coa). A síntese de malonil- CoA é o primeiro passo na síntese de palmitato mas, mesmo em células onde esta síntese não é um processo relevante ou não existe (músculos esquelético e cardíaco), a carboxílase de acetil-coa tem um papel importante pois o malonil-coa regula (inibe) a oxidação dos ácidos gordos. ATP + H 2 O + CO 2 + acetil-coa ADP + Pi + malonil-coa (4) 5- A segunda enzima envolvida na síntese do palmitato é a síntase do palmitato (também designada de síntase de ácidos gordos), uma enzima dimérica citoplasmática que contém como grupo prostético a 4 - fosfopanteteína (um derivado do ácido pantoténico). A síntase do palmitato é um complexo multienzímico que contém 7 actividades catalíticas distintas que operam sequencialmente. A síntese do palmitato começa com a (1) transferência de um resíduo acetilo da acetil-coa para um grupo tiol de um resíduo de cisteína da síntase e (2) com a transferência do resíduo malonilo da malonil-coa para outro grupo tiol, o grupo tiol da 4 -fosfopanteteína. Seguidamente ocorre (3) a transferência do resíduo acetilo para o carbono 2 do resíduo malonilo com libertação do CO 2 e a formação de aceto-acetil-enzima, (4) a

Página 2 de 6 Síntese de ácidos e triacilgliceróis; Rui Fontes redução dependente do NADPH do aceto-acetil-enzima a D-hidroxi-acil-enzima, (5) a desidratação do D-hidroxi-acil-enzima a 2 -enoil-enzima e (6) a redução também dependente do NADPH do 2 -enoilenzima a acil-enzima. Após a adição de uma unidade de 2 carbonos ao acetilo o acil-enzima formado é o butiril-enzima (4C). A transferência do resíduo acilo ligado à 4 -fosfopanteteína para a cisteína e de um novo malonilo (do malonil-coa) para a 4'-fosfopanteteína permite a continuação da síntese em sucessivos ciclos de adição de 2 carbonos. Na fase de palmitil-enzima (C16) ocorre (7) a hidrólise (tioestérase) e a libertação de palmitato não esterificado. Partindo de acetil-coa, em cada ciclo catalítico (de 6 passos) são acrescentados 2 carbonos e, ao fim de 7 ciclos, dá-se uma hidrólise que liberta palmitato (C16). Em cada ciclo o dador dos 2 carbonos acrescentados é o malonil-coa e o carbono 2 do resíduo de malonilo liga-se no carbono carboxílico do ácido gordo saturado intermediário (com sucessivamente 2, 4, 6, 8, 10, 12 e 14 carbonos) que é substrato em cada ciclo. 6- A equação soma relativa à actividade da síntase do palmitato pode ser escrita: 7 malonil-coa + acetil-coa + 14 NADPH palmitato + 6 H 2 O + 14 NADP + + 7 CO 2 + 8 CoASH (5) Durante o processo catalisado pela síntase do palmitato ocorre a libertação dos CO 2 que haviam sido usados na carboxilação do acetil-coa a malonil-coa (ver equações 4 e 5). Na actividade da síntase de palmitato, o passo em que ocorre a libertação do CO 2 é um passo exergónico que contribui para que o processo reactivo global evolua no sentido da formação do palmitato e não em sentido inverso. Embora todos os carbonos do palmitato sintetizado provenham do resíduo acetilo do acetil-coa, apenas os carbonos 15 e 16 resultam directamente do acetil-coa que não foi previamente (via carboxílase de acetil-coa) convertido em malonil-coa. 7- Se estritamente descrito pelas reacções representadas pelas equações 1-3, o processo de transporte de acetil-coa da mitocôndria para o citoplasma seria, obviamente, insustentável: estas equações representam um processo cataplerótico sem que, simultaneamente, ocorra um outro anaplerótico. O processo descrito levaria ao esgotamento do oxalacetato mitocondrial e à sua acumulação no citoplasma. Uma via metabólica que poderá ter relevância no processo anaplerótico compensador inclui a acção da enzima málica: o oxalacetato é reduzido a malato no citoplasma (desidrogénase do malato; ver equação 6); de seguida, o malato é oxidado a piruvato (enzima málica; também designada de desidrogénase do malato dependente do NADP + ; ver equação 7) e, por último, o piruvato entra para a mitocôndria onde é convertido em oxalacetato pela acção da carboxílase do piruvato (equação 8). Esta via permite, simultaneamente, fornecer parte dos equivalentes redutores (na forma de NADPH) para a actividade da síntase do palmitato e transportar oxalacetato do citoplasma para a matriz. oxalacetato + NADH malato + NAD + (6) malato + NADP + piruvato + CO 2 + NADPH (7) piruvato + ATP + CO 2 oxalacetato + ADP + Pi (8) Uma outra via que permite a conversão de oxalacetato citoplasmático em oxalacetato mitocondrial (mas, neste caso, sem haver formação concomitante de NADPH) é a sua redução a malato no citoplasma (ver equação 6), a entrada do malato para a mitocôndria e a sua subsequente re-oxidação a oxalacetato na matriz mitocondrial (ver equação 6). 8- Por mole de palmitato sintetizado 14 moles de NADPH oxidam-se a NADP + (ver equação 5). No entanto, mesmo que admitamos que a via metabólica descrita pelas equações 6-8 é a única envolvida no transporte de oxalacetato do citoplasma para a mitocôndria, a via permite formar apenas 8 NADPH (1 por cada oxalacetato transportado) por mole de palmitato sintetizado. Para além da enzima málica (ver equação 7) existem outras enzimas citoplasmáticas envolvidas na redução do NADP + e que têm relevância no processo de síntese de palmitato. Na via das pentoses-fosfato, a redução do NADP + ocorre por acção catalítica da desidrogénase da glicose-6-p e da desidrogénase do 6-fosfogliconato (ver equações 9 e 10) mas esta redução também pode resultar da acção da desidrogénase do isocitrato citoplasmática (ver equação 11). Dado que a glicose é o combustível da via das pentoses-fosfato e que, quer o malato, quer o isocitrato (intermediários do ciclo de Krebs) se formam (via carboxílase do piruvato) a partir da glicose, pode dizer-se que, para além de fornecer o substrato para a síntese de

Síntese de ácidos e triacilgliceróis; Rui Fontes palmitato (acetil-coa), a glicose é também essencial no processo de formação do agente redutor pertinente no processo: o NADPH. glicose-6-fosfato + NADP + 6-fosfogliconolactona + NADPH (9) 6-fosfogliconato + NADP + ribulose-5-fosfato + NADPH + CO 2 (10) isocitrato + NADP + -cetoglutarato + CO 2 + NADPH (11) 9- Quer o palmitato formado endogenamente, quer os ácidos gordos que entram nas células são imediatamente activados. A expressão activação dos ácidos gordos é usada para referir a sua esterificação com a coenzima A e é catalisada pela sintétase de acil-coa (ver equação 12). A formação de acis-coa é sempre o primeiro passo nas diferentes vias que os ácidos gordos podem seguir nomeadamente a dessaturação (introdução de duplas ligações), a elongação (aumento do tamanho da cadeia carbonada), a esterificação (síntese de triacilgliceróis ou outros lipídeos complexos), a oxidação (conversão em acetil-coa e passos subsequentes) ou a conversão em corpos cetónicos. ácido gordo + CoA + ATP acil-coa + AMP + PPi (12) 10- Na regulação da síntese de palmitato estão envolvidos quer mecanismos de curto prazo como a fosforilação inactivadora e a activação e inibição alostéricas da carboxílase de acetil-coa, quer mecanismos de longo prazo envolvendo a indução de genes codificadores das enzimas que participam nestes processos. A insulina tem acções activadoras quer de curto quer de longo prazo. No fígado, a glicagina tem acções inibidoras. A disponibilidade de glicose tem também um papel independente da insulina na activação do processo. A pouca relevância da lipogénese de novo nos países mais desenvolvidos são uma consequência das dietas típicas nestes países (comparativamente com outras, mais ricas em lipídeos e mais pobres em glicídeos) e dos seus efeitos na regulação deste processo. 11- A lipogénese de novo pode ser activada se a dieta for rica em glicose (e pobre em lipídeos) durante uma série de dois ou mais dias (regulação a longo prazo ). Neste efeito estão envolvidos mecanismos que envolvem a activação da transcrição dos genes de enzimas directamente envolvidas na lipogénese (líase do ATP-citrato, carboxílase da acetil-coa e síntase do palmitato), de enzimas envolvidas na redução do NADP + (desidrogénases de glicose-6-fosfato e 6-fosfogliconato e enzima málica) e, no fígado, de enzimas da glicólise (hexocínase IV e cínase do piruvato). A transcrição destes genes é activada pela ingestão de glicose. Um dos mecanismos envolvidos é o aumento na concentração citoplasmática de xilulose-5-p (intermediário da via das pentoses-fosfato) que, alostericamente, activa uma fosfátase A2 que promove a desfosforilação e consequente activação de um factor de transcrição denominado ChREBP (proteína de ligação ao elemento de resposta aos carbohidratos) [3-4]. Um outro mecanismo envolve a insulina (cuja síntese e libertação aumenta se a dieta for rica em glicídeos) que estimula a síntese de um outro factor de transcrição denominado SREBP-1c (proteína 1c de ligação ao elemento de resposta aos esteróides 1 ). Os elementos de resposta aos factores de transcrição ChREBP e SREBP-1c existem nos promotores dos genes acima referidos e a ligação de um ou outro destes factores induz a sua transcrição. 12- A actividade da carboxílase da acetil-coa fornece malonil-coa para a síntese de palmitato (e para a elongação) e a sua regulação de curto prazo tem sido muito estudada. Para além de regulada ao nível da transcrição a carboxílase de acetil-coa também é regulada (i) por fosforilação e desfosforilação reversíveis e (ii) por mecanismos alostéricos (citrato activador e acis-coa inibidores). Quando a glicemia e/ou a insulina estão elevadas a concentração de citrato (em última análise o precursor citoplasmático da via em análise; ver equação 3) aumenta ligeiramente no fígado e admite-se que esta variação poderá contribuir para a activação da carboxílase de acetil-coa. Nestas condições metabólicas as cínases de proteínas que catalisam fosforilações inactivadoras da carboxílase de acetil-coa estão pouco activas. A enzima com o papel mais importante na inactivação da carboxílase de acetil-coa é a cínase de proteínas activada pelo AMP (AMPK). A AMPK é uma cínase de proteínas que está mais activa quando aumenta a concentração intracelular de AMP ou a concentração intracelular de ácidos gordos. Durante o jejum, as concentrações plasmáticas de ácidos gordos e de glicagina estão aumentadas. 1 Embora de denomine steroid response element binding protein-1c o SREBP-1c (ao contrário do SREBP-2) não se liga a esteroides. Página 3 de 6

Página 4 de 6 Síntese de ácidos e triacilgliceróis; Rui Fontes Nestas condições, quer o aumento da oferta de ácidos gordos ao fígado quer a glicagina (mecanismos controversos) estimulam a AMPK que catalisa a fosforilação da carboxílase de acetil-coa em resíduos específicos que levam à sua inibição e, consequentemente, à inibição da síntese de palmitato. Potenciando este efeito, os acis-coa formados a partir desses ácidos gordos, também tem efeito inibidor alostérico na carboxílase de acetil-coa. No fígado, a glicagina inactiva a carboxílase de acetil-coa via activação da adenilcíclase, formação de AMP cíclico e activação da PKA. A fosforilação que é catalizada pela PKA ocorre em resíduos aminoacídicos diferentes dos que são fosforilados pela AMPK e tem um efeito discreto na actividade da carboxílase de acetil-coa. No entanto, pode ter algum efeito inactivador já que esta fosforilação diminui a sensibilidade da carboxílase de acetil-coa para a acção activadora do citrato [5]. Sabe-se que o efeito activador de curto prazo (pós-prandial) da insulina também é mediado por modulação do estado de fosforilação da carboxílase de acetil-coa mas o mecanismo exacto é ainda controverso: o efeito activador poderá depender da desfosforilação hidrolítica dos resíduos aminoacídicos fosforilados pela acção da AMPK e da fosforilação de outros resíduos [5-6]. 13- Os ácidos gordos saturados mais abundantes nos mamíferos são o palmítico (16:0) e o esteárico (18:0). O ácido esteárico pode formar-se endogenamente a partir de ácido palmítico por acção de enzimas do retículo endoplasmático que catalisam a adição de dois carbonos (do malonil-coa) ao palmitil-coa. Pela adição sucessiva de unidades de dois carbonos no carbono 1 de ácidos gordos (elongação) podem formar-se endogenamente ácidos gordos com um número de carbonos superior a 16 (por exemplo, formação de estearato a partir de palmitato). O processo de elongação envolve enzimas com actividades catalíticas semelhantes às que foram referidas para a síntase do palmitato. O dador da unidade de dois carbonos é também o malonil-coa e o agente redutor o NADPH. No entanto, no caso da elongação, existem para cada um dos passos do processo diferentes enzimas e os intermediários libertam-se em cada passo como derivados ligados ao CoA (e não à enzima) [2]. O processo parte de um acil-coa em que o acilo tem n carbonos gerando outro acil-coa com n+2 carbonos: a equação que descreve a elongação do palmitil-coa a estearil-coa é a seguinte: palmitil-coa + malonil-coa + 2 NADPH estearil-coa + 2 NADP + + CoA + H 2 O + CO 2 (13) 14- No retículo endoplasmático podem também formar-se ácidos gordos insaturados e a reacção é catalisada por sistemas enzímicos genericamente designados como dessatúrases de acil-coa. O processo de dessaturação envolve uma cadeia de oxiredútases (que inclui o citocromo b5) em que o O 2 funciona como oxidante último do acil-coa e do NADPH (ou do NADH). O somatório dos processos pode ser esquematizado: acil-coa + O 2 + NADH ou NADPH acil-coa insaturado + 2 H 2 O + NAD + ou NADP + (14) Existem dessatúrases com diferentes especificidades no que se refere ao carbono onde a dupla ligação é introduzida. A dessatúrase 9 (também designada de dessatúrase do estearil-coa) catalisa a conversão do ácido esteárico (18:0) em oleico (18:1;9) e do palmítico (16:0) em palmitoleico (16:1;9). Outras dessatúrases são a dessatúrase 6 e a dessatúrase 5 que estão envolvidas na introdução de novas duplas ligações em ácidos gordos poli-insaturados. Nos ácidos gordos poli-insaturados entre duas duplas ligações consecutivas há sempre um grupo metileno ( CH=CH-CH 2 -CH=CH ). Em todos os casos as duplas ligações dos ácidos gordos naturais são sempre de tipo cis. 15- No caso dos mamíferos não é possível a introdução de duplas ligações em carbonos com número superior ao carbono 9. Assim, os ácidos linoleico (18:2;9,12) e o ácido -linolénico (18:3;9,12,15) não são sintetizados nas células dos mamíferos e dizem-se essenciais ou nutricionalmente indispensáveis. O ácido linoleico é um exemplo de ácido gordo da série 6 (ómega 6). Nos ácidos gordos 6 a dupla ligação que está mais distante do grupo carboxílico situa-se entre o 6º e o 7º carbono a contar do fim; no caso do ácido linoleico o carbono 6 corresponde ao carbono 13. O ácido -linolénico é um exemplo de ácido gordo da série 3; ou seja, a dupla ligação mais distante do grupo carboxílico situa-se entre o 3º e o 4º carbono a contar do fim. 16- Nos mamíferos, é possível inter-converter diferentes ácidos gordos 6 entre si (ou diferentes 3 entre si) mas não é possível converter ácidos gordos de uma série na outra nem formar 3 ou 6 a partir de saturados. Quando se discutem inter-conversões envolvendo ácidos gordos insaturados a nomenclatura

Síntese de ácidos e triacilgliceróis; Rui Fontes tem vantagens relativamente à que ordena os carbonos considerando o carbono 1 o carbono carboxílico (nomenclatura clássica). Quando ocorre elongação o número de carbonos de um ácido gordo aumenta 2 carbonos (que se ligam ao carbono que era originalmente o carboxílico) e, na nomenclatura clássica, o número associado aos carbonos onde existiam duplas ligações aumenta de igual modo; os carbonos continuam os mesmos mas passam a ter um número diferente. No entanto, explicando a preferência pela nomenclatura, quando se tratam destes temas, a numeração não é afectada. 17- O ácido araquidónico (20:4;5,8,11,14) é um ácido gordo 6 e é precursor na síntese de eicosanoides 2 e do neurotransmissor anandamida. O ácido araquidónico ( 6; 20:4) pode formar-se nos mamíferos a partir do linoleico ( 6; 18:2), por acção sequenciado da (1) dessatúrase 6, (2) de elongação e (3) da dessatúrase 5. A dessaturação no carbono 6 (ver equação 15) forma o ácido -linolénico (18:3;6,9,12 ou 6; 18:3), que, elongado em 2 carbonos (ver equação 16), origina o ácido eicosatrienóico da série 6 (20:3;8,11,14 ou 6; 20:3); a dessaturação, agora no carbono 5, origina o ácido araquidónico (ver equação 17). O EPA (ácido eicosa-penta-enoico, 20:5;5,8,11,14,17 ou 3, 20:5) é, tal como o - linolénico ( 3; 18:3), um ácido 3; forma-se numa sequência de reacções iguais às referidas para o caso do ácido araquidónico mas neste caso partindo do ácido -linolénico. Admitindo que o NADH não intervém, a equação 18 é a que representa o somatório do processo de síntese de eicosa-penta-enoil-coa a partir de -linolenil-coa. De facto, em qualquer dos casos, quer os substratos quer os intermediários das vias de conversão são sempre ácidos gordos activados: os acis-coa respectivos. linoleil-coa + O 2 + NADH ou NADPH -linolenil-coa + 2 H 2 O + NAD + ou NADP + (15) -linolenil-coa + malonil-coa + 2 NADPH eicosatrienoil-coa + 2 NADP + + CoA + H 2 O +CO 2 (16) eicosatrienoil-coa + O 2 + NADH ou NADPH araquidonil-coa + 2 H 2 O + NAD + ou NADP + (17) -linolenil-coa + 2 O 2 + 4 NADPH + malonil-coa eicosa-penta-enoil-coa + 5 H 2 O + 4 NADP + + CoA + CO 2 (18) 18- Durante a digestão intestinal dos triacilgliceróis (os mais abundantes lipídeos da dieta) forma-se maioritariamente 2-monoacilglicerol e ácidos gordos que são absorvidos. Os ácidos gordos de cadeia longa e muito longa são esterificados nos enterócitos regenerando-se os triacilgliceróis: os ácidos gordos são activados (sintétase de acil-coa: ver equação 12) e os resíduos acilo dos acis-coa transferidos para as posições 1 e 3 do 2-monoacilglicerol por acção catalítica de duas transférases de acilo. Estes acis-coa vão a seguir incorporar-se nos quilomicra. 19- No fígado, no rim, na glândula mamária activa e no tecido adiposo o aceitador de resíduos acilo no processo de síntese de triacilgliceróis não é o 2-monoacilglicerol mas o glicerol-3-fosfato. No tecido adiposo não existe cínase do glicerol (ver equação 19) e todo o glicerol-3-fosfato resulta da redução da dihidroxiacetona-fosfato, um intermediário da glicólise (desidrogénase do glicerol-3-fosfato: ver equação 20). Nos casos do fígado, do rim e da glândula mamária activa, a presença da cínase do glicerol permite a formação de glicerol-3-fostato a partir de glicerol e ATP. Na via da síntese dos triacilgliceróis, o glicerol-3-p aceita (por acção catalítica de duas transférases de acilo que actuam sequencialmente) dois resíduos acilo de acis-coa formando-se, primeiro, o 1-acil-glicerol-3-fosfato e a seguir o 1,2- diacilglicerol-fosfato (ou ácido fosfatídico ou fosfatidato); ver equações 21 e 22. De seguida, a fosfátase do ácido fosfatídico catalisa a formação do 1,2-diacilglicerol (ver equação 23) que aceita outro acilo formando-se o triacilglicerol (ver equação 24). A equação soma que descreve a síntese de triacilglicerol (esterificação) a partir de glicerol-3-p e acis-coa é a equação 25. 2 Eicosanoides são substâncias (prostaglandinas, tromboxanos, leucotrienos e lipoxinas) formadas a partir de ácidos gordos poli-insaturados com 20 carbonos que se libertam em muitas células do organismo e que provocam efeitos interagindo com receptores situados na membrana celular das mesmas células onde se libertam (sinalização autócrina) ou em outras células da proximidade (sinalização parácrina). Página 5 de 6

Síntese de ácidos e triacilgliceróis; Rui Fontes ATP + glicerol glicerol-3-p + ADP (19) dihidroxiacetona-p + NADH glicerol-3-p + NAD + (20) glicerol-3-p + acil-coa 1-acil-glicerol-3-P + CoA (21) 1-acil-glicerol-3-P + acil-coa 1,2-diacil-glicerol-3-P (= ácido fosfatídico) + CoA (22) ácido fosfatídico + H 2 O 1,2-diacilglicerol + Pi (23) acil-coa + 1,2-diacilglicerol triacilglicerol + CoA (24) glicerol-3-p + 3 acil-coa + H 2 O triacilglicerol + 3 CoA + Pi (25) Os triacilgliceróis constituem a mais abundante forma de reserva de energia num indivíduo normal e encontram-se maioritariamente no tecido adiposo (cerca de 95% dos lipídeos de um homem jovem normal encontra-se no tecido adiposo). A gordura de um indivíduo adulto normal com 70 kg (cerca de 10-15 Kg de gordura) permite custear as suas necessidades energéticas durante cerca de 2 meses. 20- A acção activadora da insulina na síntese de lipídeos não se limita à lipogénese de novo. A activação, pela insulina, da síntese de SREBP-1c também leva ao aumento da transcrição dos genes da lipogénese entendida num sentido mais amplo. São genes alvo os genes da dessatúrase do estearil-coa [7], da acil-transférase do glicerol-3-fosfato (a primeira enzima no processo de esterificação; ver equação 21) e genes de enzimas envolvidas no processo de elongação de ácidos gordos. Pelo menos no tecido adiposo, a disponibilidade de glicerol-3-fosfato (que se forma a partir da dihidroxiacetona-fosfato) também activa o processo de esterificação. 1. Hellerstein, M. K. (1999) De novo lipogenesis in humans: metabolic and regulatory aspects, Eur J Clin Nutr. 53 Suppl 1, S53-65. 2. Moon, Y. A. & Horton, J. D. (2003) Identification of two mammalian reductases involved in the two-carbon fatty acyl elongation cascade, J Biol Chem. 278, 7335-43. 3. Veech, R. L. (2003) A humble hexose monophosphate pathway metabolite regulates short- and long-term control of lipogenesis, Proc Natl Acad Sci U S A. 100, 5578-80. 4. Liu, Y. Q. & Uyeda, K. (1996) A mechanism for fatty acid inhibition of glucose utilization in liver. Role of xylulose 5- P, J Biol Chem. 271, 8824-30. 5. Saggerson, D. (2008) Malonyl-CoA, a key signaling molecule in mammalian cells, Annu Rev Nutr. 28, 253-72. 6. Brownsey, R. W., Boone, A. N., Elliott, J. E., Kulpa, J. E. & Lee, W. M. (2006) Regulation of acetyl-coa carboxylase, Biochem Soc Trans. 34, 223-7. 7. Foster, D. W. (2004) The role of the carnitine system in human metabolism, Ann N Y Acad Sci. 1033, 1-16. Página 6 de 6