Um Panacum de Paradoxos



Documentos relacionados
Welcome to Lesson A of Story Time for Portuguese

01-A GRAMMAR / VERB CLASSIFICATION / VERB FORMS

Como dizer quanto tempo leva para em inglês?

Guião A. Descrição das actividades

Serviços: API REST. URL - Recurso

Lesson 6 Notes. Eu tenho um irmão e uma irmã Talking about your job. Language Notes

Guião M. Descrição das actividades

Como testar componentes eletrônicos - volume 1 (Portuguese Edition)

Você sabe fazer perguntas em Inglês? Em primeiro lugar observe as frases abaixo: Afirmativo: Ele é estudante Interrogativo: Ele é estudante?

Vaporpunk - A fazenda-relógio (Portuguese Edition)

Cap. 6. Introdução a Lógicas Modais

In this lesson we will review essential material that was presented in Story Time Basic

Bem-vindo ao Inspector Stone uma produção da BBC Learning. Vamos começar o espetáculo.

Teoria Económica Clássica e Neoclássica

User interface evaluation experiences: A brief comparison between usability and communicability testing

Searching for Employees Precisa-se de Empregados

2ª AVALIAÇÃO/ º ANO / PRÉ-VESTIBULAR PROVA 1-25/04/2015 PROVA DISCURSIVA

Um olhar que cura: Terapia das doenças espirituais (Portuguese Edition)

Pesquisa Qualitativa do Início ao Fim (Métodos de Pesquisa) (Portuguese Edition)

Transformando Pessoas - Coaching, PNL e Simplicidade no processo de mudancas (Portuguese Edition)

GUIÃO Domínio de Referência: CIDADANIA E MULTICULTURALISMO

Introdução A Delphi Com Banco De Dados Firebird (Portuguese Edition)

GUIÃO A. Ano: 9º Domínio de Referência: O Mundo do Trabalho. 1º Momento. Intervenientes e Tempos. Descrição das actividades

Inglês 17 Past Perfect

Princípios de Direito Previdenciário (Portuguese Edition)

São eles: SOME (Algum, alguma, alguns,algumas). É utilizado em frases afirmativas,antes de um substantivo. Ex.:

Guia para Formacao de Analistas de Processos: Gestão Por Processos de Forma Simples (Portuguese Edition)

PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO

Comportamento Organizacional: O Comportamento Humano no Trabalho (Portuguese Edition)

What is Bullying? Bullying is the intimidation or mistreating of weaker people. This definition includes three important components:1.

Conteúdo Programático Anual

Material Auxiliar da Oficina Aprimorando a Apresentação Oral

As 100 melhores piadas de todos os tempos (Portuguese Edition)

Receitas na Pressão - Vol. 01: 50 Receitas para Panela de Pressão Elétrica (Portuguese Edition)

Os 7 Hábitos das Pessoas Altamente Eficazes (Portuguese Edition)

Adoção: guia prático doutrinário e processual com as alterações da Lei n , de 3/8/2009 (Portuguese Edition)

UNIDADE DE PESQUISA CLÍNICA Centro de Medicina Reprodutiva Dr Carlos Isaia Filho Ltda. SAMPLE SIZE DETERMINATION FOR CLINICAL RESEARCH

LÍNGUA INGLESA CONTEÚDO E HABILIDADES DINÂMICA LOCAL INTERATIVA AULA. Conteúdo: Reading - Typographic Marks

MÓDULO DE INGLES

UNIVERSIDADE DE SÃO PAULO FACULDADE DE EDUCAÇÃO JOÃO FÁBIO PORTO. Diálogo e interatividade em videoaulas de matemática

GUIÃO A. What about school? What s it like to be there/here? Have you got any foreign friends? How did you get to know them?

WELCOME Entrevista Au Pair Care

Curso Completo de Memorização (Portuguese Edition)

PL/SQL: Domine a linguagem do banco de dados Oracle (Portuguese Edition)

Meditacao da Luz: O Caminho da Simplicidade

Medicina e Meditação - Um Médico Ensina a Meditar (Portuguese Edition)

DIBELS TM. Portuguese Translations of Administration Directions

NOTA: Professor(a): Bispo, Suzamara Apª de Souza Nome: n.º 3º Web. 3ª Postagem Exercícios de reposição ( listening )

Pesquisa Qualitativa do Início ao Fim (Métodos de Pesquisa) (Portuguese Edition)

Câmbio MONEY CHANGER. I d like to exchange some money. Gostaria de cambiar um pouco de dinheiro. Where can I find a money changer?

Lição 24: Preposições de tempo. Como usar preposições de tempo.

Aposentadoria e INSS: Entenda como funcionam e defenda-se (Coleção Seus Direitos) (Portuguese Edition)

Letra da música Gypsy da Lady Gaga em Português

Prova de Seleção Mestrado LINGUA INGLESA 15/02/2016

Conversação Para Viagem - Alemão (Michaelis Tour) (Portuguese Edition)

Biscuit - potes (Coleção Artesanato) (Portuguese Edition)

BR-EMS MORTALITY AND SUVIVORSHIP LIFE TABLES BRAZILIAN LIFE INSURANCE AND PENSIONS MARKET

Espionagem e Vigilância Eletrônica (Portuguese Edition)

Introdução A Delphi Com Banco De Dados Firebird (Portuguese Edition)

Aqui pode escolher o Sistema operativo, e o software. Para falar, faça download do Cliente 2.

A Vivência do Evangelho Segundo o Espiritismo (Portuguese Edition)

O que fazer quando o seu artigo não for aceito para publicação RESEARCH SQUARE

ACTIVE VOICE X PASSIVE VOICE

Conversação Para Viagem - Inglês (Michaelis Tour) (Portuguese Edition)

1ª A, B, C, D, E Nº DE HORAS/AULA SEMANAL: 02 TOTAL DE HORAS/AULA/ANO:

Da Emoção à Lesão: um Guia de Medicina Psicossomática (Portuguese Edition)

Equivalência da estrutura de uma frase em inglês e português

Aspectos Multidisciplinares das Artes Marciais: 1 (Portuguese Edition)

3 o ANO ENSINO MÉDIO. Prof. a Christiane Mourão Prof. a Cláudia Borges

Conceitos de Linguagens de Programação (Portuguese Edition)

To Be. Present Simple. You are (você é / está) He / she / it is (Ele ela é / está)(*) We were (Nos éramos / estávamos) You are (Voces são / estão)

Inglês. Guião. Teste Intermédio de Inglês. Parte IV Interação oral em pares. Teste Intermédio

12 ERROS COMUNS DE INGLÊS PARA NEGÓCIOS.

Planejamento de comunicação integrada (Portuguese Edition)

How are you? Activity 01 Warm up. Activity 02 Catch! Objective. Procedure. Objective. Preparation. Procedure. To warm-up and practice greetings.

5 Equacionando os problemas

Manual de normas gráficas Graphic guidelines handbook 2008

3 o ANO ENSINO MÉDIO. Prof. a Christiane Mourão Prof. a Cláudia Borges

PRESENT PERFECT. ASPECTOS A SEREM CONSIDERADOS: 1. Não existe este tempo verbal na Língua Portuguesa;

A Cura de Naamã - O Comandante do Exército da Síria

Modelagem e Simulação de Incêndios. Fire dynamics. Carlos André Vaz Junior

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education PORTUGUESE 0540/03

Amy Winehouse - Tears Dry On Their Own

TDD Desenvolvimento Guiado por Testes (Portuguese Edition)

Farmacologia na Pratica de Enfermagem (Em Portuguese do Brasil)

Transtorno de Personalidade Borderline Mais de 30 segredos para retomar sua vida Ao lidar com TPB (Portuguese Edition)

A ENTREVISTA COMPREENSIVA: UM GUIA PARA PESQUISA DE CAMPO (PORTUGUESE EDITION) BY JEAN-CLAUDE KAUFMANN

Como escrever para o Enem: roteiro para uma redação nota (Portuguese Edition)

Higiene e Vigilância Sanitária de Alimentos (Portuguese Edition)

xadrez de 120 minutos, um espectador, na terra, dirá que o jogo demorou 200 minutos. 1. O que acontece aqui?

INVESTIMENTOS HOTELEIROS EM CABO VERDE: O CASO DO RIU HOTELS & RESORTS

Responsabilidade Social no Ensino em Administração: um estudo exploratório sobre a visão dos estudantes de graduação

Evangelho Segundo O Espiritismo (Em Portugues do Brasil)

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Buscai as coisas do alto (Portuguese Edition)

Editorial Review. Users Review

Astrologia, Psicologia e os Quatro Elementos (Portuguese Edition)

Abraçado pelo Espírito (Portuguese Edition)

Transcrição:

1 ISBN 85-7273-273-X Um Panacum de Paradoxos Glenn W. Erickson John A Fossa

2 Sumário Agradecimentos... 3 Introdução... 4 Capítulo 1 O Mentiroso... 5 Capítulo 2 Ancient Greek Mathematico-Physical Paradox... 9 Capítulo 3 Illustrative Paradoxes of Modern Mathematics... 18 Capítulo 4 Paradoxes of Game Theory... 34 Capítulo 5 Illustrative Paradoxes of Modern Natural Science... 47 Capítulo 6 Illustrative Paradoxes of the Modern Bourgeois Liberal State... 57 Capítulo 7 Paradoxos de Decisão Social... 64 Capítulo 8 Paradoxes of Salvation... 70 Capítulo 9 Antinomias Kantianas... 79 Capítulo 10 A Genealogia de um Paradoxo: Hume, Hempel, Goodman e Wittgenstein...83 Capítulo 11 Paradoxes of Identity and Translation... 89 Capítulo 12 Sete Paradoxos Clássicos... 96

3 Agradecimentos Gostaríamos de agradecer todas as pessoas que ajudaram na preparação do presente volume. Em especial, agradecemos a Alyana Canindé Macêdo de Barros, Candice Alves de Souza Cavalcante, Giselle Costa de Sousa e Marta Figueredo dos Anjos pela ajuda na preparação do texto. Ainda mais, agradecemos as seguintes instituições pela permissão de reproduzir material publicado originalmente sob suas auspícios: Diálogos (Peurto Rico): Glenn W. Erickson e John A. Fossa. "Paradoxes of Salvation". Diálogos 6 (1996): 165-181. Princípios: Glenn W. Erickson e John A. Fossa. "Paradoxos de Decisão Social". Princípios 3(4) (1996): 110-120. Veritas: Glenn W. Erickson e John A. Fossa. "Ancient Greek Mathematico- Physical Paradox". Veritas 41 (1996): 681-690.

4 Introdução Um panacum, do tupi, é um grande cesto utilizado para guardar objetos durante uma viagem. É uma palavra especialmente apropriada para a presente obra, para duas razões. Em primeiro lugar, a maioria do material aqui contido vem do nosso livro anterior, Dictionary of Paradox (Lanham: University Press of America, 1998). Em contraste ao referido livro anterior, o qual organiza paradoxos individualmente em ordem alfabética, o presente livro organiza os paradoxos por grandes temáticas, como se fossem colecionados e colocados por tema em grandes panacuns. Essa forma de organização certamente ajudará os pesquisadores que se interessam em adentrar um assunto com mais profundidade, pois proporciona uma oportunidade de comparar com mais facilidade os paradoxos de conteúdo semelhante, bem como as respostas dadas a eles. A segunda razão para o uso da metáfora de panacum é a relação que esse instrumento tem com viagens. Paradoxos também se relacionam com viagens não viagens físicas, decerto, mas viagens intelectuais. Um paradoxo é um desafio intelectual para repensar, com mais cuidado e mais rigor, conceitos que usamos no nosso dia-a-dia sem qualquer problema. De fato, problematizam o que geralmente tomamos como banal e nos provoca a fazer novas e, às vezes inusitadas, análises do mundo em que vivemos e o sistema de conceitos que usamos para compreendê-lo. Uma das vantagens do presente livro é o grande número de referências e sugestões para leituras adicionais. O presente obra faz com que essa informação esteja mais acessível ao leitor brasileiro.

5 Capítulo 1 O Mentiroso (Glenn W. Erickson) Platão e Aristóteles estavam andando no bosque da Academia, onde encontravam Eudoxo, em profundo pensamento. No momento em que o encontraram, Platão mal havia acabado de dizer, O que eu estou dizendo agora é falso. Despertado pelo ruído dos dois interlocutores, Eudoxo perguntou, Que é que há, Platão? Estou apenas ensinando a Aristóteles aqui os primeiros passos na lógica. Diga-me uma coisa: Se um homem diz que está mentindo e não diz nada mais, o que ele diz é verdadeiro ou falso? Vamos ver, replicou Eudoxo. Por um lado, se o homem está, de fato, mentindo, o que ele diz é falso. Daí, é falso que ele está mentindo e, portanto, ele está dizendo a verdade. Assim, se ele está mentindo, ele não está mentindo. Por outro lado, se o homem não está mentindo, o que ele diz é verdadeiro. Daí, ele está, de verdade, mentindo e, assim, está dizendo uma falsidade. Desta forma, se ele não está mentindo, ele está mentindo. Em todos os dois casos temos uma contradição. Penso que o que ele diz é nem verdadeiro nem falso e, sim, sem sentido. Platão recebeu a analise de Eudoxo com um sorriso polido e perguntou a Aristóteles, Bem, meu amigo peripatético, está de acordo com a opinião de Eudoxo? Sobre essa questão sou adéista: nem pro nem contra..., muito pelo contrario! Como assim? Vamos supor que o homem diz algo um pouco diferente. Supomos que ele diz que está ou mentindo ou dizendo algo sem sentido. Como fica, agora, a análise da fala dele, Eudoxo? "Veja bem, agora tem três possibilidades: o dito é verdadeiro, falso ou sem sentido. Consideremos o primeiro caso, isto é, o dito é verdadeiro. Visto que o homem disse que o dito é falso ou sem sentido e, por suposição, o que ele disse é verdadeiro, o dito é, de fato, falso ou sem sentido. No segundo caso, se o dito é falso, o mesmo não pode ser nem falso nem sem sentido e, assim, tem de ser verdadeiro. Finalmente, consideremos o terceiro caso, que o dito é sem sentido. Ora, se o dito é sem sentido, é certamente ou falso ou sem sentido porque basta que uma das alternativas seja verdadeira para que a disjunção seja verdadeira. Mas o próprio dito afirma que é falso ou sem sentido e, assim, afirma a verdade. Desta forma, o dito é verdadeiro. Resumindo, quando o dito é falso ou sem sentido, é verdadeiro; e quando é verdadeiro, é sem sentido ou falso. Assim, mesmo admitindo a possibilidade de que o dito seja sem sentido, a contradição reaparece. Muito interessante, Aristóteles, disse Platão. "Eudoxo, o que você pensa do nosso quebra-cabeça agora. Não é sem sentido. Mas talvez seja bastante limitado em alcance. A gente considerou uma sentença declarativa. A contradição reaparece em outros tipos de sentenças? Sei lá, Eudoxo, respondeu Aristóteles, Veja só a seguinte pergunta: O que é um exemplo de uma pergunta que não é sua própria resposta? Essa pergunta é sua própria resposta? Pois sim, respondeu Eudoxo. Eu posso responder se você aceitar seguir as nossas instruções a pé da letra.

6 Pois sim, respondeu Eudoxo. Desobedece este ordem! mandou Platão. Silêncio. Temoso. Aristóteles acusou Eudoxo. Pois não, respondeu Eudoxo. Mas talvez a contradição aparece apenas em fala direta. Seguir a seguinte instrução, mandou Platão. Não seguir a instrução prévia, mandou Aristóteles. Eudoxo silenciou-se. O que Aristóteles vai dizer é falso, continuou Platão. O que Platão acabou de dizer é verdadeiro, concordou Aristóteles. Amo Platão," lamentou Eudoxo, "amo Aristóteles, mas amo mais a verdade Se bem o disse, melhor o faz," sugeriu Platão, Aristóteles desaprovou, "Falar no demônio, preparar o pau. Ele tinha pouco gosto para a decadência atenienses. Talvez, Eudoxo mudou o tópico, a contradição não é um produto de autoreferência, e sim da negação, "Então, respondeu Platão. Obedece este ordem! Ainda temoso, observou Aristóteles. Talvez a contradição limite-se as comunicações verbais, ensaiou Eudoxo, pois ele tinha uma compulsão de considerar todas as possibilidades. Mas Aristóteles lhe deu um pedaço de papiro em que foi escrito: [A sentença em colchetes nesta papiro é falsa.] Eudoxo, ainda tentando contemplar todas as possibilidades, disse que talvez a contradição só acontece em sentenças completas, não em meras frases. Mas Aristóteles lhe passou outro pedacinho de papiro com duas coisas escritas. [a única frase sem referencia em colchetes nesta página] Produz uma falsidade quando aplicada a sua própria citação produz uma falsidade quando aplicada a sua própria citação. Eudoxo não tinha mais a dizer. Ele voltou a cismar. Depois de um tempinho, durante o qual Platão e Aristóteles mantivera um silêncio descreto, Eudoxo disse, Mas talvez a contradição é meramente verbal. Quer dizer, não acontece em ação. Aristóteles deu-lhe um terceiro pedaço de papiro; o mesmo foi dobrado e colado nas margens, assim apresentando um único lado. Nesse papiro foi escrito apenas O que é escrito no outro lado é falso. O que é escrito no outro lado é verdadeiro. Eudoxo não viu contradição alguma e levantou os olhos a Aristóteles. Esse, porém, rasgou o papiro, recreando os seus dois lados, e, em conseqüência, ativando a contradição. Sabemos, observou Platão, o som de duas mãos batendo, mas o que é o som de uma mão batendo? Não, respondeu Eudoxo. Nada disto faz a mínima diferença na vida real. De repente, Xantipe veio correndo e gemendo. Platão! Platão! ela gritou. "O crocodilo pegou Sócrates Neto lá pelo rio. O que quer que eu faça? ele disse estoicamente.

7 Quando eu reclamei, o crocodilo fez a seguinte proposta: Devolverei a sua criança se você adivinhar corretamente se eu a devolvarei ou não. Mas temo que tudo é perdido. Fique tranqüila respodeu Platão. Diga ao crocodilo, Você não vai devolver a minha criança. Xantipe correu de volta ao rio. O que o crocodilo pode fazer?, observou Platão. Se ele devolver a criança, Xantipe terá adivinhado incorretamente. Assim, a criança não deve ser devolvida. Mas, se o crocodilo não devolver a criança, ele tem que devolver a criança porque Xantipe adivinhou corretamente. Augmenta o pathos da situação, disse Sócrates, que não queria aparecer faltar toda a sensibilidade, quando lembramos que os egípcios adoravam a Deus simbolicamente na forma de crocodilo por ser ele o único animal sem uma língua; enquanto a Razão Divina, o crocodilo não precisava falar. No caso atual, seria melhor mesmo se o crocodilo tivesse ficado calado. Mas a gente estava discutindo uma problema de lógica antes da interrupção de Xantipe, recordou Eudoxo. Sim, disse Platão. Apenas ontem Apemanthus propôs um problema prático neste sentido. Um rio atravessa a fazenda dele e sobre o rio há uma ponte. Apemanthus, misantropo notório, tinha erguido uma forca em uma árvore em um lado do rio, pertinho à ponte, e formulou uma lei segundo a qual quem passasse pela ponte deveria primeiramente jurar para onde ele ia e com que finalidade. Se o homem jurasse verdadeiramente, ele poderia passar; mas, se ele jurasse falsamente e, mesmo assim, passasse sobre a ponte, ele deveria ser enforcado. Um homem jurou, 'Eu vou ser enforcado na forca no outro lado do rio, e cruzou a ponte. A questão problemática de enforcar o homem ou não foi apresentada a mim pelo fazendeiro em questão Se o homem, fosse enforcado, observou Aristóteles, ele teria jurado verdadeiramente e, assim, não mereceria ser enforcado. Se ele não fosse enforcado, ele teria jurado falsamente e, assim., deveria, conforme a lei em vigor, ser enforcado. Num primeiro momento, a minha solução foi cortar o homem em duas partes, para enforcar uma metade e deixar a outra livre, relatou Platão. Aristóteles adicionou, No final, Platão recomendou libertar o homem sem punição conforme o princípio de que quando há justiça igual nos dois lados, é melhor agir com piedade. Bem pensado, louvou Eudoxo. Nem tanto, discordou Platão. Esqueceu de perguntar quem é o homem. No caso, foi Diógenes o Cínico. Lamentei o meu piedade, e estava com a cachorra para o resto do dia. Agora, recordou Eudoxo, lembro-me que já ouvi falar deste paradoxo. Epiménides, o profeta cretense, disse, Todos os cretenses são mentirosos, Não é necessariamente o mesmo paradoxo não. respondeu Aristóteles. A gente pode entender o dito de Epimenides como o mesmo paradoxo caso supormos que todos os ditos anteriores por cretenses eram falsos. Então o dito de Epimenides é falso quando e verdadeiro, porque pelo menos um cretense falou a verdade, a saber Epimenides no seu dito; mas, o seu dito é verdadeiro quando falso, porque nenhum cretense disse a verdade até Epimenides falou. Todavia, talvez não seja legítimo supor que os cretenses tinham dito alguma coisa antes de Epimenides. Nesse caso, se o dito de Epimenides é falso, então a única coisa dita por um cretense é mentiroso e o seu dito é verdadeiro. Analogamente, é falso quando supormos que é verdadeiro. Mas para supor que é verdadeiro, é necessário que pelo menos uma outra

coisa foi dita por um cretense, antes de Epimenides, e este outro dito tinha de ser verdadeiro. Senão o dito dele não seria falso. Quando Epimenides falou, ele implicou que há pelo menos duas coisas que são ditos por-um-cretense. Mas isto é esquisito, porque a simples lógica do dito de Epimenides não parece evidência suficiente para deduzir um fato empírico que um cretense tinha dito uma verdade antes do dito do Epimenides Aristóteles não podia completar o seu pensamento sobre a contradição em questão porque uma galinha viva, porém completamente depenada, foi entregue ao Platão naquele momento. Platão tinha definido o homem como o bípede implume, porque além do homem apenas as aves andam sobre duas pernas. Para contradizer isso, bem como para lamentar o fato de que Platão havia salvo sua vida no dia anterior, Diógenes tirou, uma por uma, as penas de um galo e jogou-o no quintal da Academia. Os estudantes que entregaram o galo a Platão reportaram que depois da galhina caiu à terra, Diógenes gritou, Eis o seu homem, Platão. Platão deu a galinha a Aristóteles, Devo um galo ao crocodilo, cuida disto para mim. De volta do rio, Aristóteles reportou que o crocodilo havia recomendado que Platão definisse o homem como bípede implume com unhas chatas. Eudoxo não ficou triste a não ser refutado mais uma vez por Aristóteles. O novo instrutor da Academia pensou que sabia tudo, quando ele nem sabia da trigonometria que Eudoxo inventaria nos próximos anos. Eudoxo jamais esqueceu da lição que Platão e Aristóteles, com a ajuda de Sócrates Neto deram naquele dia. Aconteceu que Platão tinha um acordo com ele para ensiná-lo retórica. Segundo o acordo, Eudoxo pagaria a Platão uma certa quantia de dinheiro quando ele ganhasse a primeira causa no tribunal. Todavia, depois de completar o curso, Eudoxo não se desempenhou no tribunal. Ele diz a Platão que pagará quando as galinhas tiveram dentes. Impaciente, Platão entrou na justiça para receber o seu pagamento. No tribunal, Platão argumentou: Caso eu ganhar o julgamento, Eudoxo terrá de me pagar por decisão do tribunal. Mas, caso eu percar, Eudoxo ainda terá de me pagar, porque ele concordou em pagar depois de ganhar a primeira causa. Assim, independentemente do resultado, Eudoxo ficará obrigado a me pagar. Por isso, o tribunal deve decidir a meu favor. Eudoxo pegou o touro pela unha e respondeu: Caso Platão ganhar o julgamento, eu não vou ser obrigado a pagar, porque eu ainda não teria ganho a primeira causa. Mas, se Platão perder, não precisarei pagar pela decisão do tribunal. Assim o tribunal deve decidir a meu favor. Na entrada do tribunal, do Rei Archon, Aristóteles deu sua análise sobre o que o tribunal deve decidir. Platão confrontou Eudoxo com um, dilema. Eudoxo vai ou ganhar ou perder a decisão. Mas. em qualquer dos casos, ele será obrigado a pagar, por um lado, por causa do contrato ou, por outro, pelo julgamento do tribunal. Eudoxo refutou o dilema com um outro dilema. Platão vai ou ganhar a decisão ou perdê-la. Mas em qualquer caso, ele não pode receber o pagamento, por um lado, pelo julgamento do tribunal, ou, por outro, pela estipulaçao do contrato. Isto é uma versão existencial do velho paradoxo do Epimenides, a forma clássica de um paradoxo de auto-referência. O mentiroso diz: O que digo é falso. Caso o dito seja falso, terá de ser verdadeiro; caso seja verdadeiro, terá de ser falso. Todos os dois, Eudoxo e Platão, trata a decisão do tribunal como auto-referencial. Assim o tribunal tem que se tornar mentiroso. 8

9 Capítulo 2 Ancient Greek Mathematico-Physical Paradox Zeno of Elea (born c. 490 BC), a disciple of Parmenides, is the most famous paradoxer of all time. Zeno's basic strategy was to disprove positions contrary to the Parmenidean insight that since only the unchanging One exists, nothing in reality can change. He proposes a series of arguments purporting to show that the concepts of motion (change), the many (plurality) and place (space) were inherently contradictory and led to absurdities. Aristotle's Physics attributes to Zeno four mind-boggling paradoxes against motion: first, the Dichotomy, the Race Course, or the Bisection Paradox; second, the Moving Blocks or the Stadium; third, the Arrow; and fourth, the Achilles, or Achilles and the Tortoise. The Arrow and the Moving Blocks are generally interpreted to be predicated upon the assumption that space and time are composed of finitely-sized indivisibles or atomic quanta. The Achilles and the Dichotomy, by contrast, presuppose that space and time are composed of infinitesimal points. Thus, whatever may be one's pleasure in regard to the philosophy of space and time, the very concept of motion will purportedly still land one in inextricable difficulties. Less well known than the paradoxes against motion are Zeno's paradoxes against plurality and his paradox against place, which Aristotle calls Zeno's Dilemma. The Millet Seed, which attempts to discredit sense knowledge, is, in contrast to his more subtle paradoxes, an easily controverted pseudo-paradox. It was because of these arguments that Aristotle calls Zeno the inventor of dialectics. Beyond Zeno's paradoxes, we treat three other physico-mathematical paradoxes: the Paradox of Irrational Numbers, the Paradox of Change and Democritus' Dilemma. The first emerged in early Pythagoreanism, the second is a physical paradox and the third developed in the context of ancient Greek geometrical method. The Paradox of Irrational Numbers To the man on the street, it is the Pythagorean belief that the world exhibits an intrinsically rational structure that is paradoxical, not the discovery of irrational number that so scandalized the Pythagorean school. The early Pythagoreans thought that "all is number and harmony." By numbers they meant the positive integers; by harmonies, the ratios and proportions between these integers. Yet not all geometrical relationships can be expressed as ratios between whole numbers. For example, the isosceles right triangle with the two equal sides of one unit has a hypotenuse equal to the square root of two. Indeed, this became the standard example of an "incommensurable" quantity (more precisely, two quantities are incommensurable if they cannot be measured by a common unit), although the original discovery may have been made in the regular pentagon. In any case, geometry played a central role, since line segments are continuous, as opposed to the discrete system of natural numbers. Hence, the Pythagoreans were faced with an example of something that (for them) really existed, but which could not be explained by numbers and harmonies. Thus the discovery of such "irrational numbers" seriously threatened the Pythagorean conception of the cosmos, their existence being a flaw in an otherwise elegant universe (VON Fritz, 1945). Report has it that when one of their members made the existence of irrational numbers public, he was taken out to the sea by the brothers and drowned.

10 The Dichotomy Zeno's first argument against motion, mentioned by ARISTOTLE (1941, 239b 11-13, 263a 4-6) and Simplicius, is as follows: in order for a moving object to reach a distant point, it must always traverse half the remaining distance. Motion is thus impossible because it requires traversing an infinite series of distances one at a time. Consider a runner heading toward the finish line on a race course. In order to finish the race, he must first reach a point midway between his present position and the finish line. The runner, once he has reached the midway point, still has half the race to complete; but he cannot do so without reaching the three-quarter point, which is halfway between the midpoint and the finish line. The process is repeated without end and, hence, there will always be a residual interval between the runner's position and the finish line, making it impossible for him to complete the race. The paradox is often formulated as a regression in the following manner: the runner must first reach the midpoint; but, in order to do so, he must first reach the quarter point; and so on without end. The conclusion would then be not that the runner cannot finish the race, but that he cannot even start. Gregory VLASTOS (1974a) has argued effectively that the original paradox was most likely to have been a progression, as we presented it above. Formulated as a progression, its basic affinity to the Achilles Paradox is readily seen. The argument can be summarized as follows: (1) Finishing any motion requires crossing an infinite sequence of successive distances. (2) The crossing of an infinite sequence of successive distances cannot be completed. (3) Therefore, no motion can be finished. As may be expected, the responses to the paradox have been, in the main, similar to the responses to the Achilles (see below). Aristotle, distinguishing between actual infinity and potential infinity, denied premise (1). Charles CHIHARA (1965) advances similar considerations. In contrast, the majority of modern interpreters deny premise (2), which they take to mean one of the following: (a) Crossing the infinite sequence cannot be done because it would take an infinite amount of time. (b) Crossing the infinite sequence cannot be done because the sequence has no final number. In either case, the existence of convergent series (see the Achilles below) is used to falsify the premise. Nevertheless, Leo GROARKE (1982) argues that since the runner must traverse the infinite sequence of distances one by one that is, he traverses them a finite number at a time he is unable to get beyond a finite number of intervals, regardless of the fact that the series is convergent. Hence, according to Groarke, (b) has not been falsified and the paradox remains a genuine puzzle. The Achilles The Achilles, second of Zeno's arguments against motion, runs as follows: In a race the quickest runner can never overtake the slowest. Since the pursuer must first reach the point whence the pursuit began, the slowest must always hold a lead (ARISTOTLE, 1941, 239b 15-18).

11 A fast runner (say, brave Achilles) may be set the task of overtaking a slower one (say, a tortoise) that is given a head-start. In order to catch up to the tortoise, however, Achilles must first reach the point which the tortoise had attained when Achilles started after it. Yet during the interval it takes Achilles to reach this point, the tortoise will have advanced to another point. Thus Achilles must reach this new point, but by the time he does so the tortoise will have again moved to a new position. Hence there is always a residual interval between Achilles and the tortoise and the hero never catches the slow beast. Since we know from experience that Achilles catches the tortoise in short order, the point of resolving this paradox is to identify the fallacy that makes the paradox possible. Aristotle distinguishes potential infinity from actual infinity. By the former, he means something like "infinitely divisible". Since space and time are only potentially infinite, the paradox, according to Aristotle, does not arise. The concept of infinity was troublesome to ancient Greek mathematicians because, in part, they did not have the concept of limit. C. S. Pierce and A. N. WHITEHEAD (1929) are among those who have used the idea of a limit to resolve the paradox. According to this view, Achilles' predicament can be reduced to a convergent infinite series, such as 1/2 + 1/4 + 1/8 + + 1/2 n + The limit of this series is simply one. Max BLACK (1951) argues, however, that the existence of a finite limit of an infinite series is not sufficient to resolve the paradox because it does not obviate the necessity of Achilles performing an infinite number of tasks. J. M. HINTON and C. B. MARTIN (1953) contend that the paradox depends on an ambiguity. On the one hand, the description of the paradox merely requires Achilles to pass through all the intermediary points between his starting point and the point at which he overtakes the tortoise and this causes no further complications. On the other hand, the paradox may be interpreted as a series of commands restricting Achilles' movements in certain ways. The first interpretation, according to Hinton and Martin, verifies the premise of the paradox but invalidates the argument. In contrast, the second interpretation validates the argument but falsifies the premise. The Arrow Mentioned by Aristotle, Epiphanus and Diogenes Laertius, the Arrow is the third of Zeno's arguments against motion: An arrow in flight is motionless because it is always occupying a space equal to itself at each moment and because everything that occupies an equal space is at rest. (ARISTOTLE, 1941, 239b 5-7). Zeno argues thus: what is moving moves either in the place in which it is or in the place in which it is not. And it moves neither in the place in which it is nor in that which it is not (Epiphanus, Adversus Haereticos, III.11, cited in LEAR, 1981, n. 1). Anything that occupies a space its own size is at rest. An arrow in flight, while it is in flight, exists in a present moment. Yet in that present moment the arrow occupies a space just its own size. Thus in the present moment the arrow is at rest. Yet that means that a moving arrow is also at rest, which is absurd. The Arrow is generally considered to be predicated upon the assumption that time consists of non-instantaneous atomic intervals (for another view, see VLASTOS 1974b). Indeed, the paradox does not seem to arise when time is conceived of as a succession of instantaneous moments since movement is dependent on velocity. But velocity is the ratio of distance (change of position) to elapsed time and there is no elapsed time at a point-like

12 moment. Hence it would seem like the very concepts of rest and motion would not be applicable to an object at an instantaneous moment. Jonathan Lear is probably correct in asserting that the extension of the concept of velocity to instantaneous velocity by the concept of limit is irrelevant to the paradox. Aristotle used the idea of velocity to argue that the concepts of rest and motion are not even applicable to atomic intervals since, by considering objects with different velocities, it would be possible to divide the atomic interval. Denying that motion is inconsistent with the atomicity of time, however, would seem to be but a hollow victory for, on the present view, that was Zeno's purpose anyway moreover, Zeno is armed with other paradoxes purporting to show that motion is also inconsistent with instantaneous time. A possibility apparently not discussed in the literature is that the moving arrow might effectively fill a larger amount of space than an arrow at rest. Thus, the paradox would fail because it would contain a false (ambiguous) premise; nevertheless, motion and atomic time would not be contradictory. Lest this hypothesis be considered more paradoxical than the paradox itself, we hasten to add that the Lorentz-Fitzgerald contraction of Relativity Theory could be used to the same purpose. Similar theories appear in quantum theory. The Moving Blocks For the Moving Blocks, the fourth and last of Zeno's arguments against motion, which is also called the Stadium, our source is ARISTOTLE (1941, 239b 33-240a 17): The fourth argument is that concerning the two rows of bodies, each set being composed of an equal number of bodies of equal size, passing each other on a race-course as they proceed with equal velocity in opposite directions, the one row originally occupying the space between the goal and the middle point of the course and the other that between the middle point and the starting-post. This, he (Zeno) thinks, involves the conclusion that half a given time is equal to double that time. Aristotle's telegraphic style makes the paradox difficult to decipher. Nevertheless, the basic structure of the action in the paradox is easily seen. Body A moves its own length (say, a unit) to the right, while body B, equal in length and vertically aligned with body A, moves its own length to the left, as in the following figure: Relative to the stationary ground C, body B has moved a unit in a given amount of time t. Relative to body A, however, body B has moved a distance of two units in the same time t and, therefore, it has moved a single unit in time t/2. Since both t and t/2 are the times that body B took to move a single unit of distance, we have that t = t/2; that is, "half a given time is equal to double that time".

13 The fallacy involved in this paradox is, at first sight, all to obvious. As ARISTOTLE (1941) explains, "the fallacy of the reasoning lies in the assumption that a body occupies an equal time in passing with an equal velocity a body that is in motion and a body of equal size that is at rest". There is, however, an alternative interpretation, first proposed by Paul TANNERY (1885), according to which, the time t is an atomic quantum of time. The argument then proves that body B, relative to body A, would traverse the unit length (perhaps itself an atomic quantum) in one-half the atomic quantum of time, thereby dividing a supposed indivisible. Although Tannery's interpretation makes the paradox veridical instead of ridiculous, VLASTOS (1967) rejects it on the grounds that it has not been documented in historical sources. Zeno's Arguments against Plurality Zeno authored a number of paradoxes against plurality. The general form of these arguments is that if there are many things, they must be both infinitely small and infinitely large. Zeno seems to have argued that whatever has size is divisible into parts and, thus, does not possess the unity characteristic of a single thing, as opposed to many things. Hence, none of the supposed plurality of things can have any size. In contrast, no amount of sizeless things could produce a body with any size. Hence, the parts of any given body must have some size. Now, since each part is sizable, each part must be divisible into parts having some size. By reiterating the argument for each new part, the body is found to be composed of an infinite number of parts having some size and, therefore, the body must be infinitely large. VLASTOS (1967) points out that, though the premise that a thing cannot be a single thing if divisible into parts is indubitable from the standpoint of Eleatic doctrine, it is in fact false. An apple, for example, has many parts skin, core, seeds and what not but remains for all that a single thing. Thus, Zeno's conclusion that the many are infinitely small does not follow. Vlastos then invalidates the conclusion that the many are infinitely large by appealing to the modern notion of convergent series. Thus the sum of an infinite number of nonzero sizes may be a finite size and again Zeno's conclusion does not follow. Zeno's Dilemma Zeno's Dilemma, mentioned by ARISTOTLE (1941, 209a 23-25, 210b 22-24), is that either place does not exist or, existing, must have a place in which it exists. Zeno was presumably motivated by a desire to show that the very concept of place is contradictory. He argued that whatever exists must exist in some place. Hence, if place exists, place exists in some place. By reiterating the argument for each newfound place, an infinite regress is obtained. Aristotle resolved the paradox by distinguishing among the various senses of "to be" (there was no separate word for "to exist"). VLASTOS (1967), however, points out that Aristotle's solution could not have been advanced in Zeno's time because the required distinctions had not yet been made. Thus, the paradox must have been genuinely puzzling to Zeno's contemporaries. The Millet Seed One of Zeno's paradoxes, mentioned by ARISTOTLE (1941, 250a 19-21) and by Simplicius at In Physica 1108, 18-28, the Millet Seed is probably a false or pseudo-paradox. It goes as follows: if a gross of millet seeds makes a noise when it falls, a single millet seed will make a proportionately smaller sound when it falls. Motivated by an Eleatic prejudice against perception, Zeno is apparently suggesting that if our senses fail us in the case of the fainter sound, we should think twice about believing what our senses register in the case of the louder sound.

14 Zeno's argument presumes that we should hear disturbances in the air as sounds no matter how slight they are, but there is no special difficulty in the circumstance that our auditory powers are limited in this particular manner. The Antinomy of Change This puzzle, discussed in antiquity by both Plato and Aristotle, challenges our conception of change. Consider an object that is unchanging (in some respect) for a period of time and then undergoes a change (in that respect). At the precise instant that the change starts, is the object unchanging or changing? The formulation given above is stated in general terms because, as Aristotle pointed out, the paradox applies to all forms of change. Nevertheless, it is probably most easily discussed in terms of motion. Thus, consider an object that is originally at rest and at some instant begins to move. At that instant, is the object (still) at rest or (already) in motion? Neither alternative seems satisfactory. Nevertheless, as Joseph Wayne SMITH (1986, p. 101) observes, "the real difficulty in our question is as follows. At the point of change it seems that the object is neither in motion or at rest. But if for all objects at all times, they are either at rest or in motion, a contradiction follows". One response to the paradox would be to agree with Parmenides that the very concept of change is contradictory and, thus, does not occur. Another response concedes the contradiction, but refuses to denigrate sense knowledge by denying change. In this view, however, our theoretical description of change is necessarily convoluted. Still another response, pioneered by ARISTOTLE (1941, Ch. 8, Sec. 8), is based on "cuts" in the continuum. Thus, the point of change can be seen in various ways as both, in the case of motion, the last point of rest and the first point of motion, or as the first point of motion whose antecedent period of rest has no last point. SMITH (1986, p. 105) argues that none of these solutions are satisfactory and that the only way out of the paradox is to recognize that 'nature is arbitrary". That is, in each particular case, one or the other state is realized by change, as it were. Smith claims further that this result is an incipient indication of free will in man. ARISTOTLE (1941, VI 3 and 8), following PLATO (1961, 156C-157A), however, gives another solution: at the point of change, the object is neither at rest nor in motion. To avoid the paradox, this view necessitates the denial of Smith's premise that "for all objects at all times, they are either in rest or in motion" (SMITH, 1983, p. 101). This denial is indeed intuitively satisfying because change is a process; that is, it is something that can only happen over time. "Instantaneous change" would seem, therefore, to involve a category mistake. We also need observe, however, that this discussion does not invalidate such mathematical concepts as "instantaneous velocity" which are technical concepts (involving limits) used to model physical situations. Democritus' Dilemma This mathematical paradox was attributed to Democritus by Plutarch. In the translation of T. L. HEATH (1921, p. 179-180), the problem runs as follows: If a cone were cut by a plane parallel to the base [by which is clearly meant a plane indefinitely near to the base], what must we think of the surfaces forming the sections? Are they equal or unequal? For, if they are unequal, they will make the cone irregular as having many indentations, like steps, and unevennesses; but, if they are equal, the sections will be equal, and the cone will appear to have the property of the cylinder and to be made up of equal, not unequal, circles, which is very absurd.

15 Democritus seems to think of the cone as being made up of many thin circular disks piled on top of each other; whether he thought there was an infinite number of them is not altogether clear. In any case, they must be either equal or unequal. If they are unequal, the cone would become tiered, like a wedding cake; but if they are equal, the cone would become a cylinder. Democritus' response to this problem is unknown. Perhaps more importantly, however, Archimedes attributes to Democritus two theorems about volumes: (1) the volume of a cone is a third of that of the cylinder on the same base and of the same height and (2) the volume of a pyramid is a third of that of the corresponding prism. According to Heath, it is probable that Democritus used the idea of a solid being composed of an infinite number of plane sections in order to obtain these results, thereby anticipating Cavalieri's Principle. Conclusion What all these paradoxes share is the ancient Greek preconception that arithmetic and geometry are wedded to each other in the sense that all valid arithmetic is representable geometrically and that all valid geometry is representable arithmetically. Many of them share the further preconception that the physical world is constituted by such an arithmetic and such a geometry. That these conceptions generate paradoxical results, and why, is not always clear even today. References and Further Readings ARISTOTLE. Physics. In: The Basic Works of Aristotle. Ed. Richard McKeon. New York: Random, 1941. BENDEGEM, Jean Paul van. "Zeno's Paradoxes and the Tile Argument". Philosophy of Science 54 (1987): 295-302. BLACK, Max. "Achilles and the Tortoise". Analysis 11.5 (1951): 91-101. BOOTH, N. B. "Zeno's Paradoxes". Journal of Hellenic Studies 77 (1957): 187-201. BOUWSMA, O. K. Toward a New Sensibility. Lincoln: U. of Nebraska P, 1982. 213-240. BROCHARD, Victor. Études de Philosophie Ancienne et de Philosophie Moderne. Paris, 1912. 7-9. CAJORI, F. "The History of Zeno's Arguments on Motion". American Mathematical Monthly 22 (1916): 1-6, 39-47, 77-82, 109-115, 143-149, 179-186, 253-258, 292-297. CHIHARA, Charles. "On the Possibility of Completing an Infinite Process". Philosophical Review (1965): 74-87. DEJNOZKA, Jan. "Zeno's Paradoxes and the Cosmological Argument". Philosophy of Religion 25 (1989): 65-81. GALE, Richard M., ed. The Philosophy of Time. New York: Anchor, 19068, 387-494. GROARKE, Leo. "Zeno's Dichotomy: Undermining the Modern Response". Auslegung 9 (1982): 67-75. GRUNBAUM, A. Modern Science and Zeno's Paradoxes. Middletown, CN: Wesleyan UP, 1967.. "Modern Science and the Refutation of the Paradoxes of Zeno". Scientific Monthly 81.5 (1955): 234-239.. "Messrs. Black and Taylor on Temporal Paradoxes". Analysis 12.6 (1952): 144-148. HAGER, Paul. "Russell and Zeno's Arrow Paradox". Russell 7 (1987): 3-10. HEATH, Thomas L. A History of Greek Mathematics. Oxford: Clarendon, 1921. HINTON, J. M. and C. B. MARTIN. "Achilles and the Tortoise". Analysis 14.3 (1953): 56-68. KNORR, Wilbur R. "Zeno's Paradoxes Still in Motion". Ancient Philosophy 3 (1983): 55-66. KING, H. R. "Aristotle and the Paradoxes of Zeno". Journal of Philosophy 21 (1949): 657-670.

KRETZMAN, Norman. "Aristotle on the Instant of Change". Aristotelian Society Supplement 50 (1976): 91-114. LEAR, Jonathan. "A Note on Zeno's Arrow". Phronesis 26 (1981): 91-104. LEE, Harold N. "Are Zeno's Paradoxes Based on a Mistake?" Mind ns 74 (1965): 563-570. LEE, H. P. Zeno of Elea: A Text with Translation and Notes. Cambridge UP, 1963. MCKIE, John R. "The Persuasiveness of Zeno's Paradoxes". Philosophy and Phenomenological Research 47 (1987): 631-639. MILL, J. S. System of Logic. 5th ed. 389-390. OWEN, G. E. L. "Zeno and the Mathematicians". Proceedings of the Aristotelian Society 58 (1957-58): 199-222. PLATO. Parmenides. In: The Collected Dialogues of Plato, Including the Letters. Ed. Edith Hamilton and Huntington Cairns. New York: Pantheon, 1961. ROSS, W. D. Aristotle's Physics. Oxford, 1936. 81-82. ROSSETTI, Livio. "The Rhetoric of Zeno's Paradox". Philosophy and Rhetoric 21 (1988): 145-152. RUSSELL, Bertrand. Our Knowledge of the External World. New York, Norton, 1929. Lectures V and VII. SALMON, Wesley, ed. Zeno's Paradoxes. Indianapolis: Bobbs, 1970.. Space, Time and Motion. Encino, CA: Dickenson, 1975. SHERRY, David M. "Zeno's Metrical Paradox Revisited". Philosophy of Science 55 (1988): 58-73. SMITH, Joseph Wayne. Reason, Science and Paradox: Against Received Opinion in Science and Philosophy. London: Croom Helm, 1986. Ch. 5. SORABJI, Richard. "Aristotle on the Instant of Change". Aristotelian Society Supplement 50 (1976): 69-89. SZÉKELY, Laszlô. "Motion and the Dialectical View of the World". Studies in Soviet Thought 39 (1990): 241-255. TANNERY, Paul. Pour l'histoire de la Science Hellène. Paris: Félix Alcan, 1887. 247-261.. "Le Concept Scientifique de Continu: Zénon d'elée et George Cantor". Revue Philosophique de la France et de l'étranger 20 (1885): 385-410.. La Géometrie Grecque. Paris: Gauthier-Villars, 1877. 124-125. TAYLOR, Richard. "Mr. Wisdom on Temporal Paradoxes". Analysis 14.4 (1952): 15-17. TE HENNEPE, Eugene. "Language Reform and Philosophical Materialism: Another Round with Zeno". Analysis 23 [Suppl.] (1963): 43-49. THOMSON, James. "Infinity in Mathematics and Logic". In: Encyclopedia of Philosophy. Ed. Paul Edwards. London: Macmillan, 1967. Vol. 4, 183-190. USHENKO, A. "Zeno's Paradoxes". Mind 55 (1946): 151-165. VLASTOS, Gregory. "Zeno's Race Course".In: Studies in Presocratic Philosophy. Ed. R. E. Allen and D. L. Furley. London: Routledge, 1974a. Vol. 2, 201-220.. "A Note on Zeno's Arrow". In: Studies in Presocratic Philosophy. Ed. R. E. Allen and D. L. Furley. London: Routledge, 1974b. Vol. 2, 184-200.. "Zeno of Elea". In: Encyclopedia of Philosophy. Ed. Paul Edwards. New York: Macmillan, 1967. Vol. 8, 369-379. VON FRITZ, Kurt. "The Discovery of Incommensurability by Hippasus of Metapontum". Annals of Mathematics 46 (1945): 242-264. WHITE, Michael J. "The Spatial Arrow Paradox". Pacific Philosophical Quarterly 68 (1987): 71-77. WHITEHEAD, A. N. Process and Reality. Cambridge UP, 1929. 101-108. WHITROW, J. G. The Natural Philosophy of Time. London, 1961. 135-137. WISDOM, J. O. "Achilles on a Physical Racecourse". Analysis 12.6 (1951): 67-72. 16

ZART, Paulus Johannes. About Time: A Philosophical Inquiry into the Origin and Nature of Time. Oxford: UP, 1976. Ch. XI. 17

18 Capítulo 3 Illustrative Paradoxes Of Modern Mathematics As Edward KASNER and James R. NEWMAN (1956, p. 1936; on mathematical paradoxes as such, see also KNEALE and KNEALE, 1962; NORTHUP, 1944) remark, perhaps the greatest paradox of all is that there are paradoxes in mathematics. Indeed, those not actively engaged in mathematical thought and some of those who are generally regard mathematics as an absolutely certain and rigorous science. Thus, it should be above paradox. Nevertheless, following KASNER and NEWMAN (1956), we may distinguish at least three types of paradox found in mathematics. The first type is really naught but fallacy. It usually results from some error or oversight, such as the illicit division by zero in a widely known purported proof that 1 = 2. Recall the proof that a live man equals a dead man, by arguing that a man who is half alive is half dead, so that ½ dead man is ½ live man, and then multiply through by 2. These paradoxes, therefore, are not theoretically problematical, although they may be useful as a pedagogical tool if used skillfully. The second type of paradox encountered in mathematics is the counter-intuitive result. Since mathematics often uses common terms in a narrow technical sense, some theorems may appear to violate common sense. A more interesting case, however, occurs when mathematics, as the science of the possible, goes beyond our limited experience and finds perfectly valid but highly counter-intuitive theorems. This type of paradox is virtually ubiquitous in mathematics and almost invariably occurs, for example, when we leave our normal finite realm for the reign of the infinite, as in the Burali-Forti paradox. Finally, we sometimes find that antinomies are deduced in a mathematical theory. This, of course, means that the theory is inconsistent, which is generally disconcerting. Finding this type of paradox reveals that there is something in the formulation of the theory that was previously thought to be innocuous but which is in need of reformulation and which often leads to the development of whole new fields of mathematical research; see, for example, Bertrand's paradox. In the present essay, which is a review of the literature of representative paradoxes of mathematics, we will examine the following paradoxes: the Banach-Tarsky Paradox, Berry s Paradox, the Burali-Forti Paradox, Curry Paradox, Dumitriu s Antimony of the Theory of Types, Cantor s Paradox, Gödel s Paradox, the Grelling Paradox, the Interesting Numbers Paradox, the Liar, M-variants of the Logical Paradoxes, the Non-communicator, Richard s Paradox, Russell s Paradox, Skolem s Paradox, the Truth-teller Variants of the Logical Paradoxes, and the Zermelo-Konig Paradox. The Banach-Tarsky Paradox One of a series of paradoxical decompositions in measure theory, this paradox is related to the Hausdorff paradox and other similar results. Any ball in R 3 can be decomposed into a finite number of pair-wise disjoint subsets that can then be recombined to form two balls of the same radius as the original ball. The result can be generalized to R n for n > 3. The paradox is sometimes, but fancifully, given as a pea may be taken apart into finitely many pieces that may be rearranged using rotations and translations to form a ball the size of the sun (WAGON 1985, p. 3-4). Clearly, duplicating a ball or enlarging it are equivalent. In either case, the ball is cut into a finite number of pieces and then these pieces are rearranged in such a way as to obtain a set with a greater measure ( volume ) than the original ball. The actions performed in this

19 process are limited to the group of isometries on the metric involved; that is, they are limited to one-one functions from the metric onto itself that preserve distances (and, therefore, areas). Intuitively, the pieces of the original ball are not stretched by the rearrangement. Although the paradox does not arise in R 2, a two dimensional example of a decomposition may be enlightening. We can find the area of the following figure by rearranging its parts to form a rectangle: Although an analogous procedure has been used since the time of ancient Greece to find volumes of solid figures, the present paradox shows that the new figure may have a different volume than the original. The proof of the Banach-Tarsky paradox depends on the Axiom of Choice. This axiom allows one to form a new set by picking out an element from each set of a given collection of sets. A useful metaphor was adduced by Bertrand Russell. Given a collection of pairs of shoes, we can form a new set by picking the left shoe of each pair. If the original collection were pairs of socks, however, the above rule would not be applicable since we cannot distinguish between left socks and right socks. Nevertheless, the Axiom of Choice allows us to form the new set by making an arbitrary choice form each pair of socks. A considerable number of mathematicians do not accept the validity of a procedure of set formation that depends on such nonconstructive methods as the Axiom of Choice and they thus are able to sidestep the paradox (although some paradoxical special cases still arise in the absence of this axiom). The majority of mathematicians, however, accept Choice and regard the present paradox and its near relations as proof of the nonexistence of the relevant finitely additive measures. Much mathematical activity has revolved around finding appropriate nonparadoxical measures. Berry s Paradox Related to Richard s paradox and ultimately to the liar paradox, this paradox was first described by Bertrand RUSSELL (1906), who attributed it to the Cambridge librarian G. G. Berry. Consider the number specified by the phrase the least natural number not specifiable by a phrase containing fewer than fifteen words, which phrase uses fewer than fifteen words. Variants include replacing words by syllables or letters with a corresponding adjustment to the number involved. Still other variants include the least integer not named in this book (BLACK, 1933) and the largest number definable by an English phrase containing or fewer words (KIRK, 1981). A few facts about the natural numbers and a natural language such as English make the paradox formally derivable. First, there is an infinite number of natural numbers. Second, any non-empty set of natural numbers has a least element. Third, the number of distinct words (letters, syllables) in English is finite. Thus, there is only a finite number of phrases restricted to a certain length which can be used to specify some member of the natural number sequence. Consequently, there will always be some numbers that are not specified by any phrase restricted to a given length. Yet this number is then specified by Berry s phrase, which is within the given length.

20 At first sight, the paradox would seem to be avoidable by outlawing, phrases containing negatives. That such an approach does not suffice, however, is shown by Robert E. Kirk s variant, which generates the paradox without the use of negatives. Dorothy GROVER (1983) attempts to give an account of reference according to which phrases such as Berry s fail to refer; but while promising, this approach does not explain why phrases such as Berry s generate the paradox whereas phrases such as the least number not specifiable in English in less than three words do not. Still another approach would be to order specifying phrases into a hierarchy of types (see the LIAR): wherein an attempt to state the paradox would involve specification 1 of the least number not specifiable 2 in fewer than n words and no paradox would arise. The Burali-Forti Paradox A logical paradox arising in naive set theory, the Burali-Forti paradox was at one time mistakenly attributed to Georg Cantor (MOORE and GARCIADIEGO, 1981; MENZEL, 1984). Cantor s paradox is its analogue for cardinal numbers. The set of all ordinal numbers is well ordered and thus defines an ordinal number q. But since q is an ordinal number, q is an element of the set of all ordinal numbers and, therefore, q < q. For purposes of illustration, we may ignore the concept of well ordering and consider an initial segment of the number sequence. Hence, 1 = {0} 2 = {0, 1} k = {0, 1, 2,..., k 1} w = {0, 1, 2, } w + 1 = {0, 1, 2,, w} As we can see from the examples listed above, every element of a set that defines an ordinal is less than the ordinal so defined. This is evident in the case of the so-called successor ordinals (for example, 3), since each new ordinal is the next number in the initial segment and thus is one more than the largest element of the set. But it is also true of the so-called limit ordinals; w, for example, is by definition greater than all the nonnegative integers. Thus, (*) If a and b are ordinals such that a is an element of the set b, then a is less b. Consider, then, q the entire sequence of ordinals. This will itself be an ordinal and, hence, by (*) q will be less than itself, which is a contradiction. The Burali-Forti paradox is most commonly addressed by placing restrictions on the formation of sets so as to block the construction of the set of all ordinal numbers. In set theoretic terms, the collection of all ordinals is not a set, but a proper class, thus the purported ordinal q is not defined and the paradox does not arise. This resolution is closely related to that for Russell s paradox, though, as Patrick SUPPES (1972) points out, it is important to realize that the devices for avoiding Russell s paradox do not automatically work for the Burali-Forti. Cantor s Paradox A paradox about cardinal numbers in set-theory discovered by Georg Cantor in 1899, its analogue for the ordinal numbers is the Burali-Forti paradox.