ESTUDO DE PARÂMETROS DA VENTILAÇÃO NATURAL PARA MAXIMIZAÇÃO DO CONFORTO TÉRMICO EM PAVILHÕES INDUSTRIAIS: VALIDAÇÃO EXPERIMENTAL EM TUNEL DE VENTO

Documentos relacionados
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE

DETERMINAÇÃO DOS EFEITOS DA VIZINHANÇA NA EFICIÊNCIA DOS SISTEMAS DE VENTILAÇÃO NATURAL EM PAVILHÕES INDUSTRIAIS. Gustavo Menna Barreto Klein

I-121 INFLUÊNCIA DAS VARIAÇÕES DE VAZÃO NA EFICIÊNCIA HIDRÁULICA DE FLOCULADORES CHICANADOS

RELATÓRIO TÉCNICO N O RT0112/12 Isolação sonora de parede Drywall e mantas de fibra plástica

INTRODUÇÃO À VENTILAÇÃO INDUSTRIAL. 10º Período de Engenharia Mecânica

MODELAGEM MATEMÁTICA DE UM SISTEMA DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA EM MÉDIA TENSÃO 1. Gabriel Attuati 2, Paulo Sausen 3.

Introdução ao Projeto de Aeronaves. Aula 9 Análise Aerodinâmica da Asa

DETERMINAÇÃO DA PERDA DE CARGA EM TUBO DE PVC E COMPARAÇÃO NAS EQUAÇÕES EMPÍRICAS

FACULDADE DE ENGENHARIA DE SÃO PAULO - FESP LABORATÓRIO DE FENÔMENOS DE TRANSPORTE - BT1 CENTRO TECNOLÓGICO DE HIDRÁULICA - CTH

Turbina eólica: conceitos

ANÁLISE DA INFLUÊNCIA LUMÍNICA NATURAL DE UMA SALA DE AULA COM JANELAS VOLTADAS AO SUDESTE 1

Reabilitação e Reforço de Estruturas

ANÁLISE CLIMATOLÓGICA COMPARATIVA DAS ESTAÇÕES METEOROLÓGICAS DOS AEROPORTOS DE GUARULHOS E CONGONHAS. Edson Cabral

BT 34. Boletim Técnico. Montagens. Destaques deste número. Dezembro / Revisão dos gráficos pressão de ensaio e segurança. Linha Master pag 8

ESTUDO PARA AVALIAÇÃO DO POTENCIAL DE REÚSO E APROVEITAMENTO DA ÁGUA DE CHUVA EM INDÚSTRIA

MEDIDAS DE VAZÃO ATRAVÉS DE VERTEDORES

IVENTEA INSTALAÇÃO DE VENTILAÇÃO E ESTUDOS AERÓLICOS EXPERIÊNCIA 3 DETERMINAÇÃO DE CAUDAL DE AR ATRAVÉS DE VÁRIOS MEDIDORES

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA

DESENVOLVIMENTO AERODINÂMICO DE UM VEÍCULO CONCEITO

Aula 6 Propagação de erros

SINTONIA DE UM CONTROLADOR PID NO AQUECIMENTO DE UMA CÂMARA TÉRMICA

CIRCULAR TÉCNICA N o 171 NOVEMBRO 1989 TABELAS PARA CLASSIFICAÇÃO DO COEFICIENTE DE VARIAÇÃO

Fenômenos de Transporte I Lista de Exercícios Conservação de Massa e Energia

UNIDADE DE FECHAMENTO

ECC 1008 ESTRUTURAS DE CONCRETO AÇÕES HORIZONTAIS EM EDIFÍCIOS. Ações do vento Desaprumo do edifício Ações sísmicas

ESTUDO DO CONSUMO DE MATERIAIS E PRODUTIVIDADE DE MÃO DE OBRA EM REVESTIMENTOS ARGAMASSADOS 1

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE

1 Introdução. 1.1 O problema

MEDIÇÃO DE VAZÃO DO FLUÍDO DE ARREFECIMENTO COM MEDIDOR TIPO TURBINA

UNIVERSIDADE ESTADUAL PAULISTA JULIO DE MESQUITA FILHO FACULDADE DE CIÊNCIAS DE BAURU

01 de Agosto Inicio das Aulas. 10 a 26 Setembro - Avaliação Oficial do 1 Bimestre (data no calendário oficial)

Avaliação da eficiência mínima dos equipamentos de proteção respiratória.

Calor Específico. 1. Introdução

BLOCOS DE CONCRETO PARA VEDAÇÃO: ESTUDO DA CONFORMIDADE ATRAVÉS DE ENSAIOS LABORATORIAIS

Influência Das Diferentes Alturas De Corte Na Qualidade Da Madeira Serrada De Qualea Sp.

Título da Pesquisa: Palavras-chave: Campus: Tipo Bolsa Financiador Bolsista (as): Professor Orientador: Área de Conhecimento: Resumo

Gerador Eólico de 24kW

Objetivos da sétima aula da unidade 5: Simular a experiência do medidor de vazão tipo tubo de Venturi

Estratégias operacionais ponto a ponto no Metrô de São Paulo.

REALIZAÇÃO DE TESTES PARA A VENTILAÇÃO NATURAL EM TÚNEL DE VENTO PARA ANALISAR A EFICIÊNCIA DOS SHEDS EM HOSPITAIS DA REDE SARAH.

CURSO TÉCNICO DE ENSINO MÉDIO INTEGRADO / SUBSEQUENTE

Desempenho Lumínico Norma ABNT/NBR Profa. Dra. Cláudia Torres

ESTRUTURAS DE MADEIRA

Métodos Quantitativos Aplicados a Custos Análise Estatística como um auxiliar valioso nas decisões

I TORNEIO CIENTÍFICO PONTES DE MACARRÃO

Estratégias de uso racional de energia para o setor comercial/institucional de Florianópolis

Protótipo de um túnel de vento com Controle de Vazão e Temperatura em ambiente LabVIEW

PROJETO DE ILUMINAÇÃO EFICIENTE DE VIAS PÚBLICAS

Unisalesiano Centro Universitário Católico Salesiano Auxilium Curso de Engenharia Civil. Construção Civil II

17.2. Levantamento, transporte e descarga individual de materiais.

6. Conceito e dimensionamento do tronco em uma residência

Ventilação Artificial

DETERMINAÇÃO DO MOMENTO DE INÉRCIA DE UM VOLANTE USANDO UM FAISCADOR *

Cursos Educar [PRODUÇÃO DE ARTIGO CIENTÍFICO] Prof. M.Sc. Fábio Figueirôa

Laudo ergonômico de um posto de trabalho

MANEJO DA VENTILAÇÃO PARA FRANGOS

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TM-364 MÁQUINAS TÉRMICAS I. Máquinas Térmicas I

I TORNEIO DE INTEGRAÇÃO CIENTÍFICA TIC

SINTESE DE REDES DE TRATAMENTO DE EFLUENTES APLICADA A UM MODELO DE GERENCIAMENTO DE REÚSO DE ÁGUA

I-181 DIAGNÓSTICO DO COMPORTAMENTO HIDRAULICO E HIDRODINÂMICO DE UNIDADES DE FLOCULAÇÃO CHICANADAS

Orientações Para o Preenchimento do Formulário de Inscrição Preliminar dos Projetos

MUNICÍPIO DE ITÁPOLIS SP

Laboratório de Modelos Estruturais. Flambagem

E. H. de Oliveira, M. Kripka, A. M. Loredo-Souza - REEC Revista Eletrônica de Engenharia Civil Vol 8 - nº 2 (2014) 1

25% PLANO DIRETOR DE COMBATE ÀS PERDAS DE ÁGUA NOS MUNICÍPIOS INTRODUÇÃO PERDAS DE ÁGUA PERDAS DE ÁGUA PERDAS DE ÁGUA PERDAS DE ÁGUA

PREPARO DE GRÃOS DE SOJA PARA EXTRAÇÃO

Levantamento Topográfico: é o conjunto de métodos e processos que, através de medições de ângulos horizontais e verticais, de distâncias horizontais,

7 e 8 Novembro ILUMINAÇÃO E VENTILAÇÃO EM SALAS DE AULA: um estudo sobre a utilização de brise e o cruzamento de ventilação em aberturas

DIAGNÓSTICO DA EFICIÊNCIA HIDRÁULICA DE UNIDADE DE DESINFECÇÃO DE ÁGUA E AVALIAÇÃO DE MEDIDA PARA A REDUÇÃO DE CURTOS-CIRCUITOS

UNIPAC Araguari FACAE - Faculdade de Ciências Administrativas e Exatas SISTEMAS DE INFORMAÇÃO

PLANEJAMENTO E MODELAGEM

1.3.1 Princípios Gerais.

HISTÓRIA DA IRRIGAÇÃO PAISAGÍSTICA

NORMA TÉCNICA 23/2014

ANÁLISE DOS SISTEMAS ESTRUTURAIS PRESENTES NO CENTRO DE CONVIVÊNCIA INFANTIL DA UNESP DE PRESIDENTE PRUDENTE

III APLICAÇÃO DE RESÍDUOS DE GIRASSOL NA CONSTRUÇÃO DE PLACAS PARA ISOLAMENTO ACÚSTICO

Certificação Energética em Edifícios Existentes

AULA A 1 INTRODUÇÃ INTR O ODUÇÃ E PERDA D A DE CARGA Profa Pr. C e C cília cília de de Castr o Castr o Bolina.

SISTEMAS HIDRÁULICOS E PNEUMÁTICOS.

RELATÓRIO DE ESTÁGIO 3/3 (primeiro de três) Período: de 16/out/2009 a 22/nov/2009

URE Sistemas de Ar Comprimido. URE - Sistemas de Ar Comprimido. 1

INFLUÊNCIA DO NÚMERO DE DIVISÓRIAS DOS CAPTADORES DE VENTO NA VENTILAÇÃO NATURAL DE EDIFICAÇÕES

UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE AGRONOMIA E ENGENHARIA DE ALIMENTOS SETOR DE ENGENHARIA RURAL. Prof. Adão Wagner Pêgo Evangelista

Medição de comprimentos, massas e tempos

Nota Metodológica: Estimativa de impacto da alteração de regulamento do SD e da dinâmica de mercado.

Programa da cadeira Física I Cursos: Matemática, Engenharia Informática, Engenharia de Telecomunicações e Redes

MEDIDAS FÍSICAS FEX 1001

ANOVA. (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior

Curso de Certificação de Projetista de Térmica- REH

Inspeção de Qualidade

Análise de Regressão. Notas de Aula

Departamento de Engenharia Sanitária e Ambiental - Faculdade de Engenharia Universidade Federal de Juiz de Fora Mecânica dos Fluidos Prática

UNICAP Universidade Católica de Pernambuco Laboratório de Topografia de UNICAP - LABTOP Topografia 1. Erros e Tolerâncias

Medidas e Escalas: Escalas não Comparativas

Hidráulica Geral (ESA024A)

3 Modelos de Simulação

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS FENÔMENOS DE TRANSPORTE MECÂNICA DOS FLUIDOS JATO LIVRE

SÍNDROME DE BAIXO ΔT EM SISTEMAS DE ÁGUA GELADA

VISTORIA DE VIZINHANÇA NORMA DO IBAPE/SP

PROJETO DE MICRO-RESERVAÇÃO BUSCANDO REGULARIDADE NAS CONDIÇÕES DE ABASTECIMENTO DE ÁGUA Aplicação no Loteamento Morel em Blumenau/SC.

Transcrição:

13 ESTUDO DE PARÂMETROS DA VENTILAÇÃO NATURAL PARA MAXIMIZAÇÃO DO CONFORTO TÉRMICO EM PAVILHÕES INDUSTRIAIS: VALIDAÇÃO EXPERIMENTAL EM TUNEL DE VENTO Study of parameters of natural ventilation to thermal comfort maximization in industrial pavilions: experimental analysis in wind tunnel Enaira Hoffmann de Oliveira 1, Moacir Kripka 2, Acir Mércio Loredo-Souza 3 Recebido em 16 de fevereiro de 2014; recebido para revisão em 22 de março de 2014; aceito em 08 de abril de 2014; disponível on-line em 04 de junho de 2014. PALAVRAS CHAVE: Pavilhões industriais; Ventilação natural; Conforto térmico; Túnel de vento. KEYWORDS: Industrial buildings, Natural ventilation, Thermal comfort RESUMO: Este trabalho apresenta resultados obtidos a partir de simulações com modelo reduzido em túnel de vento, com a finalidade de validar a aplicação de técnicas de otimização para a determinação de parâmetros de conforto ambiental nos ambientes industriais. Buscou-se maximizar o conforto térmico em pavilhões, com ou sem efeito do vento, tendo como variáveis de projeto as dimensões e as disposições das s. Dentre outros resultados obtidos, verificou-se que, considerando o efeito do vento, há uma grande diminuição das áreas das s calculadas, comparativamente aos casos em que a ventilação ocorre apenas por efeito chaminé. ABSTRACT: This work presents some results obtained from the analysis of a reduced model in wind tunnel, aiming to validate the application of optimization techniques for the determination of parameters of environmental comfort in industrial buildings. In order to maximize the thermal comfort in pavilions, with or without considering the wind effect, the dimensions and arrangements of openings are taken as design variables. Among other results, it was found that, considering the effect of wind, a great reduction of the areas of the openings can be achieved, regarding to cases where only the ventilation chimney effect occurs. * Contato com o autor: 1 e-mail : arq.enaira@gmail.com ( E. H. de Oliveira ) Me, Programa de Pós-Graduação em Engenharia Civil e Ambiental - Universidade de Passo Fundo UPF 2 e-mail : mkripka@upf.br ( M. Kripka ) Prof. Dr., Programa de Pós-Graduação em Engenharia Civil e Ambiental - Universidade de Passo Fundo - UPF 3 e-mail : 00009661@ufrgs.br ( A. M. Loredo-Souza ) Prof. Dr., Programa de Pós-Graduação em Engenharia Civil - Universidade Federal do Rio Grande do Sul - UFRGS ISSN: 2179-0612 2014 REEC - Todos os direitos reservados. 1. INTRODUÇÃO A preocupação com o aumento do consumo de energia para o condicionamento térmico das edificações e o bem estar de seus ocupantes incentiva a avaliação do desempenho ambiental dos edifícios. A ventilação natural propicia o condicionamento térmico dos ambientes e contribui para um bom desempenho ambiental dos edifícios. A movimentação natural do ar de forma adequada possibilita a renovação do ar no ambiente, além de diminuir a temperatura interna.

14 Este tipo de estratégia de condicionamento térmico se faz por meio de s (janelas, portas, lanternins, entre outros), que atuam como s de entrada ou saída, e devem ser dimensionadas e estar posicionadas de modo a proporcionar um fluxo de ar adequado ao recinto. No projeto arquitetônico, o efeito da ventilação natural por ação do vento reside no posicionamento das s em função das áreas de altas e baixas pressões na fachada, o que possibilita obter melhor aproveitamento desta estratégia de conforto (SHIMOMURA, FROTA e CELANI, 2010). O conhecimento, em bases científicas, do fenômeno da ventilação natural, é relativamente pequeno comparado com o que atualmente existe sobre ventilação mecânica. Essa disparidade pode ser constatada pela bibliografia existente (NUNES, 2006). O presente artigo tem como objetivo validar a resultados obtidos a partir da aplicação de técnica de otimização na maximização da ventilação natural em pavilhões industriais, fornecendo subsídios para a determinação da disposição e do dimensionamento das s visando um maior conforto térmico com redução no consumo de energia. Apesar de direcionada a pavilhões industriais, a metodologia proposta neste trabalho pode ser empregada para edificações com diferentes finalidades, como edifícios institucionais (escolas, unidades de saúde) e residências, sendo necessária a configuração das ferramentas utilizadas conforme a tipologia escolhida. 2. DESENVOLVIMENTO METODOLÓGICO Com a finalidade de verificar o comportamento da vazão de ventilação por efeitos dos ventos de forma prática efetuou-se, além das análises numéricas, o ensaio de modelos reduzidos em túnel de vento. A vazão de ventilação nestes ensaios pode ser determinada por meio da medição direta da velocidade nas s utilizando anemômetros de fio quente. Para que a metodologia estudada fosse aplicada, utilizou-se como exemplo um modelo reduzido de pavilhão industrial semelhante ao utilizado por Silvani (2005). Para avaliar a influência da disposição das s na edificação na vazão de ventilação promovida pelo vento, as áreas mínimas das s das janelas foram dispostas em três configurações distintas. Os ensaios foram realizados no Túnel de Vento Prof. Joaquim Blessmann (Figura 1) da Universidade Federal do Rio Grande do Sul. Trata-se de um túnel de vento de retorno fechado, projetado especificamente para ensaios estáticos e dinâmicos de modelos de construções civis em operação desde 1977. FIGURA 1: Túnel de vento Prof. Joaquim Blessmann - Universidade Federal do Rio Grande do Sul. A utilização do anemômetro de fio quente permite encontrar valores para as velocidades pontuais. Com isso, é possível explorar as velocidades locais de vários pontos de uma, segundo uma metodologia apropriada, e deduzir a vazão, mesmo considerando que o escoamento do ar difere quando comparado no centro e nas bordas das s. Conhecendo-se a velocidade no centro ou deduzindo-se a velocidade média a partir da média das velocidades ao longo de uma, pode-se determinar o

perfil das velocidades em função do numero de Reynolds. A média das velocidades obtidas nos anemômetros de fio quente é calculada a partir do levantamento das velocidades tomadas em intervalos regulares ao longo de cada. Conforme a equação de Bernoulli, a velocidade média do ar que passa por uma é dada por meio da Equação 01: Eq.[01] FIGURA 2: Modelo do pavilhão industrial com as s livres para passagem do escoamento. 15 Onde: p = diferencial de pressão através do orifício (Pa); ρ ar = massa especifica do ar que passa pelo orifício (Kg/m³); V média = velocidade média do ar (m/s). A vazão teórica Q teórica é expressa pela Equação 02: Onde: A= área da (m²); V média = velocidade média do ar (m/s). Eq.[02] Contudo, para se obter a vazão real, devese considerar um coeficiente de vazão, K v. Este coeficiente descreve a relação entre o diferencial de pressão através da e a vazão de ar que passa através dela. Em outras palavras, K v é uma medida de eficiência das s a passagem de ar, conforme Equação 03: As áreas das s otimizadas dimensionadas no modelo do pavilhão foram encontradas utilizando a formulação proposta por Clezar e Nogueira (1999) descrita em planilha Excel desenvolvida pelos autores. Com isso, posicionou-se uma sonda em cada uma das três principais s do modelo, sendo que as medições foram realizadas de forma simultânea para as três sondas (Figura 3). O fio aquecido foi posicionado perpendicularmente ao escoamento de cada, permitindo medir as velocidades médias pontuais de entrada ou saída de ar (Figura 4). 1 Eq.[03] Onde: Q real = vazão real na (m 3 /s); Q teórico = vazão teórica na (m 3 /s). O modelo do pavilhão industrial utilizado nos ensaios, com escala 1:200, foi confeccionado em material acrílico de 2 mm de espessura. O exaustor natural de cumeeira foi executado em chapa metálica, com detalhes mais precisos da. Todas as s existentes no modelo foram reproduzidas com vãos livres para a passagem do escoamento, com exceção dos portões que foram considerados fechados (Figura 2). FIGURA 3: Planta baixa do pavilhão - localização das sondas. FIGURA 4: Modelo do pavilhão- localização das sondas. 3

Com o posicionamento das sondas, foram ensaiadas as três configurações de fechamento de s. Para cada uma das três configurações foram simulados dois tipos de vento, com perfil de velocidades médias horárias, p = 0,11 e p = 0,23, correspondentes respectivamente às categorias de rugosidade superficial (tipo de terreno) I e III/IV da Norma NBR-6123/88, sendo que para cada tipo de vento simulado foram ensaiadas duas velocidades médias de escoamento no túnel, uma velocidade com as aletas do túnel totalmente abertas (V1) e outra com as aletas do túnel parcialmente abertas (V2). Os ensaios foram realizados com o modelo fixado a mesa giratória M-II, na câmara de ensaios, para o ângulo de 90, obtendo com isso as velocidades medias pontuais no centro das s onde foram posicionadas as sondas (anemômetro de fio aquecido). Para a determinação da vazão de ventilação nas s a barlavento do pavilhão utilizando os resultados obtidos dos ensaios foram consideradas ainda as seguintes hipóteses: A vazão de ventilação nas s foi determinada considerando como coeficiente de vazão, K v = 0,613 para vento p = 0,11 e K v = 0,410 para vento p = 0,23; As velocidades médias adimensionais nas s do modelo em escala reduzida foram consideradas iguais as médias das velocidades adimensionais pontuais obtidas nas medições realizadas com os anemômetros; As velocidades médias nas s do pavilhão industrial utilizado como modelo foram determinadas através da multiplicação das velocidades médias adimensionais das s do modelo em escala reduzida pela velocidade média do vento para o protótipo; A velocidade do vento foi considerada igual a 2,0 m/s para uma velocidade do vento correspondente a 50% da velocidade média sazonal para o protótipo. Essa velocidade média igual a 4m/s foi obtida dos registros da Embrapa Trigo - Passo Fundo, correspondentes aos meses de dezembro, janeiro, fevereiro e março, durante o período de 1977 a 1994 (EMBRAPA, 2004). 3. RESULTADOS OBTIDOS Nas Tabelas 1 a 3 são apresentadas as vazões de ar nas s situadas nas fachadas a barlavento do pavilhão, obtidas através das velocidades adimensionais determinadas nos ensaios. As s do pavilhão estão posicionadas conforme as Figuras 5 a 7. 16 Abertura 1 Abertura 2 FIGURA 5: Posição das s no pavilhão 1 planta baixa.

X E. H. de Oliveira, M. Kripka, A. M. Loredo-Souza - REEC Revista Eletrônica de Engenharia Civil Vol 8 - nº 3 (2014) Vento TABELA 1: Vazões de ar nas s do pavilhão com configuração 1 para vento simulado p = 0,11 e p = 0,23 e velocidade média do vento igual a 2m/s. Posição da no pavilhão Kv Área da A (m²) Velocidade média na V (m/s) Vazão de ar Q (m³/s) 17 p = 0,11 1 0,613 70,19 6,562 282,33 2 0,613 71,79 0,485 21,34 p = 0,23 1 0,410 70,19 5,667 163,08 2 0,410 71,79 0,393 11,56 x Abertura 1 Abertura 3 FIGURA 6: Posição das s no pavilhão 2 planta baixa. Vento TABELA 2: Vazões de ar nas s do pavilhão com configuração 2 para vento simulado p = 0,11 e p = 0,23 e velocidade média do vento igual a 2m/s. Posição da no pavilhão Kv Área da A (m²) Velocidade média na V (m/s) Vazão de ar Q (m³/s) p = 0,11 p = 0,23 1 0,613 126,23 6,033 466,82 3 0,613 126,23 0 0 1 0,410 126,23 5,206 269,43 3 0,410 126,23 0 0

X E. H. de Oliveira, M. Kripka, A. M. Loredo-Souza - REEC Revista Eletrônica de Engenharia Civil Vol 8 - nº 3 (2014) 18 Abertura 1 Abertura 2 Abertura 3 x X FIGURA 7: Posição das s no pavilhão 2 planta baixa. TABELA 3: Vazões de ar nas s do pavilhão com configuração 3 para vento simulado p = 0,11 e p = 0,23 e velocidade média do vento igual a 2m/s. Vento Posição da no pavilhão Kv Área da A (m²) Velocidade média na V (m/s) Vazão de ar Q (m³/s) 1 0,613 90 7,963 439,31 p = 0,11 2 0,613 67,65 1,877 77,86 3 0,613 90 1,733 95,60 1 0,410 90 6,673 246,23 p = 0,23 2 0,410 67,65 1,086 30,13 3 0,410 90 1,254 46,27 x Com o fechamento de algumas s do pavilhão nos ensaios no túnel de vento, ocorreram alterações nas vazões de ar. Percebeu-se que, à medida que as s vão sendo fechadas, a vazão de ventilação diminui. Os exaustores de cumeeira (lanternins) são normalmente associados à ventilação promovida pela diferença de temperatura (efeito chaminé) auxiliando a ventilação promovida pelo efeito do vento. Observou-se, para a configuração 2, um expressiva diminuição da vazão ao considerar o exaustor de cumeeira do pavilhão fechado. Com a análise comparativa, observou-se que as vazões de ar, parâmetro inicial encontrado através do cálculo do número de trocas de ar e volume do pavilhão, foram menores que as encontradas através dos ensaios em túnel de vento, destacando-se que, nos ensaios em métodos reduzidos, é possível chegar mais próximo das características reais do ambiente onde a edificação

está inserida. O ensaio do pavilhão industrial no túnel de vento resultou em vazões diferentes de entrada e de saída, devido às variações de magnitude da velocidade média do vento no túnel. Destaca-se que dependendo da posição da do modelo, as velocidades adimensionais não são proporcionais à magnitude da velocidade media de escoamento no túnel. As velocidades de entrada e saída de ar nas s dependem do tipo de vento simulado, da magnitude da velocidade do vento, da posição das s e da configuração de fechamento das s da edificação em questão. 6. REFERÊNCIAS BIBLIOGRÁFICAS ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6123: Forças devidas ao vento em edificações. São Paulo, 1988. CLEZAR, C. A.; NOGUEIRA, C. R. Ventilação industrial. Florianópolis: UFSC, 1999. EMBRAPA, Embrapa Trigo de Passo Fundo. Disponível em: < http://www.cnpt.embrapa.br/>. Último acesso em 14 de jul. 2011. NUNES, D. A. Estudo da ventilação natural por efeito do vento em pavilhões industriais utilizando modelos reduzidos. Dissertação (Mestrado em Engenharia Civil) Universidade Federal do Rio Grande do Sul, Porto Alegre, 2006. 19 4. CONCLUSÕES Especificamente com relação ao estudo desenvolvido com modelo reduzido em túnel de vento, os resultados obtidos permitiram concluir que: A medição direta de velocidades através de anemômetro de fio quente permite que se obtenham vazões de ventilação sem iterações, com resultados próximos aos modelos teóricos estudados que se baseiam na diferença de pressões internas e externas; As velocidades de entrada ou saída de ar nas s dependem do perfil do vento, magnitude da velocidade do vento, da posição e dimensionamento das s em pavilhões; As s localizadas nas cumeeiras são fatores importantes na ventilação promovida pela diferença de temperatura (efeito chaminé). Possuem fundamental importância para a ventilação promovida pelo vento porque permitem a diminuição dos vãos nas s. SHIMOMURA, A.P.; FROTA, A. B.; CELANI, M. G. C. Modelos físicos na análise de ventilação urbana: o uso do túnel de Vento. Fórum Patrimônio: Ambiente Construído e Patrimônio Sustentável, v. 4, n.1, p. 1-22, 2010. SILVANI, M. Subsídios para o projeto da ventilação natural em pavilhões industriais. Dissertação (Mestrado em Engenharia) Faculdade de Engenharia e Arquitetura, Universidade de Passo Fundo, Passo Fundo, 2005. 5. AGRADECIMENTOS Os autores agradecem a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES pelo apoio financeiro para a realização desta pesquisa.