por espécies monoatômicas H, He, O, alcalinos e alcalinos terrosos, e possui pressão superficial menor que 10-12 bar. A atmosfera de Vênus é



Documentos relacionados
Formação estelar e Estágios finais da evolução estelar

EXOPLANETAS EIXO PRINCIPAL

15 O sistema solar e seus planetas

Escola E. B. 2º e 3º ciclos do Paul. Trabalho elaborado por: Diana Vicente nº 9-7ºB No âmbito da disciplina de Ciências Naturais

Considera-se que o Sistema Solar teve origem há cerca de 5 mil milhões de anos.

CIÊNCIAS PROVA 2º BIMESTRE 6º ANO PROJETO CIENTISTAS DO AMANHÃ

Esse grupo já foi conhecido como gases raros e gases inertes.


CAPÍTULO 2 A ATMOSFERA TERRESTRE

DISTRIBUIÇÃO ELETRÔNICA E N OS QUâNTICOS TEORIA - PARTE II. Elétron de diferenciação e elétrons de valência. Distribuição eletrônica de íons

QUÍMICA QUESTÃO 41 QUESTÃO 42

Universidade Federal Fluminense

Efeito estufa: como acontece, por que acontece e como influencia o clima do nosso planeta

INTERAÇÃO DOS RAIOS-X COM A MATÉRIA

Avaliação da unidade II Pontuação: 7,5 pontos

José Otávio e Adriano 2º ano A

Sistema Solar. Sistema de Ensino CNEC. 4 o ano Ensino Fundamental Data: / / Atividades de Ciências Nome:

Escola Estadual Jerônimo Gueiros Professor (a) Supervisor (a): Ary Pereira Bolsistas: Ana Moser e Débora Leyse

Sumário. O Sistema Solar. Principais características dos planetas do Sistema Solar 05/01/ e 24

O Sistema Solar 11/12/2014. Unidade 2 O SISTEMA SOLAR. 1. Astros do Sistema Solar 2. Os planetas do Sistema Solar

Descobrindo o Sistema Solar Denis E. Peixoto NASE, Brasil

As estações do ano acontecem por causa da inclinação do eixo da Terra em relação ao Sol. O movimento do nosso planeta em torno do Sol, dura um ano.

Sumário. Atmosfera da Terra. Interação Radiação-Matéria 23/02/2015

ÇÃO À ASTRONOMIA (AGA-210) Notas de aula INTRODUÇÃ. Estrelas: do nascimento à Seqüê. üência Principal. Enos Picazzio IAGUSP, Maio/2006

ENSINO FUNDAMENTAL - CIÊNCIAS 9ºANO- UNIDADE 3 - CAPÍTULO 1

Propriedades Planetas Sol Mercúrio Vênus Terra. O Sistema Solar. Introdução à Astronomia Fundamental. O Sistema Solar

Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Astronomia. Estrelas. Prof. Tibério B. Vale

Apostila de Química Geral

Introdução. Muitas reações ocorrem completamente e de forma irreversível como por exemplo a reação da queima de um papel ou palito de fósforo.

LIGAÇÕES INTERATÔMICAS

Novas Descobertas sobre o Sistema Solar

Astor João Schönell Júnior

Elementos do bloco p

PROF. RICARDO TEIXEIRA O UNIVERSO E O SISTEMA SOLAR

Estudo da emissão veicular de Gases de Efeito Estufa (GEE) em veículos movidos à DIESEL. Prof. Dr. Ariston da Silva Melo Júnior

O Sistema Solar, a Galáxia e o Universo. Prof Miriani G. Pastoriza Dep de Astronomia, IF

Prova de Recuperação Bimestral de Ciências Nome Completo: Data: / /2010

A VIA LÁCTEA, NOSSA GALÁXIA

2.1 Astros do Sistema Solar

Prova final teórica. 5 as Olimpíadas Nacionais de Astronomia. 05 de Junho de :00. Duração máxima 120 minutos

Sistema Solar. Prof. Fabricio Ferrari Universidade Federal do Pampa. Projeto de Extensão Astronomia para Todos

6ª série / 7º ano U. E 05

Interacção da Radiação com a Matéria

Ligações Químicas Ligação Iônica Ligação Metálica

Material Extra: Modelos atômicos e atomística Química professor Cicero # Modelos Atômicos e atomística - Palavras chaves

Universidade Federal Fluminense

ANO LETIVO 2013/2014 PROVAS DE ACESSO AO ENSINO SUPERIOR PARA CANDIDATOS MAIORES DE 23 ANOS EXAME DE QUÍMICA CONTEÚDOS PROGRAMÁTICOS

O MUNDO QUE VIVEMOS CAPITULO 1 DO VIANELLO E ALVES METEOROLOGIA BÁSICA E APLICAÇÕES

ESSMF. Constituição. Biologia Geologia Sistema Solar. Pleiades. Estrela - Massa luminosa de plasma (gás ionizado).

GEOLOGIA. Prof. Dr. Adilson Soares E- mail: Site:

a) Qual a configuração eletrônica do cátion do alumínio isoeletrônico ao gás nobre neônio?

A) a existência do oceano líquido é uma hipótese possível, pois um sal solúvel só forma uma mistura homogênea com a água, quando ela está líquida.

Química. Resolução das atividades complementares. Q49 Polaridade das moléculas

Sua Conexão Cósmica com os Elementos

XI OLIMPÍADA REGIONAL DE CIÊNCIAS-2009 O Sistema Solar

5 as Olimpíadas Nacionais de Astronomia

Lista 1_Gravitação - F 228 2S2012

As cônicas. c, a 2 elipse é uma curva do plano em que qualquer um de seus pontos, por exemplo,, satisfaz a relação:


A Via-Láctea. Prof. Fabricio Ferrari Unipampa. adaptado da apresentação The Milky Way, Dr. Helen Bryce,University of Iowa

PROF. KELTON WADSON OLIMPÍADA 8º SÉRIE ASSUNTO: TRANSFORMAÇÕES DE ESTADOS DA MATÉRIA.

ASTEROIDES. Daniela Araldi 1 Tina Andreolla 2

Próton Nêutron Elétron

Química Atomística Profª: Bruna Villas Bôas. Exercícios

LIGAÇÃO COVALENTE APOLAR ELEMENTOS COM MESMA ELETRONEGATIVIDADE

Transições de Fase de Substâncias Simples

PROBLEMAS AMBIENTAIS INVERSÃO TÉRMICA INVERSÃO TÉRMICA 14/02/2014. Distribuição aproximada dos principais poluentes do ar de uma cidade (SP)

CLASSIFICAÇÃO PERIÓDICA DOS ELEMENTOS

COMO OS LIVROS DIDÁTICOS DE ENSINO MÉDIO ABORDAM O EFEITO ESTUFA

01 Processos Químicos. Prof. Dr. Sergio Pilling Aluno: Will Robson Monteiro Rocha

ESTADOS DA MATÉRIA. O átomo é composto por outras partículas ainda menores.

Uma estrela-bebê de 10 mil anos

Quando esses temas são compreendidos, o aprendizado da química orgânica se torna muito mais fácil, diminuindo a necessidade de memorização.

Unidade IV Ser Humano e saúde. Aula 17.1

COMENTÁRIO DA PROVA DE QUÍMICA EQUIPE DE QUÍMICA DO CURSO POSITIVO

Plutão era um planeta, mas...

GEOMETRIA MOLECULAR E INTERAÇÕES QUÍMICAS MOLECULARES. Professor Cristiano

ASTRONOMIA. A coisa mais incompreensível a respeito do Universo é que ele é compreensível Albert Einstein

5 as Olimpíadas Nacionais de Astronomia

UNIDADE 3 - COORDENAÇÃO ATÔMICA

01) (ACAFE) O grupo de átomos que é encontrado na forma monoatômica pelo fato de serem estáveis é:

Estrutura da Terra Contributos para o seu conhecimento

Autor: (C) Ángel Franco García. Ptolomeu e Copérnico. Os planetas do Sistema Solar. Os satélites. Atividades

Material de estudo ROBÔS NO ESPAÇO. André Luiz Carvalho Ottoni

Observatórios Virtuais Fundamentos de Astronomia Cap. 14 (C. Oliveira & V.Jatenco-Pereira) Capítulo 14 O MEIO INTERESTELAR

Tabela periódica e propriedades periódicas

GERÊNCIA EDUCACIONAL DE FORMAÇÃO GERAL E SERVIÇOS CURSO TÉCNICO DE METEOROLOGIA ESTUDO ESTATISTICO DA BRISA ILHA DE SANTA CATARINA

Boa tarde a todos!! Sejam bem vindos a aula de Física!! Professor Luiz Fernando

Qualidade Ambiental Química

Radiação Solar como forçante climática

Departamento de Astronomia - Universidade Federal do Rio Grande do Sul

História... Esta Teoria permaneceu Oficial durante 13 Séculos!!

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de?

Cópia autorizada. II

AULA 02: TABELA PERIÓDICA

UFJF CONCURSO VESTIBULAR GABARITO DA PROVA DISCURSIVA DE QUÍMICA

EXERCÍCIOS ESTRUTURA ELETRONICA

Sistema Solar: Planetas Externos. Emerson Penedo

Introdução a Propagação Prof. Nilton Cesar de Oliveira Borges

Atmosfera terrestre: Descrição física e química; emissões atmosféricas naturais e antropogênicas; suas transformações. Transporte atmosférico.

Transcrição:

1 Introdução Aproximadamente, 90% de toda matéria do universo é constituída de corpos como estrelas e planetas, e apenas cerca de 10% representa o meio interestelar, e este é constituído por aproximadamente 90% de poeira cósmica e 10% de gases. 1 Na nossa galáxia esses gases, que geralmente formam grandes nuvens, encontramse distribuídos principalmente no centro e na periferia. O interesse de conhecer estas nuvens, que são fontes de formação de moléculas no meio interestelar, tem levado os astroquímicos a estudarem a sua composição química. Até o meio da década de 1960, as condições da região entre as estrelas eram consideradas drásticas demais para a existência de algumas moléculas. As poucas moléculas que tinham sido observadas (OH, CH, CH + e CN) foram estimadas como resultado da destruição de moléculas da superfície de partículas na vizinhança de estrelas quentes. A hipótese de que as moléculas seriam rapidamente destruídas nas condições interestelares foi questionada com a observação de moléculas frágeis, como NH 3, H 2 CO e H 2 O, no final da década de 60. Como essas observações foram estendidas a outras moléculas, logo percebeu-se que em determinadas regiões do meio interestelar quase todos os átomos gasosos disponíveis estariam combinados em moléculas. 2 Essas observações criaram o novo campo da química interestelar, o estudo e modelagem de reações químicas no meio interestelar. Depois dos átomos de hidrogênio (H), carbono (C) e nitrogênio (N), o enxofre (S) e fósforo (P) são os elementos químicos mais abundantes do sistema solar. Como são reativos, esses elementos se combinam formando alguns compostos, que é o caso do nitreto de fósforo (PN) e do sulfeto de nitrogênio (NS), estudados nesse trabalho. Essas espécies foram detectadas tanto no meio interestelar quanto em cometas e na atmosfera de planetas gigantes, como Júpiter e Saturno, que possuem esses gases como constituintes de sua atmosfera, além do H 2 e He, que são seus gases majoritários.

13 1.1 Astroquímica Astroquímica é o estudo da natureza, comportamento e evolução das moléculas encontradas no espaço, geralmente em escalas maiores do que o sistema solar, particularmente em nuvens moleculares. Na escala do sistema solar, o estudo de moléculas é neste contexto usualmente chamado de cosmoquímica. A Química Interestelar e a Química Planetária são apenas subdivisões da Astroquímica e da Cosmoquímica, respectivamente. O espaço entre as estrelas não é vazio. Existe um meio interestelar de gás e pequenas partículas sólidas na galáxia. A massa do meio interestelar é aproximadamente 1/10 do total de matéria luminosa na forma de estrelas. O meio interestelar é constituído pelo espaço entre as estrelas. Ele é caracterizado, em geral, por baixas densidades e baixas temperaturas, embora algumas regiões exibam densidades e temperaturas extremas. A temperatura do meio interestelar varia desde uns poucos graus Kelvin até alguns milhares de graus Kelvin, dependendo da proximidade da estrela ou de outro tipo qualquer de fonte de radiação. Pode-se dizer que a faixa de temperatura média de uma região escura do meio interestelar é de 10 K a 100 K, que comparando a 273 K, ponto em que a água congela, e 0 K, ponto e que os movimentos moleculares e atômicos cessam, conclui-se que o espaço interestelar é muito frio. 2 O sistema solar é composto pelo sol e pelo conjunto de corpos celestes que se encontram em seu campo gravitacional. Ele é formado por oito planetas principais (Mercúrio, Vênus, Terra, Marte, Júpiter, Saturno, Urano e Netuno) e outros corpos de dimensões menores, como asteróides, cometas e planetas anões. Próximos ao sol, encontram-se os quatro planetas terrestres (ou telúricos), que são compostos de rochas e silicatos: Mercúrio, Vênus, Terra e Marte. Depois da órbita de Marte, encontram-se os planetas gigantes de gás (ou planetas gasosos), que são formados por gases: Júpiter, Saturno, Urano e Netuno. Eles podem ser divididos em dois subgrupos: Júpiter-Saturno e Urano-Netuno. Mercúrio é o mais próximo do Sol, a uma distância de apenas 57,9 milhões de quilômetros, enquanto Netuno está a cerca de 4500 milhões de quilômetros. Os planetas terrestres possuem atmosferas secundárias que se originaram por liberação de materiais voláteis. A atmosfera rarefeita de Mercúrio é composta

14 por espécies monoatômicas H, He, O, alcalinos e alcalinos terrosos, e possui pressão superficial menor que 10-12 bar. A atmosfera de Vênus é predominantemente composta por CO 2, com 3,5% de N 2 e pequenas quantidades de SO 2, H 2 O, CO, está sob altas temperaturas (740 K) e altas pressões (95 bar). A atmosfera da Terra é controlada por processos biológicos, com influências da fotoquímica e atividades humanas. Ela é composta principalmente por N 2, O 2 e H 2 O, mas também possui traços de outros elementos, como Ar, CO 2, Ne, He, CH 4, Kr, H 2, CO, O 3, HCl, compostos clorofluorcarbonos (CFC) e N 2 O. A composição química da atmosfera de Marte é também dominantemente de CO 2, assim como a de Vênus. O CO 2 é continuamente convertido em O 2 e CO por luz solar UV. Também há as espécies N 2, Ar e H 2 O, em menor quantidade, menos de 3% da composição total. Os planetas gigantes gasosos possuem atmosferas primárias, que são compostas principalmente por H 2 e He, capturados de nebulosas solares. Além do H 2 e He, Júpiter e Saturno possuem atmosferas compostas por CH 4, NH 3, H 2 O, H 2 S, PH 3 e outros gases. As atmosferas de Urano e Netuno são compostas pelos gases CH 4, HD, CH 3 D, C 2 H 6, além do H 2 e He e de outros gases em menor escala. 3 A evolução molecular no espaço envolve algumas reações químicas. Acredita-se que espécies interestelares são formadas a partir de precursores mais simples por um processo de síntese, ao invés de por quebra de sistemas mais complicados. Outras possibilidades para origem de moléculas interestelares são através da poeira interestelar e por formação de moléculas precursoras na atmosfera de estrelas gigantes, que são transportadas para o meio interestelar pelo material que é naturalmente liberado das estrelas. 2 Esse material que é liberado pelas estrelas contém espécies simples que foram formadas a partir dos átomos de H e He, que são os elementos mais abundantes no interior das estrelas. São vários os tipos de reações que podem ocorrer no interior das estrelas, porém, não serão abordadas neste trabalho mas podem ser encontradas em Greenwood et. al. 4 As primeiras detecções de espécies datam da década de 30, com espécies de carbono, 5 mas é o ano de 1963 que marca o início da química interestelar, com a observação do radical OH 6. Desde então, um grande número de espécies tem sido detectadas no meio interestelar, desde pequenas a grandes espécies de até 13 átomos. Atualmente, existem, aproximadamente, 150 tipos diferentes de

15 moléculas, radicais e íons conhecidos até agora no meio interestelar e planetário. 7 As espécies que foram detectadas até o momento podem ser vista na tabela 1, que foi retirada da homepage da NASA, acessado em 22/12/2008 7. A detecção e identificação dessas espécies é feita através da análise de radiação eletromagnética absorvida ou emitida. Todas as radiações vindas do espaço podem ser detectadas e analisadas na Terra, ou a partir dos telescópios no espaço.

16 Tabela 1: Espécies químicas detectadas Espécies com 2 átomos H 2 CO CSi CP PO SO + FeO CS NO NS SO SH CO + HF HCl NaCl KCl AlCl O 2 CH + CN AlF PN SiN SiO N 2 CH LiH SiS NH OH C 2 CF + Espécies com 3 átomos H 2 O H 2 S HCN HNC CO 2 SO 2 MgCN MgNC NaCN N 2 O NH 2 OCS CH 2 HCO C 3 C 2 H C 2 O C 2 S AlNC HNO SiCN N 2 H + SiNC c - SiC 2 HCO + HOC + HCS + + H 3 OCN - HCP CCP Espécies com 4 átomos NH 3 H 2 CO (?) H 2 CS C 2 H 2 HNCO HNCS H 3 O + SiC 3 C 3 S H 2 CN c - C 3 H l - C 3 H HCCN CH 3 C 2 CN C 3 O HCO 2 HOCO + C 3 N HCNH + Espécies com 5 átomos CH 4 SiH 4 CH 2 NH NH 2 CN CH 2 CO HCOOH (?) HCC-CN HCC-NC c - C 3 H 2 l - C 3 H 2 CH 2 CN H 2 COH + C 4 Si C 5 C 4 H - HC(O)CN HNCCC C 4 H Espécies com 6 átomos CH 3 OH CH 3 SH C 2 H 4 HC 4 N CH 3 CN CH 3 NC C 5 H C 5 N H(CC) 2 H H 2 CCCC H 2 CCNH HC(O)NH 2 HC 3 NH + HCC-C(O)H c-h 2 C 3 O Espécies com 7 átomos C 6 H c - C 2 H 4 O CH 3 NH 2 CH 2 CH(OH) CH 2 CH(CN) H 3 C-CC-H HC(O)CH 3 C 6 H - HCC-CC-CN Espécies com 8 átomos CH 3 COOH H 2 NCH 2 CN H 3 C-CC-CN CH 2 CCHCN C 7 H H 2 C 6 H(CC) 3 H HC(O)OCH 3 H 2 C=CH-C(O)H HOCH 2 C(O)H Espécies com 9 átomos (CH 3 ) 2 O C 8 H CH 3 CH 2 OH CH 3 CHCH 2 CH 3 C 4 H C 8 H - CH 3 CH 2 CN HCC-CC-CC-CN CH 3 C(O)NH 2 Espécies com 10 átomos (CH 3 ) 2 CO H 3 C-CH 2 -C(O)H HOCH 2 CH 2 OH CH 3 (CC) 2 CN Espécies com 11 átomos HCC-CC-CC-CC-CN CH 3 C 6 H Espécies com 12 átomos C 6 H 6 Espécies com 13 átomos HCC-CC-CC-CC-CC-CN

17 Para a identificação dessas espécies, seus espectros são comparados com espectros de moléculas já conhecidas, obtidos em experiências de laboratório. Porém, há moléculas que são instáveis nas condições normais de laboratório, então, a análise dos espectros é guiada por previsões feitas através de modelos teóricos. Essa dissertação mostra o estudo de duas espécies que foram detectadas no meio interestelar, em cometas e planetas gigantes: a molécula nitreto de fósforo (PN) e o radical sulfeto de nitrogênio (NS). Foram propostos mecanismos de reações químicas para sua formação a partir de possíveis precursores e passando por alguns intermediários, sendo alguns também já detectados no meio interestelar, como mostrado em negrito na tabela 1, e outros ainda não detectados. Esse estudo é de grande importância, pois permite predizer como algumas moléculas podem ser formadas e comparar a estabilidade entre elas. O próximo tópico abordará uma revisão da literatura sobre as espécies PN e NS. 1.2 As espécies nitreto de fósforo e sulfeto de nitrogênio O nitrogênio e o fósforo pertencem ao grupo 15 da tabela periódica. Os elementos desse grupo são caracterizados por sua configuração ns 2 np 3 com o subnível np semipreenchido. Essa configuração dá a esses elementos uma grande variação no número de oxidação: 3, 1, +1, +2, +3, +4 e + 5. A configuração eletrônica do estado fundamental do átomo de nitrogênio é [He] 2s 2 2p 1 x 2p 1 1 y 2p z com três elétrons desemparelhados e o fósforo possui uma configuração eletrônica do estado fundamental do tipo [Ne] 3s 2 3p 1 x 3p 1 y 3p 1 z, também com três elétrons desemparelhados, porém, com a disponibilidade dos orbitais vazios 3d, que favorece a predominação dos estados de oxidação III e V na química do fósforo. Para o nitrogênio, a ligação tripla é mais favorável em termos de energia do que 3 ligações simples, enquanto que para o fósforo prevalece o contrário. 4 A ligação P N é uma das mais intrigantes na química. Ela ocorre em inúmeros compostos, frequentemente com grande estabilidade, e em muitos deles a força de ligação e a pequena distância interatômica tem sido interpretada em termos de caráter parcial de dupla ligação. Um dos sistemas mais simples formado entre os

18 elementos nitrogênio e fósforo é o nitreto de fósforo (PN). O PN é uma molécula diatômica, isovalente, análoga ao N 2 e que possui importante aplicação na tecnologia de semicondutores quando está em sua forma polimétrica. 8,9 O PN foi a primeira molécula de fósforo encontrada no meio interestelar e detectada em várias regiões de formação de estrelas. 10-12 Desde seu descobrimento, tem ocorrido um grande número de estudos focados para as reações que possam formar essa molécula e para a caracterização de suas propriedades moleculares. Thorne et al. 10 estimou algumas reações entre íons e moléculas de fósforo que sugeriu que o PN interestelar pode ser formado, principalmente, por reações entre íons fósforo e NH 3. Porém, podem existir outros caminhos para sua formação, já que outras moléculas contendo nitrogênio e fósforo também existem nesse ambiente. 13-15 Trinta anos atrás, Herbst e William Klemperer proporam que a maior parte da química em fase gasosa de nuvens interestelares seria baseada em reações íon-molécula. A radiação presente nesse meio poderia produzir íons com energia suficiente para iniciar essas reações, e que devido elas requerem pequena ou nenhuma energia de ativação, poderiam acontecer em temperaturas menores que 10 K. Porém, embora reações íon-molécula sejam muito importantes na química em fase gasosa e em superfícies de grãos de nuvens interestelares, elas não são as únicas classes de reações químicas que podem ocorrer nesse meio. Experiências em laboratório demonstram que interações entre átomos neutros ou moléculas também podem ocorrer sob baixas temperaturas encontradas nas nuvens interestelares. 16 A primeira evidência espectroscópica para o gás PN em laboratório foi feita em 1933, por Curry et al. 17 E mais tarde, em 1954, seu calor de formação foi experimentalmente determinado pela primeira vez 18 e confirmado na década de 60. 19-21 O espectro da molécula de PN também foi observado na região ótica e do ultravioleta por técnicas de emissão e absorção, em 1972. 22 E mais recentemente, algumas propriedades termodinâmicas da molécula PN e seus íons foram calculadas através de métodos ab initio. 23-25 A formação de PN em laboratório foi obtida por decomposição térmica do pentanitreto de fósforo (P 3 N 5 ), 26 pela reação entre átomo de fósforo e óxido nítrico (NO) 27-30 e pela reação entre o átomo de fósforo e o radical azida (N 3 ). 31 Como P 3 N 5, N 3, e altas concentrações de NO não existem no meio interestelar e em atmosferas planetárias, seria interessante propor um mecanismo químico para a

19 formação do PN nesse meio de extremas condições. Infelizmente, é difícil o estudo experimental da formação de PN devido à alta reatividade das espécies N e P e ao improvável isolamento da reação química nas condições interestelares e planetárias de temperatura e pressão. Cálculos ab initio de química quântica podem ser uma alternativa para o entendimento da formação da molécula PN numa variedade de regiões astronômicas. Já o enxofre, pertencente ao grupo 16 da tabela periódica, possui a configuração ns 2 np 4. Os números de oxidação possíveis para o enxofre são 2, +1, +2, +4 e +6. A configuração eletrônica do estado fundamental do átomo de enxofre é [Ne] 3s 2 3p 4 com dois elétrons π desemparelhados. 4 O sulfeto de nitrogênio (NS) é uma molécula diatômica isovalente ao óxido de nitrogênio (NO). Moléculas contendo enxofre estão presentes numa grande variedade de condições interestelares e planetárias. 32 O NS foi primeiramente identificado em nuvens moleculares gigantes por Gottlieb et al. em 1975, 33 depois, ele também foi detectado em nuvens escuras frias 34 e em 2000, Irvine et al. relatou a primeira detecção na calda de cometas. 35 A reação em fase gasosa em nuvens densas, SH + N NS + H, foi proposta por Duley et al. em 1980 36 e Canaves et al. 2000 37 estimou a abundância do NS usando o mecanismo químico proposto por Duley et al. em 1980, 36 que é no mínimo 10 3 menor que o encontrado por Irvine et al. 35 Segundo Canaves et al., a principal reação para a formação do NS é a partir do íon HNS +, na reação HNS + + e NS + H. Ainda em seu artigo, encontra-se outras reações que também podem levar ao NS: 1) HS + N NS + H, 2) H + + NS NS + + H e 3) C + + NS NS + + C, sendo que as duas últimas levam ao cátion NS +. Seria bem interessante propor outros caminhos para a formação do NS neutro, a fim de estimar sua abundância em regiões astronômicas. Informações sobre algumas reações já estudadas de espécies interestelares e planetárias podem ser vista na base de dados de Astroquímica chamada UMIST, 38 que possui um conjunto limitado de reações químicas para essas duas moléculas, PN e NS, como pode ser visto na tabela 2 abaixo:

20 Tabela 2: Reações que envolvem as espécies PN e NS. Molécula PN Molécula NS C + PN + PN + C + C + NS CS + N H + + PN PN + + H C + NS S + CN H + 3 + PN HPN + + H 2 C+ + NS NS + + C H 3 O + + PN HPN + + H 2 O C+ + NS CS + + N HCO + + PN HPN + + CO CN + S NS + C He + + PN P + + N + He H + NS HS + N HPN + + e - PN + H H + NS S + NH N + PH PN + H H + + NS NS + + H N + PN P + N 2 H + 3 + NS HNS + + H2 N + PO PN + O HCO + + NS HNS + + CO PNH + 2 + e - PN + H 2 He + + NS S + N + + He PNH + 3 + e - PN + H 2 + H He + + NS S + + N + He HNS + + e - NS + H N + HS NS + H * fóton induzido por raios cósmicos N + NS S + N 2 N + S - NS + e - N + S 2 NS + S N + SO NS + O NH + S NS + H NO + S NS + O NS + hν* S + N NS + hν S + N O + NS SO + N O + NS S + NO Os próximos capítulos abordarão uma revisão da literatura sobre mecânica quântica, estado de transição e reações proibidas por spin. O capítulo 4 apresenta o objetivo deste trabalho, no capítulo 5 pode ser vista a metodologia de forma detalhada, no capítulo 6 tem-se os resultados obtidos, juntamente com sua discussão, no capítulo 7 encontra-se a conclusão desta dissertação e os possíveis trabalhos futuros estão descritos no capítulo 8.