Aula 3 Desenho Topográfico
|
|
|
- Theodoro Sabala Clementino
- 7 Há anos
- Visualizações:
Transcrição
1 Aula 3 Desenho Topográfico Disciplina: Geometria Descritiva 2CC Prof: Gabriel Liberalquino Soares Lima
2 CÁLCULO DE VOLUMES CAMINHOS Para isso temos que calcular o volume das fatias limitadas pelos planos horizontais, aqueles que definem as curvas de nível. Fazemos isso multiplicando a área média limitada pelas curvas de nível pela distância entre os planos horizontais. V = (A1 + A2)/2 x h Exemplo: Tomando a seguinte planta topográfica, calcular o volume de sua elevação:
3 CÁLCULO DE VOLUMES CAMINHOS A 1 = 500m 2 A 2 = 400m 2 A 3 = 250m 2 A 4 = 100m 2 A 5 = 50m 2 V 1 = (A 1 + A 2 )/2 x 10 V 2 = (A 2 + A 3 )/2 x 10 V 3 = (A 3 + A 4 )/2 x 10 V 4 = (A 4 + A 5 )/2 x 10 V T = V 1 + V 2 +V 3 + V 4
4 CAMINHOS DE UMA SUPERFÍCIE TOPOGRÁFICA Existem as seguintes possibilidades de caminhos em uma superfície topográfica: Caminhos em linha reta na planta; Caminhos com declividade constante; Caminhos de maior declividade. Cada um desses caminhos possui suas características que são percebidas quando construímos seus respectivos os perfis.
5 CAMINHOS EM LINHA RETA NA PLANTA TOPOGRÁFICA Esses caminhos cortam várias curvas de nível e essas curvas quando cortadas podem estar mais próximas ou mais distantes entre si. Que leitura poderíamos fazer dessa situação? Bem, temos que relembrar que quanto menor a distância entre as curvas de nível maior é a declividade naquela região. Pois bem, se o caminho tem essa característica de cortar curvas que estão mais próximas ou mais distantes entre si significa que nele estaremos lidando com diversas declividades. Portanto esse caminho não será um caminho de declividade constante. Assim, apesar dele ser uma linha reta em planta, ele não será uma linha reta em perfil.
6 CAMINHOS EM LINHA RETA NA PLANTA TOPOGRÁFICA
7 CAMINHOS EM LINHA RETA NA PLANTA TOPOGRÁFICA Analisando em perfil:
8 CAMINHOS COM DECLIVIDADE CONSTANTE Já caminhos de declividade constante possuem características gráficas exatamente opostas ao do caminho em linha reta na planta, ou seja, em planta são linhas tortuosas, mas em perfil são linhas retas. Vejamos como ficaria o perfil dos caminhos acima.
9 CAMINHOS COM DECLIVIDADE CONSTANTE Como se constrói um caminho de declividade constante? Se queremos um caminho de declividade constante e estamos lidando com curvas de nível sabemos que elas estão eqüidistantes entre si (em cota), o que temos que fazer é centrar o compasso no início do caminho e estabelecer um segundo ponto (com raio qualquer ou com raio calculado em função de uma declividade dada). Com esse raio (que será constante) centramos no segundo ponto e procuramos na curva seguinte o terceiro ponto e assim procedemos sucessivamente. Quando nós construirmos esse perfil nós veremos que ele é uma linha reta.
10 CAMINHOS COM DECLIVIDADE CONSTANTE
11 CAMINHOS COM DECLIVIDADE CONSTANTE Se o raio for qualquer: é só usar um raio qualquer até achar um ponto da curva de nível seguinte, e usar o mesmo raio para achar pontos nas curvas de nível seguintes. Já se a declividade for dada temos que usar a seguinte fórmula: r = e/d Onde: r é o raio e é a equidistância entre as curvas de nível d é a declividade do caminho
12 CAMINHOS COM DECLIVIDADE CONSTANTE OBSERVAÇÃO IMPORTANTE: É importante perceber que no caso de caminhos de declividade constante nem sempre haverá esse ponto na curva de nível seguinte, pois como o raio é o mesmo pode ser que ele não alcance a curva de nível que está abaixo (ou acima) do ponto anterior.
13 CAMINHOS DE MAIOR DECLIVIDADE Eles não são linhas retas nem em planta, nem em perfil, mas são, geralmente, os caminhos mais curtos do topo até a base da elevação. Eles são os caminhos de maior declividade e é por eles que a água das chuvas desce. Como se constrói um caminho de maior declividade? Achando a menor distância entre as curvas de nível e traçando segmentos de reta perpendiculares a elas.
14 Referências Bibliográficas Costa, J. D., Superfícies Topográficas. UFPE Departamento de Expressão Gráfica. 2005
Aula 2 Desenho Topográfico
Aula 2 Desenho Topográfico Disciplina: Geometria Descritiva 2CC Prof: Gabriel Liberalquino Soares Lima LINHA D ÁGUA OU LINHA HIDRODINÂMICA Essas linhas imaginárias são linhas de descida de água, ou seja,
Aula 4 Desenho Topográfico
Aula 4 Desenho Topográfico Disciplina: Geometria Descritiva 2CC Prof: Gabriel Liberalquino Soares Lima ÁREA DE VISIBILIDADE O estudo de área de visibilidade é uma aplicação do conhecimento adquirido com
Aula 5 Desenho Topográfico
Aula 5 Desenho Topográfico Disciplina: Geometria Descritiva 2CC Prof: Gabriel Liberalquino Soares Lima ESTRADAS ESTRADA: Obra que se destina à circulação de veículos. automóveis = estrada de rodagem trens
732,50. Titulo 729,80 725, ,32 721,40. Copyright EPUSP-PTR -LTG 2016 LTG/PTR/EPUSP
1 0 1 2 3 4 5 6 7 8 9 10 Titulo 6 7 8 9 10 11 12 13 14 15 16 17 2 É dada uma planta topográfica. Determine a distância entre os pontos e indicados. 3 distância horizontal entre os pontos e é obtida multiplicando
1- Traçar uma perpendicular ao meio de um segmento AB - Método Mediatriz.
1- Traçar uma perpendicular ao meio de um segmento AB - Método Mediatriz. 1º - traçar uma reta A-B 2º - ponta seca em A (abertura do compasso um pouco maior que a metade), risca em cima e risca embaixo.
LEITURA E INTERPRETAÇÃO DE PROJETOS DE CONSTRUÇÃO CIVIL
LEITURA E INTERPRETAÇÃO DE PROJETOS DE CONSTRUÇÃO CIVIL Prof: Helano Abreu [email protected] www.profhelanoabreu.wordpress.com 1 PROJETO TOPOGRÁFICO 2 O que é Topografia? ETIMOLOGIA: A palavra TOPOGRAFIA
UNIÃO DINÂMICA DE FACULDADES CATARATAS CENTRO UNIVERSITÁRIO DINÂMICA DAS CATARATAS CURSO DE ARQUITETURA E URBANISMO
UNIÃO DINÂMICA DE FACULDADES CATARATAS CENTRO UNIVERSITÁRIO DINÂMICA DAS CATARATAS CURSO DE ARQUITETURA E URBANISMO Missão: Formar Profissionais capacitados, socialmente responsáveis e aptos a promoverem
732,50. Titulo 729,80 725, ,32 721,40. Copyright EPUSP-PTR -LTG 2016 LTG/PTR/EPUSP
1 0 1 2 3 4 5 6 7 8 9 10 Titulo 6 7 8 9 10 11 12 13 14 15 16 17 2 Conhecendo o relevo da região, traçar um trecho de rodovia interligando os pontos A e C, de declividade máxima 3%: 3 Traçado de um caminhamento
ACH 1056 Fundamento de Cartografia Profª. Mariana Soares Domingues
ACH 1056 Fundamento de Cartografia Profª. Mariana Soares Domingues A posição em planta dos pontos da superfície da Terra constitui a Planimetria, a posição em altitude dos mesmos chama-se Altimetria. *A
CAPÍTULO I INTRODUÇÃO AO ESTUDO DOS TELHADOS. 1. Introdução
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa Disciplina CD027 - Expressão Gráfica I Curso Engenharia
Estas notas de aulas são destinadas a todos aqueles que desejam ter. estudo mais profundo.
Geometria Descritiva Prof. Sérgio Viana Estas notas de aulas são destinadas a todos aqueles que desejam ter um conhecimento básico de Geometria Descritiva, para um posterior estudo mais profundo. GEOMETRIA
Escala. Instrumento utilizado para determinar a distância entre dois pontos. Prof. Wilton Oliveira
Escala Instrumento utilizado para determinar a distância entre dois pontos. Representa as relações das dimensões apresentadas em um mapa, no contexto dos valores reais do terreno e sua representatividade.
Objetivos. em termos de produtos internos de vetores.
Aula 5 Produto interno - Aplicações MÓDULO 1 - AULA 5 Objetivos Calcular áreas de paralelogramos e triângulos. Calcular a distância de um ponto a uma reta e entre duas retas. Determinar as bissetrizes
A equação da circunferência
A UA UL LA A equação da circunferência Introdução Nas duas últimas aulas você estudou a equação da reta. Nesta aula, veremos que uma circunferência desenhada no plano cartesiano também pode ser representada
AULA 11 ESTRADAS I 11/11/2010 CONCORDÂNCIA VERTICAL CONCORDÂNCIA VERTICAL CONCORDÂNCIA VERTICAL
AULA 11 ESTRADAS I PROF. Msc. ROBISON NEGRI O projeto de uma estrada em perfil é constituído de greides retos, concordados dois a dois por curvas verticais. Os greides retos são definidos pela sua declividade,
Tolerância geométrica de orientação
Tolerância geométrica de orientação A UU L AL A vimos a maneira de verificar a forma de apenas um elemento, como planeza, circularidade, retilineidade. O problema desta aula é verificar a posição de dois
07/10/2013. AULA 03 Sistemas de projeção. Sobre a Geometria Descritiva (GD):
1 2 Sobre a Geometria Descritiva (GD): Enquanto a Perspectiva mostra os objetos como parecem ser à nossa vista, em três dimensões, a Geometria Descritiva possibilita a representação dos objetos como eles
ESTUDO DO PLANO. Quando o plano intersecta o PH tem traço horizontal. Quando o plano intersecta o PV tem traço vertical.
ESTUDO DO PLANO GENERALIDADES SOBRE PLANOS Um plano α pode ser determinado por:. Três pontos (A, B e C) não alinhados.. Um ponto e uma reta (A e r). 3. Duas retas que se cortam (r e s). REPRESENTAÇÃO DO
GEOMETRIA ANALÍTICA CONTEÚDOS. Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência.
GEOMETRIA ANALÍTICA CONTEÚDOS Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência. AMPLIANDO SEUS CONHECIMENTOS Neste capítulo, estudaremos a Geometria Analítica.
Retas e círculos, posições relativas e distância de um ponto a uma reta
Capítulo 3 Retas e círculos, posições relativas e distância de um ponto a uma reta Nesta aula vamos caracterizar de forma algébrica a posição relativa de duas retas no plano e de uma reta e de um círculo
MÓDULO 1 - AULA 21. Objetivos
Aula 1 Hipérbole - continuação Objetivos Aprender a desenhar a hipérbole com compasso e régua com escala. Determinar a equação reduzida da hipérbole no sistema de coordenadas com origem no ponto médio
AULA 4. Profa. Clélia Monasterio. Engenharia e Arquitetura - UFJF
Engenharia Profa. Clélia e Arquitetura Monasterio - UFJF AULA 4 Fontes : PRINCIPE JR, A.R., Noções de Geometria Descritiva V. 1, 36. ed., Sao Paulo : Nobel, 1983. PDD- CANAL DIBUJO TECNICO. Profesor de
básicos da geometria descritiva, destacando os tipos Inicia se pelo estudo do ponto e depois estende se
Teoria das Projeções Prof. Cristiano Arbex 2012 Introdução O objetivo desta aula é apresentaros conceitos básicos da geometria descritiva, destacando os tipos principais de projeção. Inicia se pelo estudo
Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 ESTUDO DA CIRCUNFERÊNCIA
DEFINIÇÃO... EQUAÇÃO REDUZIDA... EQUAÇÃO GERAL DA CIRCUNFERÊNCIA... 3 RECONHECIMENTO... 3 POSIÇÃO RELATIVA ENTRE PONTO E CIRCUNFERÊNCIA... 1 POSIÇÃO RELATIVA ENTRE RETA E CIRCUNFERÊNCIA... 17 PROBLEMAS
ESTUDO DA RETA COMO DETERMINAR UMA RETA COMO É A PROJEÇÃO DE UM SEGMENTO DE RETA. Por um ponto passam infinitas retas.
1 ESTUDO DA RETA COMO DETERMINAR UMA RETA Por um ponto passam infinitas retas. Uma reta é definida por dois pontos. COMO É A PROJEÇÃO DE UM SEGMENTO DE RETA Raios ortogonais ao plano de projeção incidem
Resumo. Maria Bernardete Barison apresenta Prisma em Geometria Descritiva. Geométrica vol.2 n PRISMA
1 PRISMA: DEFINIÇÃO PRISMA O prisma é um poliedro irregular compreendido entre dois polígonos iguais e paralelos, e cujas faces laterais são paralelogramos. Os dois polígonos iguais e paralelos são as
FACULDADE SUDOESTE PAULISTA CURSO - ENGENHARIA CIVIL DISCIPLINA- TOPOGRAFIA
FACULDADE SUDOESTE PAULISTA CURSO - ENGENHARIA CIVIL DISCIPLINA- TOPOGRAFIA EXERCÍCIO DE REVISÃO 1. Com base nos seus conhecimentos, complete a lacuna com a alternativa abaixo que preencha corretamente
SOMBRA: EXERCÍCIOS RESOLVIDOS
Universidade Ibirapuera Arquitetura e Urbanismo CONFORTO AMBIENTAL: INSOLAÇÃO E ILUMINAÇÃO SOMBRA: EXERCÍCIOS RESOLVIDOS Aplicação da Geometria Descritiva e da Carta Solar para determinação do Sombreamento
Computação Gráfica. Prof. André Yoshimi Kusumoto
Computação Gráfica Prof. André Yoshimi Kusumoto [email protected] Curvas Curvas e superfícies desempenham um papel importante em diversas áreas tanto na criação de objetos sintéticos quanto
10. Determine as equações cartesianas das famílias de retas que fazem um ângulo de π/4 radianos com a reta y = 2x + 1.
Geometria Analítica. 1. Determine as posições relativas e as interseções entre os conjuntos em R abaixo. Em cada item também faça um esboço dos dois conjuntos dados no mesmo sistema de eixos. (a) C : (x
Aula 6 Polígonos. Objetivos. Introduzir o conceito de polígono. Estabelecer alguns resultados sobre paralelogramos.
MÓULO 1 - UL 6 ula 6 Polígonos Objetivos Introduzir o conceito de polígono. Estabelecer alguns resultados sobre paralelogramos. Introdução efinição 14 hamamos de polígono uma figura plana formada por um
A projeção de uma reta sobre um plano é o lugar das projeções de todos os seus pontos sobre este plano. (D) (C)
ESTUDO DA RETA A projeção de uma reta sobre um plano é o lugar das projeções de todos os seus pontos sobre este plano. (A) (C) (D) (B) (a) B (p) A C D Baixando de todos os pontos da reta perpendiculares
Altimetria. Prof.: Delson José Carvalho Diniz
Altimetria Prof.: Delson José Carvalho Diniz - 003 - 1 ALTIMETRIA Assunto: Altimetria, Levantamento Altimétricos - Superfícies de Nível, Cotas e Altitudes, Nível Verdadeiro e Aparente, Nivelamento Geométrico,
Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA
Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA 4. Geometria Analítica 4.1. Introdução Geometria Analítica é a parte da Matemática,
MESTRADO PROFISSIONAL EM ENSINO DA MATEMÁTICA DA PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO LIETH MARIA MAZIERO
MESTRADO PROFISSIONAL EM ENSINO DA MATEMÁTICA DA PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO LIETH MARIA MAZIERO Produto Final da Dissertação apresentada à Pontifícia Universidade Católica de São Paulo
Aula O Plano Cartesiano
Aula 3 3. O Plano Cartesiano O plano cartesiano, em geral denotado por duas dimenções, é o conjunto dos pares P = (x,y) de reais, x e y, chamados respectivamente de abscissa (ou primeira coordenada) e
EXPRESSÃO GRÁFICA PROJEÇÕES COTADAS PROJEÇÕES COTADAS CONCEITOS GERAIS 1/28
EXPRESSÃO GRÁFICA PROJEÇÕES COTADAS PROJEÇÕES COTADAS CONCEITOS GERAIS 1/28 É um sistema gráfico-analítico que utiliza somente a projeção principal do objeto estudado. PROJEÇÕES COTADAS CONCEITOS GERAIS
Figuras Geométricas planas e espaciais. Rafael Carvalho
Figuras Geométricas planas e espaciais Rafael Carvalho Figuras geométricas planas Na geometria plana vamos então nos atentar ao método de cálculo da área das figuras geométricas planas. Sendo elas os polígonos,
PROPOSTA DIDÁTICA. A atividade será divididas em etapas. Cada etapa e o tempo previsto estão descritos a seguir.
PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: Tanara da Silva Dicetti 1.2 Público alvo: 6 e 7 anos 1.3 Duração: 2 Horas 1.4 Conteúdo desenvolvido: Áreas de figuras planas 2. Objetivo(s)
ALTIMETRIA. É a parte da topografia que trata dos métodos e instrumentos empregados no estudo e representação do relevo da Terra.
ALTIMETRIA É a parte da topografia que trata dos métodos e instrumentos empregados no estudo e representação do relevo da Terra. Sheila 1 LEVANTAMENTOS ALTIMÉTRICOS Ou simplesmente nivelamento: é a operação
Geometria Descritiva
Geometria Descritiva Projeção de retas situados nos planos de projeção: Plano Horizontal de projeção Plano Frontal de projeção Planos Bissetores: ß 1/3 ; ß 2/4 Alfabeto da Reta - Revisões Reta Horizontal
Coordenadas e distância na reta e no plano
Capítulo 1 Coordenadas e distância na reta e no plano 1. Introdução A Geometria Analítica nos permite representar pontos da reta por números reais, pontos do plano por pares ordenados de números reais
Integração Volume. Aula 07 Matemática II Agronomia Prof. Danilene Donin Berticelli
Integração Volume Aula 7 Matemática II Agronomia Prof. Danilene Donin Berticelli Volume de um sólido Na tentativa de encontra o volume de um sólido, nos deparamos com o mesmo tipo de problema que para
Desenho Geométrico e Concordâncias
UnB - FGA Desenho Geométrico e Concordâncias Disciplina: DIAC-1 Prof a Eneida González Valdés CONSTRUÇÕES GEOMÉTRICAS Todas as construções da geometria plana são importantes, há, entretanto algumas, que
Aula Exemplos e aplicações. Exemplo 1. Nesta aula apresentamos uma série de exemplos e aplicações dos conceitos vistos.
Aula 16 Nesta aula apresentamos uma série de exemplos e aplicações dos conceitos vistos. 1. Exemplos e aplicações Exemplo 1 Considere os pontos A = (1, 2, 2), B = (2, 4, 3), C = ( 1, 4, 2), D = (7, 1,
Aula 15 Superfícies quádricas - cones quádricos
Aula 15 Superfícies quádricas - cones quádricos MÓDULO - AULA 15 Objetivos Definir e estudar os cones quádricos identificando suas seções planas. Analisar os cones quádricos regrados e de revolução. Cones
INTERSEÇÃO DE SUPERFÍCIES
1 INTERSEÇÃO DE SUPERFÍCIES INTRODUÇÃO Nesta aula você aprenderá a encontrar a linha de inteseção de duas superfícies, a classificar o tipo de interseção e além disso verá alguns exemplos de estruturas
Atividade Experimental - Aula 13 Óptica: Espelhos Planos e Esféricos
Nome: RA: NOTA: Engenharia Professor Dr. Alysson Cristiano Beneti FAESO Ourinhos - SP º Semestre / 20 Data: / /20 Disciplina: Física Teórica Experimental II Avaliação: Relatório Aula 13 Atividade Experimental
CAPÍTULO IV APLICAÇÕES
CAPÍTULO IV APLICAÇÕES PROJEÇÃO ORTOGONAL SOBRE UM PLANO PROJEÇÃO DE UM PONTO: Definição: Chama-se projeção ortogonal de um ponto sobre um plano ao pé da perpendicular ao plano conduzida pelo ponto. O
rofa Lia Pimentel TOPOGRAFIA
rofa Lia Pimentel TOPOGRAFIA TOPOS significa lugar GRAPHEN significa descrição Pode-se dizer que a TOPOGRAFIA é a ciência que trata do estudo da representação detalhada de uma porção da superfície terrestre.
1 Geometria Descritiva 1 Aula 03/04 Fundamentos da GD - Prof. Luciano PLANOS E VERDADEIRAS GRANDEZAS
1 Geometria Descritiva 1 Aula 03/04 Fundamentos da GD - Prof. Luciano PLANOS E VERDADEIRAS GRANDEZAS O principal objetivo da visualização dos planos auxiliares é determinar as verdadeiras grandezas das
CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS 2 1 NOÇÕES DE GEOMETRIA PLANA 1.1 GEOMETRIA A necessidade de medir terras
Conceitos e Controvérsias
Conceitos e Controvérsias QUAL É A SOMA DOS ÂNGULOS (internos ou externos) DE UM POLÍGONO (convexo ou não)? Elon Lages Lima IMPA Introdução Todos sabem que a soma dos ângulos internos de um triângulo vale
APOSTILA I DAC CRIADO POR DÉBORA M. BUENO FRANCO PROFESSORA DE DESENHO ASSISTIDO POR COMPUTADOR FACULDADE EDUCACIONAL DE ARAUCÁRIA - FACEAR
APOSTILA I DAC Alunos O material aqui disponibilizado deve ser entendido como material de apoio às aulas de Desenho Assistido por Computador, não substituindo de qualquer forma o conteúdo da disciplina
Distância entre duas retas. Regiões no plano
Capítulo 4 Distância entre duas retas. Regiões no plano Nesta aula, veremos primeiro como podemos determinar a distância entre duas retas paralelas no plano. Para isso, lembramos que, na aula anterior,
Geometria Analítica II - Aula 4 82
Geometria Analítica II - Aula 4 8 IM-UFF K. Frensel - J. Delgado Aula 5 Esferas Iniciaremos o nosso estudo sobre superfícies com a esfera, que já nos é familiar. A esfera S de centro no ponto A e raio
Nome: Nº: Disciplina: Matemática. Professor: Sandro Dias Martins CONTEÚDO DE MATEMÁTICA (ÂNGULOS)
Nota: Nome: Nº: Disciplina: Matemática Professor: Sandro Dias Martins Turma: Data: / / 20 CONTEÚDO DE MATEMÁTICA (ÂNGULOS) O ÂNGULO E SEUS ELEMENTOS Duas semi-retas que não estejam contidas na mesma reta,
Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR)
Espacial 1 PRISMAS Os prismas são sólidos geométricos bastante recorrentes em Espacial. Podemos definir o prisma da seguinte forma: PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Prisma é um sólido
BACIA HIDROGRÁFICA. Nomenclatura. Divisor de água da bacia. Talweg (talvegue) Lugar geométrico dos pontos de mínimas cotas das seções transversais
U 6 BCI HIDROGRÁFIC Bacia hidrográfica ou bacia de drenagem de uma seção de um curso d água é a área geográfica coletora de água de chuva que escoa pela superfície do solo e atinge a seção considerada.
A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos Â
A UA UL LA A lei dos senos Introdução Na Aula 4 vimos que a Lei dos co-senos é uma importante ferramenta matemática para o cálculo de medidas de lados e ângulos de triângulos quaisquer, isto é, de triângulos
Plano cartesiano, Retas e. Alex Oliveira. Circunferência
Plano cartesiano, Retas e Alex Oliveira Circunferência Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é
Fontes do Campo magnético
Fontes do Campo magnético Lei de Biot-Savart Jean-Baptiste Biot (1774 1862) e Félix Savart (1791 1841) Realizaram estudos sobre as influências de um corrente elétrica sobre o campo magnético. Desenvolveram
I. Para concordar um arco com uma reta é necessário que o ponto de concordância e o centro do arco, estejam ambos sobre uma mesma perpendicular.
9.CONCORDÂNCIAS T A N G E N T E S Chama-se concordância de duas linhas curvas ou de uma reta com uma curva, a ligação entre elas, executada de tal forma, que se possa passar de uma para outra, sem ângulo,
APOSTILA GEOMETRIA DESCRITIVA
APOSTILA GEOMETRIA DESCRITIVA 1 GEOMETRIA MÉTRICA E ESPACIAL 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 SISTEMAS DE PROJEÇÃO Conforme o que foi exposto anteriormente, o estudo da Geometria Descritiva está
FA.ULisboa Secção de Desenho, Geometria e Computação 2016 / º ano Mestrado Integrado em Arquitectura - Urbanismo (C) GDC I
FA.ULisboa Secção de Desenho, Geometria e Computação 2016 / 2017 1º ano Mestrado Integrado em Arquitectura - Urbanismo (C) GDC I rova de frequência (2ª parte erspectiva) 20 de Dezembro de 2016 9h00m Esta
Prof. Rafael Saraiva Campos CEFET/RJ UnED Nova Iguaçu 2011
Introdução à Geometria Descritiva Aula 01 Prof. Rafael Saraiva Campos CEFET/RJ UnED Nova Iguaçu 2011 Resumo O que é Geometria Descritiva? Projeção Ortogonal de um Ponto Método da Dupla Projeção de Monge
Construções Geométricas
Desenho Técnico e CAD Técnico Prof. Luiz Antonio do Nascimento Engenharia Ambiental 2º Semestre Ângulo - é a região plana limitada por duas semirretas de mesma origem. Classificação dos ângulos: Tipos
GEOMETRIA DESCRITIVA AULA 1R - PROJEÇÕES
1 GEOMETRIA DESCRITIVA AULA 1R - PROJEÇÕES 1. DIVIDIR O TIJOLO DE ALVENARIA NA ESCALA 1:2 ACRESCENTE AO DESENHO DA VISTA DE FRENTE VF A VISTA SUPERIOR E A VISTA LATERAL ESQUERDA. Desenhe na vista frontal
FAU UFRJ GEOMETRIA DESCRITIVA II. Apostila de Apoio
FAU UFRJ GEOMETRIA DESCRITIVA II Apostila de Apoio Bibliografia: CARVALHO, Benjamin de A. Morfologia e Desenho das Curvas. (Terceira Parte) In: Desenho Geométrico. Rio de Janeiro. Ed. Ao Livro Técnico
TOPOGRAFIA. Prof. Michel Andraus
TOPOGRAFIA Prof. Michel Andraus 2017 O homem sempre necessitou conhecer o meio em que vive, por questões de sobrevivência, orientação, segurança, guerras, navegação, construção, etc. O homem já fazia mapas
Aplicação de Integral Definida: Volumes de Sólidos de Revolução
Aplicação de Integral Definida: Prof a. Sólidos Exemplos de Sólidos: esfera, cone circular reto, cubo, cilindro. Sólidos de Revolução são sólidos gerados a partir da rotação de uma área plana em torno
Capítulo I - Introdução ao Estudo dos Telhados
UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE EXPRESSÃO GRÁFICA DISCIPLINA: EXPRESSÃO GRÁFICA I CURSO: ARQUITETURA AUTORES: Luzia Vidal de Souza Deise Maria Bertholdi Costa Paulo Henrique Siqueira Capítulo
Geometria Descritiva 28/08/2012. Elementos Primitivos da Geometria
Geometria Descritiva Prof. Luiz Antonio do Nascimento [email protected] www.lnascimento.com.br A Geometria, como qualquer outra ciência, fundamenta-se em observações e experiências para estabelecer
1 Geometria Analítica Plana
UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria
1. Área do triângulo
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Plana II Prof.:
Exercícios de Matemática Geometria Analítica
Eercícios de Matemática Geometria Analítica. (UFRGS) Considere um sistema cartesiano ortogonal e o ponto P(. ) de intersecção das duas diagonais de um losango. Se a equação da reta que contém uma das diagonais
TOPOGRAFIA II CÁLCULO DE VOLUMES
TOPOGRAFIA II CÁLCULO DE VOLUMES 2 Cálculo de volume de prismas e sólidos Volume de Prismas Alguns dos cálculos que serão vistos estarão baseados no conceito de volumes de prisma. Considerando dois planos
AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ensino Secundário Ano Letivo 2016/2017
Apresentação da disciplina: Objetivos, funcionamento e avaliação. 1. Módulo inicial 2. Introdução à Geometria Descritiva Domínios: Socio Afetivo e Cognitivo. Avaliação e sumativa. Lista de material e sua
Os problemas em Desenho Geométrico resumem-se em encontrar pontos. E para determinar um ponto basta obter o cruzamento entre duas linhas.
31 4 LUGARES GEOMÉTRICOS Os problemas em Desenho Geométrico resumem-se em encontrar pontos. E para determinar um ponto basta obter o cruzamento entre duas linhas. Definição: Um conjunto de pontos do plano
Aula 18 Cilindros quádricos e identificação de quádricas
MÓDULO 2 - AULA 18 Aula 18 Cilindros quádricos e identificação de quádricas Objetivos Estudar os cilindros quádricos, analisando suas seções planas paralelas aos planos coordenados e estabelecendo suas
GABARITO COMENTADO DE PROVAS DE FÍSICA CINEMÁTICA
GABARITO COMENTADO DE PROVAS DE FÍSICA CINEMÁTICA 1ª Prova 2007 Questão 1: FÁCIL O valor de H é calculado pela equação de Torricelli: Para isso, deve-se calcular a velocidade inicial e final: (sinal negativo,
Cone. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT
Cone MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cone Em um plano H considere uma curva simples fechada C e seja V um ponto fora
Estrada de Rodagem Curvas Concordância Vertical
Estrada de Rodagem Curvas Concordância Vertical Prof. Dr. Rodrigo de Alvarenga Rosa [email protected] (7) 9941-3300 1 Greide O greide consiste na representação do eixo da rodovia segundo o
Capítulo 1 - O Ponto. Capítulo 2 - A Reta
Capítulo 1 - O Ponto Lista de Exercícios de GD0159 O Ponto, A Reta, O Plano e Métodos Descritivos Professor: Anderson Mayrink da Cunha 1. Represente os pontos (A),..., (F ) em épura, onde (A)[1; 2; 3],
Expressão Gráfica Projeção Cotada 32
Expressão Gráfica Projeção Cotada 32 CAPÍTULO I - INTRODUÇÃO O MÉTODO DAS PROJEÇÕES COTADAS O método foi idealizado por Fellipe Buache em 1737 para o levantamento da carta hidrográfica do Canal da Mancha.
Escola Politécnica UFRJ Departamento de Expressão Gráfica DEG. Sistemas Projetivos. Representação de Retas no Sistema Mongeano NOTAS DE AULA
Escola Politécnica UFRJ Departamento de Expressão Gráfica DEG Sistemas Projetivos Representação de Retas no Sistema Mongeano NOTAS DE AULA Prof. Julio Cesar B. Torres ([email protected]) REPRESENTAÇÃO
Leitura e Interpretação de Desenho Técnico Mecânico
Leitura e Interpretação de Desenho Técnico Mecânico Módulo IV Aula 02 Tolerância de forma e posição Símbolos, inscrições e interpretações sobre o desenho (norma ISO R 1101-1969) As tolerâncias de forma
Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1
Aula 1 Sejam r 1 = P 1 + t v 1 t R} e r 2 = P 2 + t v 2 t R} duas retas no espaço. Se r 1 r 2, sabemos que r 1 e r 2 são concorrentes (isto é r 1 r 2 ) ou não se intersectam. Quando a segunda possibilidade
Estudo de Geometria. Iniciação ao. » Passeio no Parque» Circunferências
Iniciação ao Estudo de Geometria com TI-Nspire» Passeio no Parque» Circunferências P Estrada Parque CONTEÚDO ELABORADO PELO GRUPO T 3 PORTUGAL, UTILIZADO NAS SESSÕES PRÁTICAS DOS DIAS T 3 2014 I. Passeio
FACULDADE PITÁGORAS DE LINHARES Prof. Esp. Thiago Magalhães
VETORES NO PLANO E NO ESPAÇO INTRODUÇÃO Cumpre de início, distinguir grandezas escalares das grandezas vetoriais. Grandezas escalares são aquelas que para sua perfeita caracterização basta informarmos
6.3. Cálculo de Volumes por Cascas Cilíndricas
APLICAÇÕES DE INTEGRAÇÃO 6.3 Cálculo de Volumes por Cascas Cilíndricas Nesta seção aprenderemos como aplicar o método das cascas cilíndricas para encontrar o volume de um sólido. VOLUMES POR CASCAS CILÍNDRICAS
CONSTRUÇÕES GEOMÉTRICAS
CONSTRUÇÕES GEOMÉTRICAS 2014 ROF. CRISTIANO ARBEX INTRODUÇÃO Este material tem o objetivo de mostrar as principais construções geométricas utilizadas em Desenho Técnico. ara cada definição apresentada
FAMEBLU Arquitetura e Urbanismo
FAMEBLU Arquitetura e Urbanismo Disciplina GEOMETRIA DESCRITIVA APLICADA A ARQUITETURA 1 Aula 8: Revisão Geral Exercícios Professor: Eng. Daniel Funchal, Esp. Revisão PLANOS Um plano pode ser determinado
Atividade. Série SuperLogo Desafios Geométricos Nível: Ensino Médio. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia
Atividade Desenvolvido por MDMat Mídias Digitais para Matemática Com o apoio da Universidade Federal do Rio Grande do Sul Série SuperLogo Desafios Geométricos Nível: Ensino Médio Em parceria com o Instituto
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros
Elementos e Classificação das Rodovias Brasileiras
Universidade Regional do Cariri URCA Pró Reitoria de Ensino de Graduação Coordenação da Construção Civil Disciplina: Estradas I Elementos e Classificação das Rodovias Brasileiras Renato de Oliveira Fernandes
PHA ( ) PHP ( ) Iº DIEDRO: PVI ( ) IIIº DIEDRO:
GEOMETRIA DESCRITIVA UNIDADE 01 GEOMETRIA DESCRITIVA PLANO DE PROJEÇÃO PHA ( ) PHP ( ) Iº DIEDRO: PVS ( ) IIº DIEDRO: PVI ( ) IIIº DIEDRO: LT ( ) IVº DIEDRO: 1 GEOMETRIA DESCRITIVA UNIDADE 01 Linha Terra
