INTELIGÊNCIA ARTIFICIAL LISTA DE EXERCÍCIOS
|
|
|
- Thereza do Amaral de Caminha
- 7 Há anos
- Visualizações:
Transcrição
1 INTELIGÊNCIA ARTIFICIAL LISTA DE EXERCÍCIOS 1) Considerando a empresa NAIKE, do ramo de calçados, que possui diversos setores como financeiro, marketing, produção, compras... A qual produz calçados e realiza vendas para o mercado interno e para o exterior. Proponha uma solução utilizando alguma das técnicas de Inteligência Artificial estudadas para qualquer um de seus setores (ou interligando mais de um). a) Domínio do problema (setor(es) envolvido(s), dados necessitados, pessoas envolvidas, solução a ser alcançada...) b) Técnica de IA adotada (e explicação) c) Modelagem do problema (como a técnica proposta será usada sobre os dados e/ou problema) d) Métrica de desempenho (como a empresa irá ganhar com sua proposta de sistema) 2) No trabalho de Bento (2015)tado, implementado e avaliado uma gama de meta-heurísticas aplicada à melhor definição de parâmetros para a locomoção autônoma de personagens em um mundo virtual. Os resultados desta pesquisa podem ser aplicados à automação industrial, robótica e jogos eletrônicos. Figura 1: Exemplo de aplicação do estudo: desenvolvimento de próteses inteligentes. e No trabalho os autores consideraram um personagem trípede (três pernas) que deveria se deslocar em um ambiente virtual. Este personagem poderia ter configurado rotação, direção, velocidade, entre outros parâmetros, de cada uma das pernas. Uma das codificações utilizadas foi com Algoritmos Genéticos. Nos experimentos, em certo momento, percebeu-se que os personagens, após algumas gerações, começavam a executar um tipo de movimento muito lento, que apesar de ser o princípio de um movimento, estava longe do ideal. a) Utilizando os conceitos aprendidos sobre Aprendizagem de Máquina, defina que proplema possivelmente ocorreu. b) Proponha uma solução. Referência: BENTO, D. S. ; RODRIGUES, B. C. ; ALVES, J. C. P. ; SOUSA, B. L. ; NEVES JUNIOR, A. B. ; PAULO, L. M. ; MACHADO, A. F. V.. Metaheuristics Applied to the Autonomous Movement of Intelligent Agents. In: European Simulation and Modelling Conference (ES M), ) Considerando um perceptron com duas entradas mais o Bias com os seguintes parâmetros: Peso inicial: w0= 0, w1= 0, w2=0 Taxa de aprendizado: n= 0.5 Realizar o treinamento para a porta OR, definindo, no final, os pesos das sinapses
2
3 6) Pretende-se achar o menor valor usando Algoritmos Genéticos para as variáveis da seguinte equação: 5x + y 2 + w + z 3 = 185 a) Proponha uma maneira de codificar os cromossomos. b) Defina uma função de aptidão para avaliar a qualidade dos cromossomos. c) Defina como o método de seleção dos pais será utilizado. d) Defina os operadores genéticos de crossover e mutação. e) Gere uma população inicial de 4 cromossomos e avalie a aptidão deles. f) Aplique os operadores de cruzamento e mutação sobre essa população para gerar uma nova geração, em seguida avalie a aptidão da nova geração. Repita esse processo por 3 gerações ou até que a solução do problema seja encontrada.
4 7) Considere a seguinte tabela: Código Produto Tipo Produto Descrição Preço Código Nome Avaliação do 1 Celular Sony Xperia Rodrigo Celular Samsung Deivison Câmera Kodak Deivison 5 6 Digital 4 PC DELL Lucas Tempo de Entrega Deseja-se comprar 6 produtos de tipos diferentes. O mais barato possível. Com a melhor avaliação de vendedor possível. Com o menor tempo de entrega possível. Através de Algoritmos Genéticos: a) Proponha uma maneira de codificar os cromossomos. b) Defina uma função de aptidão para avaliar a qualidade dos cromossomos. 8) Explique como poderia ser usado GRASP para os dois exercícios anteriores. 9) Chama-se quadrado mágico a uma matriz quadrada n por n preenchida com números inteiros entre 1 e n2 e que satisfaz a condição de a soma dos elementos em cada coluna, linha ou diagonal ser igual ao mesmo valor (número mágico). Por exemplo, a figura abaixo apresenta um quadrado mágico 4 por 4 (em que o número mágico é 34). Defina a modelagem para esse problema usando Algoritmo Genético e GRASP. 10) Considere a seguinte matriz de distância entre cidades: 11) Considere a seguinte base de factos exemplo: aluno(joao, paradigmas). aluno(maria, paradigmas). aluno(joel, lab2). aluno(joel, estruturas). frequenta(joao, feup). frequenta(maria, feup). frequenta(joel, ist). professor(carlos, paradigmas). professor(ana_paula, estruturas). professor(pedro, lab2). funcionario(pedro, ist). funcionario(ana_paula, feup). funcionario(carlos, feup). Escreva as seguintes regras em prolog:
5 a) Quem são os alunos do professor X? b) Quem são as pessoas da universidade X? (alunos ou docentes) c) Quem é colega de quem? Se aluno: é colega se for colega de disciplina ou colega de curso ou colega de universidade. Se professor: se for professor da mesma universidade.
30/04/2013. Prof. Hudson Costa
Prof. Hudson Costa PROLOG é uma linguagem de programação que é utilizada para resolver problemas que envolvam objetos e relações entre objetos. Em PROLOG o que se define basicamente são objetos e relações
EXERCÍCIOS DE PROGRAMAÇÃO EM LÓGICA
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO EXERCÍCIOS DE PROGRAMAÇÃO EM LÓGICA LUÍS PAULO REIS DANIEL CASTRO SILVA MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO PROGRAMAÇÃO EM LÓGICA
3. Resolução de problemas por meio de busca
Inteligência Artificial - IBM1024 3. Resolução de problemas por meio de busca Prof. Renato Tinós Local: Depto. de Computação e Matemática (FFCLRP/USP) 1 Principais Tópicos 3. Resolução de problemas por
REDES NEURAIS / INTELIGÊNCIA ARTIFICIAL LISTA DE EXERCÍCIOS 6
REDES NEURAIS / INTELIGÊNCIA ARTIFICIAL LISTA DE EXERCÍCIOS 6 Aluno: 1. Defina o problema de busca (espaço de estados, estado inicial, estado final, ações possíveis, custo) para o seguinte caso: uma pessoa,
Inteligência Artificial (Lista 1) Prof. Alex F. V. Machado
Ministério da Educação Instituto Federal de Educação, Ciência e Tecnologia Sudeste de Minas Gerais - Campus Rio Pomba Bacharelado em Ciência da Computação 1) Considere os termos abaixo e complete. Inteligência
Métodos de Busca. Inteligência Artificial. Algoritmos Genéticos. Algoritmos Evolucionários. Prof. Ms. Luiz Alberto Contato:
Inteligência Artificial Prof. Ms. Luiz Alberto Contato: [email protected] Métodos de Busca Busca Cega ou Exaustiva: Não sabe qual o melhor nó da fronteira a ser expandido. Apenas distingue o estado objetivo
Pós-Graduação em Engenharia de Automação Industrial SISTEMAS INTELIGENTES PARA AUTOMAÇÃO
Pós-Graduação em Engenharia de Automação Industrial SISTEMAS INTELIGENTES PARA AUTOMAÇÃO AULA 06 Algoritmos Genéticos Sumário Introdução Inteligência Artificial (IA) Algoritmos Genéticos Aplicações de
Algoritmo Genético. Inteligência Artificial. Professor: Rosalvo Ferreira de Oliveira Neto
Algoritmo Genético Inteligência Artificial Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Introdução 2. Conceitos Básicos 3. Aplicações 4. Algoritmo 5. Exemplo Introdução São técnicas de busca
Inteligência Artificial
Inteligência Artificial Aula 6 Algoritmos Genéticos M.e Guylerme Velasco Roteiro Introdução Otimização Algoritmos Genéticos Representação Seleção Operadores Geneticos Aplicação Caixeiro Viajante Introdução
Inteligência Artificial. Algoritmos Genéticos. Aula I Introdução
Universidade Estadual do Oeste do Paraná Curso de Bacharelado em Ciência da Computação Inteligência Artificial Algoritmos Genéticos Aula I Introdução Roteiro Introdução Computação Evolutiva Algoritmos
Algoritmos Genéticos
Algoritmos Genéticos Introdução Um Algoritmo Genético (AG), conceitualmente, segue passos inspirados no processo biológico de evolução natural segundo a teoria de Darwin Algoritmos Genéticos seguem a idéia
Algoritmos Genéticos. Texto base: Stuart Russel e Peter Norving - Inteligência Artificial
Algoritmos Genéticos Texto base: Stuart Russel e Peter Norving - Inteligência Artificial junho/2007 Algoritmo Genético Uma variante da busca em feixe estocástica Estado sucessor gerado pela combinação
Técnicas de Inteligência Artificial
Universidade do Sul de Santa Catarina Ciência da Computação Técnicas de Inteligência Artificial Aula 9 Algoritmos Genéticos Max Pereira Algoritmos Genéticos Algoritmos Genéticos São técnicas de busca e
SOLUÇÕES HEURÍSTICAS PARA O JOGO DE DAMAS
Universidade Federal do Tocantins SOLUÇÕES HEURÍSTICAS PARA O JOGO DE DAMAS Diogo Rigo de Brito Guimarães Alexandre Tadeu Rossini da Silva Objetivo Implementar soluções heurísticas para o Jogo de Damas
Inteligência Computacional Aplicada. O que é Inteligência Computacional? Áreas de Aplicação Algoritmos Genéticos
Inteligência Computacional Aplicada Resumo O que é Inteligência Computacional? Áreas de Aplicação Algoritmos Genéticos O que é Inteligência Computacional? Técnicas e sistemas computacionais que imitam
Inteligência Artificial Redes Neurais
Inteligência Artificial Jarley P. Nóbrega, Dr. Faculdade Nova Roma Bacharelado em Ciência da Computação [email protected] Semestre 2018.2 Jarley P. Nóbrega, Dr. (Nova Roma) Inteligência Artificial Semestre
Algoritmos Genéticos
Algoritmos Genéticos Roteiro Introdução Algoritmos Genéticos Otimização Representação Seleção Operadores Genéticos Aplicação Caixeiro Viajante Introdução Algoritmos Genéticos (AGs), são métodos de otimização
Aplicação de algoritmos genéticos. Problema da Mochila (knapsack problem)
Aplicação de algoritmos genéticos Problema da Mochila (knapsack problem) Algoritmos genéticos Passos inspirados no processo biológico de evolução Ideia de sobrevivência dos mais adaptados Soluções cada
Computação Evolutiva Eduardo do Valle Simões Renato Tinós ICMC - USP
Computação Evolutiva Eduardo do Valle Simões Renato Tinós ICMC - USP 1 Principais Tópicos Introdução Evolução Natural Algoritmos Genéticos Aplicações Conclusão 2 Introdução http://www.formula-um.com/ Como
Codificação das variáveis: binária Iniciação da população: aleatória Avaliação: função aptidão Operadores. Critério de parada: número de gerações
AG Simples/Canônico (AGS) AG introduzido por Holland Funciona bem para problemas de otimização simples e/ou de pequenas dimensões A maior parte da teoria dos AGs está baseada no AGS Utilidade didática
Técnicas de Inteligência Artificial
Universidade do Sul de Santa Catarina Ciência da Computação Técnicas de Inteligência Artificial Aula 9 Algoritmos Genéticos Max Pereira Algoritmos Genéticos São técnicas de busca e otimização. Uma metáfora
Departamento de Ciência de Computadores - FCUP Primeiro Teste de Inteligência Artificial / Sistemas Inteligentes (Duração: 2 horas)
Departamento de Ciência de Computadores - FCUP Primeiro Teste de Inteligência Artificial / Sistemas Inteligentes (Duração: horas) Nome: Data: 7 de Abril de 016 1) Considere a aplicação da busca em profundidade
Inteligência Artificial Agentes Inteligentes
Inteligência Artificial Jarley P. Nóbrega, Dr. Faculdade Nova Roma Bacharelado em Ciência da Computação [email protected] Semestre 2018.2 Jarley P. Nóbrega, Dr. (Nova Roma) Inteligência Artificial Semestre
3 Aprendizado por reforço
3 Aprendizado por reforço Aprendizado por reforço é um ramo estudado em estatística, psicologia, neurociência e ciência da computação. Atraiu o interesse de pesquisadores ligados a aprendizado de máquina
Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 5 Resolvendo Problemas
Inteligência Artificial Prof. Tiago A. E. Ferreira Aula 5 Resolvendo Problemas 1 Agente solucionador de problemas (guiado por objetivo) O agente reativo Escolhe suas ações com base apenas nas percepções
Aprendizado por Reforço usando Aproximação
Aprendizado por Reforço usando Aproximação de Funções Fabrício Olivetti de França Universidade Federal do ABC Tópicos 1. Aproximação de Funções 2. Do the evolution 1 Aproximação de Funções Função Utilidade
Computação Evolutiva. Computação Evolutiva. Principais Tópicos. Evolução natural. Introdução. Evolução natural
Computação Evolutiva Eduardo do Valle Simões Renato Tinós ICMC - USP Principais Tópicos Introdução Evolução Natural Algoritmos Genéticos Aplicações Conclusão 1 2 Introdução Evolução natural http://www.formula-um.com/
Um Algoritmo Genético para o Problema de Roteamento de Veículos com Janelas de Tempo
Um Algoritmo Genético para o Problema de Roteamento de Veículos com Janelas de Tempo Francisco Henrique de Freitas Viana Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio Departamento de Informática
Inteligência Artificial: Introdução
Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Inteligência Artificial: Introdução DCA0121 Inteligência Artificial Aplicada Daniel Enos / Heitor Medeiros
ELABORAÇÃO DE UMA HEURÍSTICA PARA O PROBLEMA DE QUADRO DE HORÁRIOS DOS PROFESSORES DA UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS CAMPO MOURÃO
ELABORAÇÃO DE UMA HEURÍSTICA PARA O PROBLEMA DE QUADRO DE HORÁRIOS DOS PROFESSORES DA UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS CAMPO MOURÃO Marcos Oliveira dos Santos (IC, FUNDAÇÃO ARAUCÁRIA), (UNESPAR/FECILCAM),
a) Defina em Prolog iguais/1, um predicado que recebe um estado do jogo e que verifica que todas as pilhas têm o mesmo número de peças.
Introdução à Inteligência Artificial 2ª Época 29 Janeiro 2015 Nº Aluno: Nome Completo: Exame com consulta. Responda às perguntas nesta própria folha, nos espaços indicados. (I) O jogo do Nim (também chamado
Fabrício Jailson Barth BandTec
Introdução à Inteligência Artificial Fabrício Jailson Barth [email protected] BandTec 1 o semestre de 2012 Objetivos e Sumário O que é Inteligência Artificial (IA)? Objetivos da IA. Influência
Inteligência Computacional para Jogos Eletrônicos
Inteligência Computacional para Jogos Eletrônicos Papéis da IA em Jogos Adversários Aliados Personagens de apoio NPC s (Non-player Character) Comentaristas Controle de câmera Geração de fases Nivelamento
APLICAÇÃO DE ALGORITMOS BIO-INSPIRADOS EM CONTROLE ÓTIMO
APLICAÇÃO DE ALGORITMOS BIO-INSPIRADOS EM CONTROLE ÓTIMO Profa. Mariana Cavalca Baseado em: Material didático do Prof. Dr. Carlos Henrique V. Moraes da UNIFEI Curso de verão da Profa. Gisele L. Pappa Material
Inteligência Artificial. Prof. Ilaim Costa Jr.
Inteligência Artificial Prof. Ilaim Costa Jr. 4) Ciência da Computação 4) Ciência da Computação Exemplos de Aplicação da IA Matemática: demonstração
INF 1771 Inteligência Artificial
INF 1771 Inteligência Artificial Aula 01 Resolução de problemas por meio de Busca Edirlei Soares de Lima Introdução Agentes Autônomos: Entidades autônomas capazes de observar o ambiente
Ex. 1) Considere que a árvore seguinte corresponde a uma parte do espaço de estados de um jogo de dois agentes: f=7 f=7 f=1 f=2
LERCI/LEIC Tagus 2005/06 Inteligência Artificial Exercícios sobre Minimax: Ex. 1) Considere que a árvore seguinte corresponde a uma parte do espaço de estados de um jogo de dois agentes: Max Min f=4 f=7
SERVIÇO PÚBLICO FEDERAL MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE MINAS GERAIS IFMG
Matriz Curricular FGGCOMP - Bacharelado em Ciência da Computação 0. Disciplinas Obrigatórias FGGCOMP.00 Cálculo I FGGELET.00 - Cálculo I / FGGMATE.00 - Cálculo Diferencial e Integral I FGGCOMP.00 Geometria
Inteligência Artificial. Conceitos Gerais
Inteligência Artificial Conceitos Gerais Inteligência Artificial - IA IA é um campo de estudo multidisciplinar e interdisciplinar, que se apóia no conhecimento e evolução de outras áreas do conhecimento.
GRADUAÇÃO EM ENGENHARIA DE COMPUTAÇÃO - EAD
GRADUAÇÃO EM ENGENHARIA DE COMPUTAÇÃO - EAD Com o advento da indústria 4.0, há uma crescente demanda de profisisonais com habilidades de desenvolver dispositivos e softwares para as mais variadas áreas
Matemática Computacional
folha de exercícios 5 :: página 1/5 exercício 5.1. Defina a função f : R R, f(x) = 4x 4 3x 3 + 2x 2 + x. Calcule f(0), f( 1), f(4/3) e f(2.88923). exercício 5.2. Defina a função g : R R R, g(x, y) = x
INTELIGÊNCIA ARTIFICIAL
Agentes Inteligentes Aula 3 Mestrado em Educação (em andamento) MBA em Negócios em Mídias Digitais MBA em Marketing e Vendas Especialista em games : Produção e Programação Bacharel em Sistema de Informação
Algoritmos Genéticos. Princípio de Seleção Natural. Sub-áreas da Computação Evolutiva. Idéias básicas da CE. Computação Evolutiva
Computação Evolutiva Algoritmos Genéticos A computação evolutiva (CE) é uma área da ciência da computação que abrange modelos computacionais inspirados na Teoria da Evolução das Espécies, essencialmente
UNIVERSIDADE FEDERAL DO PAMPA CAMPUS BAGÉ ALGORITMOS E PROGRAMAÇÃO. Matrizes. Prof. Alex Camargo
UNIVERSIDADE FEDERAL DO PAMPA CAMPUS BAGÉ ALGORITMOS E PROGRAMAÇÃO Matrizes Prof. Alex Camargo [email protected] Definição Matriz é uma variável composta homogênea multidimensional. Conjunto de
O INÍCIO CIÊNCIA DA COMPUTAÇÃO
O INÍCIO CIÊNCIA DA COMPUTAÇÃO por: André Aparecido da Silva Disponível em: http://www.oxnar.com.br/2015/unitec Os códigos da guerra Alan Turing foi um incrível matemático, lógico e criptoanalista, cujos
3 Algoritmos Genéticos
Técnicas de Inteligência Computacional 33 3 Algoritmos Genéticos Este capítulo resume os principais conceitos sobre o algoritmo evolucionário empregado nesta dissertação. É apresentada uma breve explicação
Figura: Capa do Livro Russell, S., Norvig, P. Artificial Intelligence A Modern Approach, Prentice-Hall.
Figura: Capa do Livro Russell, S., Norvig, P. Artificial Intelligence A Modern Approach, Prentice-Hall. Universidade Federal de Campina Grande Departamento de Sistemas e Computação Curso de Bacharelado
Otimização. Unidade 6: Algoritmo Genético. Jaime Arturo Ramírez. 7. Teoria do processo evolutivo num GA. 8. Aspectos avançados
Otimização Jaime Arturo Ramírez Conteúdo 1. Introdução 2. Analogia de mecanismos de seleção natural com sistemas artificiais 3. Algoritmo genético modelo 4. Um GA simples 5. Representação, genes e cromossomos
1. Computação Evolutiva
Computação Bioinspirada - 5955010-1 1. Computação Evolutiva Prof. Renato Tinós Programa de Pós-Graduação Em Computação Aplicada Depto. de Computação e Matemática (FFCLRP/USP) 2 Computação Bioinspirada
SERVIÇO PÚBLICO FEDERAL MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE MINAS GERAIS IFMG
Matriz Curricular FGGCOMP - Bacharelado em Ciência da Computação 0. Disciplinas Obrigatórias FGGCOMP.00 Cálculo I FGGELET.00 - Cálculo I / FGGMATE.00 - Cálculo Diferencial e Integral I FGGCOMP.00 Geometria
SERVIÇO PÚBLICO FEDERAL MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE MINAS GERAIS IFMG
Matriz Curricular FGGCOMP - Bacharelado em Ciência da Computação 0. Disciplinas Obrigatórias FGGCOMP.00 Cálculo I FGGELET.00 - Cálculo I / FGGMATE.00 - Cálculo Diferencial e Integral I FGGCOMP.00 Geometria
Unidade 7 Álgebra: equações
Sugestões de atividades Unidade 7 Álgebra: equações 8 MATEMÁTICA Matemática. A razão entre a idade que Luiza terá daqui a 5 anos e a idade que ela tinha há 5 anos é,5. Determine: a) a idade atual de Luiza;
INF INTELIGÊNCIA ARTIFICIAL TRABALHO 1 BUSCA HEURÍSTICA
INF1771 - INTELIGÊNCIA ARTIFICIAL TRABALHO 1 BUSCA HEURÍSTICA Descrição: Para se tornar um Mestre Pokémon é necessário aventurar-se por terras desconhecidas, capturar novos pokémons, treina-los e derrotar
Inteligência de Enxame
Inteligência de Enxame! Inteligência de enxames é a denominação aplicada a tentativa de desenvolvimento de algoritmos para a solução distribuída de problemas inspirando-se no comportamento coletivo de
CURSO DE GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO MATRIZ CURRICULAR MATUTINO Fase N.
CURSO DE GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO MATRIZ CURRICULAR MATUTINO Fase N. Ordem Código COMPONENTE CURRICULAR Créditos Horas Prérequisitos 01 Introdução à informática 04 60 02 Matemática instrumental
Aprendizagem de Máquinas
Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Aprendizagem de Máquinas DCA0121 Inteligência Artificial Aplicada Heitor Medeiros 1 Aprendizagem de Máquinas
INTELIGÊNCIA ARTIFICIAL
Figura: Capa do Livro Russell, S., Norvig, P. Artificial Intelligence A Modern Approach, Pearson, 2009. Universidade Federal de Campina Grande Unidade Acadêmica de Sistemas e Computação Curso de Pós-Graduação
Resolução de Problemas
Resolução de Problemas 1 Agente de Resolução de Problemas (1/2) 2 O agente reativo Escolhe suas ações com base apenas nas percepções atuais não pode pensar no futuro, não sabe aonde vai 4 5 8 1 6 7 2 3?
Inteligência Artificial Aplicada a Robôs Reais
Inteligência Artificial Aplicada a Robôs Reais Prof. Dr. Eduardo Simões Instituto de Ciências Matemáticas e de Computação USP Cópias das Transparências: http://www.icmc.usp.br/~simoes/seminars/semi.html
CRÉDITOS DO CURSO. Carga Horária Créditos IN1030 Seminários 30 2
UNIVERSIDADE FEDERAL DE PERNAMBUCO PRÓ-REITORIA PARA ASSUNTOS DE PESQUISA E PÓS-GRADUAÇÃO ESTRUTURA CURRICULAR STRICTO SENSU (baseada na Res. 10/2008 do CCEPE) NOME DO CURSO: Pós-Graduação em Ciência da
Por que atributos irrelevantes são um problema Quais tipos de algoritmos de aprendizado são afetados Abordagens automáticas
Por que atributos irrelevantes são um problema Quais tipos de algoritmos de aprendizado são afetados Abordagens automáticas Wrapper Filtros Muitos algoritmos de AM são projetados de modo a selecionar os
Ciência da Computação
Ciência da Computação TCC em Re vista 2009 33 CAMPOS, Fernando Antonio Barbeiro; SANTUCI, Leonardo Balduino 5. Estudo de aplicabilidade do padrão MVC. 2009. 111 f. Trabalho de Conclusão de Curso (Graduação
Algoritmos Genéticos
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Algoritmos Genéticos Aluno: Fabricio Aparecido Breve Prof.: Dr. André Ponce de Leon F. de Carvalho São Carlos São Paulo Maio
MATRIZ CURRICULAR BACHARELADO EM ENGENHARIA DA COMPUTAÇÃO. 1º Período
MATRIZ CURRICULAR BACHARELADO EM ENGENHARIA DA COMPUTAÇÃO 1º Período Código Disciplina CHT 1 CHP 2 CH Total Pré-requisitos Dados I 40 40 80 - Cálculo I 80-80 - Fundamentos da Computação 40-40 - Fundamentos
Algoritmos Evolutivos Aplicados no Aprendizado em Jogos de Estratégia em Tempo Real
Algoritmos Evolutivos Aplicados no Aprendizado em Jogos de Estratégia em Tempo Real Rodrigo de Freitas Pereira Claudio Fabiano Motta Toledo Marcio Kassouf Crocomo Eduardo do Valle Simões Sumário Trabalhos
Computação Bioinspirada. Prof. Eduardo R. Hruschka (Slides baseados nos originais do Prof. André C. P. L. F. de Carvalho)
Computação Bioinspirada Prof. Eduardo R. Hruschka (Slides baseados nos originais do Prof. André C. P. L. F. de Carvalho) 1 Principais tópicos Computação Bioinspirada Computação Biológica Biologia Computacional
Automação Inteligente
Curso de Graduação em Engenharia Elétrica Universidade Federal da Paraíba Período 2016-2 Automação Inteligente Prof. Juan Moises Mauricio Villanueva [email protected] www.cear.ufpb.br/juan Informações
Introdução a Algoritmos Genéticos
Introdução a Algoritmos Genéticos Tiago da Conceição Mota Laboratório de Inteligência Computacional Núcleo de Computação Eletrônica Universidade Federal do Rio de Janeiro Outubro de 2007 O Que São? Busca
Desde o surgimento dos primeiros jogos eletrônicos em meados dos anos 50, uma infinidade de aparatos eletrônicos foram desenvolvidos, principalmente
1 Introdução Desde o surgimento dos primeiros jogos eletrônicos em meados dos anos 50, uma infinidade de aparatos eletrônicos foram desenvolvidos, principalmente referentes a jogos e entretenimento digital.
Fundamentos de Inteligência Artificial [5COP099]
Fundamentos de Inteligência Artificial [5COP099] Dr. Sylvio Barbon Junior Departamento de Computação - UEL Disciplina Anual Assunto Aula 1 Fundamentos de Inteligência Artificial 2 de 18 Sumário Introdução
