Integral de Trajetória de Feynman
|
|
|
- Denílson Branco Mendonça
- 7 Há anos
- Visualizações:
Transcrição
1 Teoria Quântica de Campos II 7 No estado fundamental, ou vácuo, defindo por a energia é: Energia de ponto zero ou do vácuo Podemos definir um hamiltoniano sem esta energia de ponto zero, definindo o ordenamento normal: Coloca todos os a s a esquerda dos a s Integral de Trajetória de Feynman (Ryder 5.1) Uma quantidade que frequentemente queremos saber é, dado que uma partícula estava em uma posição q em um tempo t, qual é a probabilidade de a encontrarmos na posição q no tempo t. Em uma linguagem mais quântica dada a função de onda: Gostaríamos de conhecer o propagador F, definido por: ( eq. 7.1 ) é distribuição de probabilidades para q no tempo t, independente do que aconteceu antes de t A equação 7.1 é uma simples expressão da causalidade, considerando que a partícula pode ter começado em qualquer lugar. Claramente F é a amplitude de probabilidade de transição entre a função em (q,t) e a em (q,t ) e: é a probabilidade de transição Vejamos como podemos expressar F em termos de grandezas familiares: Quadro de Schrödinger (estados evoluem no tempo, operadores não)
2 Teoria Quântica de Campos II 8 Quadro de Heisenberg (operadores evoluem no tempo, estados não) Definamos o vetor: (Moving Frame) autoestado de no tempo Dado: Que, comparada com 7.1, nos dá: Vejamos agora como expressar esta grandeza em termos da integral de trajetória: Primeiramente, dividimos o tempo em (n+1) pequenos intervalos ε: intermediários Notando que o tempo é só um índice e para qualquer tempo fixo temos a relação de completeza: estamos sempre pensando no limite do contínuo indentidades ( eq. 8.1 )
3 Teoria Quântica de Campos II 9 Se esquecermos as integrais por um instante, percebemos que os elementos de matriz estão descrevendo um caminho: Este caminho, no entanto, é bastante diferente do caminho clássico. Mesmo que façamos ε 0, a diferença q i+1 - q i não é forçada a zero e acabamos com um caminho arbitrariamente descontínuo. De fato a expressão 8.1 indica que estamos levando em conta uma infinidade destas trajetórias: A esta operação daremos o nome de integral sobre todas as trajetórias ou integral de trajetória, e definimos o símbolo: ( eq. 9.1 ) ( eq. 9.2 ) Podemos também obter uma expressão no espaço dos momentos:
4 Teoria Quântica de Campos II 10 É preciso ter cuidado com Hamiltonianas que tenham produtos entre os operadores p e q, neste caso é preciso Weyl-ordenar o Hamiltoniano antes de prosseguir - isto significa usar as relações de comutação até que tenhamos todos os operadores p a esquerda dos operadores q (ver Peskin pg 281). Assumindo que isto já foi feito e lembrando que, para ε pequeno, não precisamos nos preocupar com termos quadráticos em H, vale: Com isso, a eq. 8.1 fica: ( eq )
5 Teoria Quântica de Campos II 11 A equação 10.1 é bastante geral, mas é possível encontrar uma expressão mais simples (e mais útil) no caso de hamiltonianas que tenham a forma: ( eq. 11.1) Neste caso temos: A gaussiana que conhecemos é: Gaussianas ( eq. 11.2) E podemos fazer a integral em p(t) como um Gaussiana generalizada, para ver o que isso quer dizer façamos um interlúdio de matemática. Elevando isto ao quadrado podemos obter: Com n integrais multiplicadas (e trocando α por α n /2): podemos organizar os α s em uma matriz, suponha: Então o produto escalar: Logo, podemos re-escrever a integral: ( eq ) que de fato vale para qualquer matriz (real) A que seja diagonalizável.
6 Podemos ainda considerar os casos em que o quadrado não está completo : Teoria Quântica de Campos II 12 Pensemos nele como uma ação (o que de fato será, quando voltarmos à física). A solução clássica dada pelo princício da extrema ação seria (mesmo sem pensar nisso como ação, estamos buscando o mínimo de S): Podemos então escrever: equação da parábola com mínimo em ( eq ) Voltando a física, podemos fazer a integral destacada abaixo: com: podemos usar 12.1 diretamente, obtendo:
7 Teoria Quântica de Campos II 13 ( eq ) Com isso, nossa amplitude de transição fica em uma forma bastante reveladora: ( eq ) Paremos aqui um momento para notar duas coisas: (1) As equações 10.1 e 13.2 nos dão formas bastante curiosas de calcular um objeto essencialmente quântico: a amplitude de probabilidade de transição. Curiosas porque, no lado direito da equação temos as funções Langrangeana e Hamiltoniana clássicas do sistema (notem que trocamos os operadores q e p por seus valores esperados no meio da dedução). O comportamento quântico vem do fato de estarmos integrando sobre todas as trajetórias possíveis para q(t) e p(t) (a exponencial complexa também desempenha um papel) (2) Na equação 13.2 fica claro que a soma sobre trajetórias é ponderada pela exponencial da ação, e diferentes trajetórias vão ter interferências construtivas ou destrutivas dependendo de diferença entre suas ações. Temos então uma forma alternativa de quantizar um sistema, especialmente útil quando estamos falando de amplitudes de transição. Ao invés de definir operadores e relações de comutação, usamos as integrais de trajetória. Note que os dois métodos são completamente equivalentes, acima usamos a evolução temporal que se obtem como solução da equação de Schrödinger para chegar nas integrais de trajetória. Feynman fez o oposto, ele partiu de expressão 13.2 e mostrou que as funções de onda em 7.1 satizfazem a equação de Schrödinger (o que só vale para Hamiltonianas do tipo 11.1). Funções de Correlação Podemos também usar o método acima para obter outros observáveis, o mais simples sendo a função de um ponto:
8 Teoria Quântica de Campos I 14 É fácil imaginar como tratar este objeto no procedimento anterior. Discretizamos o tempo da mesma forma mas, assumindo que a discretização é fina o bastante, podemos identificar t com um dos t i intermediários: Em meio aos diversos diferente: que apareceram antes, vai haver um bracket não é mais um operador isto é exatamente o que tínhamos antes. Então a conta procede normalmente, lembrando apenas que temos este q(t) dentro das integrais. A função de dois (ou mais) pontos é similar, mas há uma sutileza: só sabemos tratar isso se de fato: ( eq ) Por outro lado, poderíamos ter calculado: note que são funções e comutam ( eq ) desde que
9 Teoria Quântica de Campos II 15 Logo vemos que, tentando escrever 14.1 e 14.2 como uma única expressão, temos: ( eq ) onde aparece o Produto Temporalmente Ordenado (recorde como estes produtos aparecem na versão canônica): ( eq ) Tanto 15.1 e 15.2 são generalizados de forma direta para um número maior de operadores: ordenados temporalmente Função de n-pontos ou Função de Correlação (de n pontos) ou Correlator. ( eq ) Em breve veremos em que contexto estes correlatores aparecem e porque estamos interessados neles. Definamos um outro objeto que nos será útil, lembrando que para qualquer conjunto podemos definir a função geradora F(z): tal que: (conhecer esta função nos permiter obter qualquer elemento do conjunto, bastando fazer o número apropriado de derivações) O equivalente para o conjunto de todos os correlatores seria o funcional gerador: ( eq ) convencional A diferença é que os elementos do conjunto em questão são funções (de vários t s) e por isso a variável em que derivaremos deve ser também uma função (os J s) e o gerador vira um funcional.
10 Teoria Quântica de Campos I 16 Podemos escrever ele em uma forma mais conveniente substituindo G n de 15.3: ( eq ) Para ver como podemos obter qualquer G n, basta fazer as derivadas funcionais: Para um tratamento um pouco mais longo de derivação funcional, chequem o material adicional [a] no site do curso ( ), e as referências lá citadas. Para os nossos fins basta saber que: ( eq ) De forma que:
11 Teoria Quântica de Campos I 17 Com este conjunto de idéias e ferramentas podemos passar para a quantização dos campos.
Quantização por Integrais de Trajetória:
Teoria Quântica de Campos I 14 Representações Fermiônicas: é possível mostrar que existem representações impossíveis de se obter através do simples produto de Λ s. Em especial o objeto: ( eq. 14.1 ) Matrizes
A equação 20.1 é bastante geral, mas é possível encontrar uma expressão mais simples (e mais útil) no caso de hamiltonianas que tenham a forma:
Teoria Quântica de Campos I 21 A equação 20.1 é bastante geral, mas é possível encontrar uma expressão mais simples (e mais útil) no caso de hamiltonianas que tenham a forma: ( eq. 21.1) Neste caso temos:
Quantização por Integrais de Trajetória:
Quantização por Integrais de Trajetória: O Oscilador Harmônico Teoria Quântica de Campos II 1 (Peskin cap 9, Ramond 2, Nastase 2) Além da imposição de relações de comutação, existe uma outra forma de quantizar
Funções de Correlação. Com isso, nossa amplitude de transição fica em uma forma bastante reveladora: Paremos aqui um momento para notar duas coisas:
Teoria Quântica de Campos II 13 ( eq. 13.1 ) Com isso, nossa amplitude de transição fica em uma forma bastante reveladora: ( eq. 13.2 ) Paremos aqui um momento para notar duas coisas: (1) As equações 10.1
Quantização por Integrais de Trajetória:
Teoria Quântica de Campos I 14 Representações Fermiônicas: é possível mostrar que existem representações impossíveis de se obter através do simples produto de Λ s. Em especial o objeto: ( eq. 14.1 ) Matrizes
( eq. 12.1) No caso de um campo com várias componentes, se a transformação for linear em φ, podemos escrever:
Temos então a corrente conservada: Teoria Quântica de Campos I 12 ( eq. 12.1) No caso de um campo com várias componentes, se a transformação for linear em φ, podemos escrever: De forma que : ( eq. 12.2)
Teoria Clássica de Campos
Teoria Quântica de Campos I 7 No passo (1) o que estamos fazendo é quantizar (transformar em operadores) uma função definida em todo espaço (um campo) e cuja equação de movimento CLÁSSICA é de Dirac ou
Campo Escalar Complexo
Finalmente consideremos: Teoria Quântica de Campos I 60 operador na representação de Schödinger, basta partir de 59.2 e usar lembrando que: É uma superposição de vários estados de uma partícula (cada um
Rotação de Wick para o tempo Euclideano
Teoria Quântica de Campos I 81 só temos a parte de aniquilação no futuro livre é autovalor de Como verificamos que isto é o mesmo que as condições 75.1. O que ganhamos fazendo de novo este caminho? Para
Teoria Quântica de Campos
Teoria Quântica de Campos I 1 Teoria Quântica de Campos (escopo do curso e um pouco de história) (Weinberg cap 1, Peskin 2.1, Nastase 1) Objetivo: uma teoria Quântica e Relativística (no sentido restrito)
Teoria Quântica de Campos
Teoria Quântica de Campos I 1 Teoria Quântica de Campos (escopo do curso e um pouco de história) (Weinberg cap 1, Peskin 2.1, Nastase 1) Objetivo: uma teoria Quântica e Relativística (no sentido restrito)
Regras de Feynman para uma teoria Bosônica em geral
Teoria Quântica de Campos I 106 mente pois tratamos os estados iniciais e finais com mais detalhe (ainda que de forma heurística), como ondas planas. Veremos que na versão final da história, quando estivermos
Quantização do Campo Eletromagnético
Teoria Quântica de Campos II 52 Voltando para o espaço de Minkowsky isto nos permite entender porque a parte on-shell do propagador é reponsável por partículas se propagando por longas distâncias: Quantização
Representações e Fenomenologia. Soluções (Clássicas) da Equação de Dirac
Teoria Quântica de Campos I 113 Representações e Fenomenologia Qual destas representações descreve os férmions na natureza? A resposta depende de qual partícula você quer descrever. Para começar note que:
Diagramas de Feynman para a Matriz S
Teoria Quântica de Campos I 186 Diagramas de Feynman para a Matriz S ( Nastase 20; Peskin 4.6 ) Agora queremos calcular a matriz S da mesma forma que fizemos para as funções de Green, passando para o quadro
Esta expressão é trivialmente generalizada para um número arbitrário de operadores:
Teoria Quântica de Campos I 88 Esta expressão é trivialmente generalizada para um número arbitrário de operadores: ( eq. 88.1 ) Teorema de Wick Na prática, obter envolve calcular: pode parecer que teremos
Quantização de um campo fermiônico
Teoria Quântica de Campos II 54 p linhas ( eq. 54.1 ) Um exemplo trivial seria: Quantização de um campo fermiônico (Nastase 12 e 13; Peskin 3.1-3.4 [campo clássico], 3.5 [quant. canônica], 9.5 [quant.
Regras de Feynman para uma teoria Bosônica em geral
Teoria Quântica de Campos I 106 mente pois tratamos os estados iniciais e finais com mais detalhe (ainda que de forma heurística), como ondas planas. Veremos que na versão final da história, quando estivermos
Os Postulados da Mecânica Quântica
Márcio H. F. Bettega Departamento de Física Universidade Federal do Paraná [email protected] Postulados Introdução Vamos apresentar nestas notas os postulados da mecânica quântica de acordo com o
Regras de Feynman para Férmions (Interação de Yukawa)
índice espinoriais subentendidos Teoria Quântica de Campos I 128 Regras de Feynman para Férmions (Interação de Yukawa) Comecemos com a função de dois pontos livre (onde os dois pontos são aplicações do
Equações de Dyson-Schwinger e identidades de Ward
Teoria Quântica de Campos I 168 Que, em diagramas fica: consigo gerar qualquer diagrama em árvore, mas nunca um loop Isso quer dizer que os diagramas em nível árvore são clássicos (no sentido mais geral
Teoria Quântica de Campos
Teoria Quântica de Campos I 1 Teoria Quântica de Campos (escopo do curso e um pouco de história) (Weinberg cap 1, Peskin 2.1, Nastase 1) Objetivo: uma teoria Quântica e Relativística (no sentido restrito)
Bilineares do Campo de Dirac. Analogamente:
Teoria Quântica de Campos I 133 ( eq. 133.1 ) Analogamente: ( eq. 133.2 ) Bilineares do Campo de Dirac Claramente, qualquer grandeza observável vai ter que ser composta do produto de um número par de campos
A matriz S e a fórmula de redução LSZ (Lehmann, Symanzik, Zimmerman)
Teoria Quântica de Campos II 78 PS2: obter de fato a forma da densidade espectral é uma tarefa árdua por se tratar de um cálculo não-perturbativo. Um método envolve a utilização de relações de dispersão.
Aula de Física Atômica e molecular. Operadores em Mecânica Quântica Prof. Vicente
Aula de Física Atômica e molecular Operadores em Mecânica Quântica Prof. Vicente Definição Seja f uma quantidade física que caracteriza o estado de um sistema quântico. Os valores que uma dada quantidade
CF372 Mecânica Quântica I Os Postulados da Mecânica Quântica
CF372 Mecânica Quântica I Os Postulados da Mecânica Quântica 1 Introdução. Vamos apresentar nestas notas os postulados da mecânica quântica de acordo com o livro texto. Antes iremos fazer um paralelo entre
produto completamente antissimétrico Definindo a terminologia, dado um bilinear texto pseudo-vetor ou vetor axial tensor antissimétrico
E exigindo a normalização: Teoria Quântica de Campos I 136 Rigorosamente: Temos a relação de completeza: Que leva a uma eq. equivalente a 135.3: ( eq. 136.1 ) Dada a base 135.4, não precisamos nos preocupar
A equação de Callan-Symanzik
Teoria Quântica de Campos II 103 A equação de Callan-Symanzik (Peskin 12.2, Ryder 9.4) Embora o tratamento que fizemos para o campo escalar seja bastante claro do ponto de vista físico ele pode se tornar
UNIDADE 15 OSCILAÇÕES
UNIDADE 15 OSCILAÇÕES 557 AULA 40 OSCILAÇÕES OBJETIVOS: - DEFINIR O CONCEITO DE OSCILAÇÃO; - CONHECER AS GRANDEZAS QUE DESCREVEM O MOVIMENTO. 40.1 Introdução: Há, na Natureza, um tipo de movimento muito
ENRICO BERTUZZO (DFMA-IFUSP) UMA INTRODUÇÃO À FÍSICA DE PARTÍCULAS
ENRICO BERTUZZO (DFMA-IFUSP) UMA INTRODUÇÃO À FÍSICA DE PARTÍCULAS PLANO DO CURSO Aula 1- Uma história da Física de Partículas (parte 1: 1897-1936) Aula 2 - Uma história da Física de Partículas (parte
UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:
UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem
FF-296: Teoria do Funcional da Densidade I. Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785
FF-296: Teoria do Funcional da Densidade I Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 [email protected] www.ief.ita.br/~rrpela Revisão de Mecânica Quântica Unidades atômicas Motivação As unidades
Eq. de Dirac com campo magnético
Eq. de Dirac com campo magnético Rafael Cavagnoli GAME: Grupo de Médias e Altas Energias Eletromagnetismo clássico Eq. de Schrödinger Partícula carregada em campo mag. Eq. de Dirac Partícula carregada
A fórmula de Bhaskara
A fórmula de Bhaskara [email protected] A equação do 2º grau apresenta a seguinte forma geral, onde os coeficientes são constantes e o coeficiente deve ser diferente de zero, caso contrário, não
Fundamentos da Mecânica Quântica
Fundamentos da Mecânica Quântica Vitor Oguri Departamento de Física Nuclear e Altas Energias (DFNAE) Instituto de Física Armando Dias Tavares (IFADT) Universidade do Estado do Rio de Janeiro (UERJ) Rio
Fundamentos da Mecânica Quântica
Fundamentos da Mecânica Quântica Vitor Oguri Departamento de Física Nuclear e Altas Energias (DFNAE) Instituto de Física Armando Dias Tavares (IFADT) Universidade do Estado do Rio de Janeiro (UERJ) Rio
Física de Partículas
[email protected] http://www.ift.unesp.br/users/matheus/ Física de Partículas Parte 1 Ricardo D Elia Matheus O que queremos da Física de Partículas? Animação: Scales of the Universe II http://htwins.net/scale2/
Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes
Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes Muitos problemas de física envolvem diversas equações diferenciais. Na seção 14, por exemplo, vimos que o sistema
Evolução temporal de uma Partícula Livre descrita por um Pacote de Onda Gaussiano Unidimensional
Evolução temporal de uma Partícula Livre descrita por um Pacote de Onda Gaussiano Unidimensional Caio Vaz Rímoli Resumo: Partículas Livres não relativísticas estão entre os sistemas mais básicos e mais
Regras de Feynman. Teoria escalar livre: Teoria escalar com potencial λφ 4
Regras de Feynman 1 Regras de Feynman Segue uma coleção das regras de Feynman obtidas ao longo do curso, com a página onde foram deduzidas: Teoria escalar livre: pg 58: (Espaço das posições, Mink.) ( eq.
A eq. de Schrödinger em coordenadas esféricas
A eq. de Schrödinger em coordenadas esféricas A autofunção espacial, ψ, e a energia, E, são determinadas pela solução da equação independente do tempo: Separação de variáveis Solução do tipo: Que leva
Mecânica Quântica. Veremos hoje: Dualidade onda partícula Princípio da Incerteza Formulações da MQ Equação de Schrodinger Partícula numa caixa
Mecânica Quântica Veremos hoje: Dualidade onda partícula Princípio da Incerteza Formulações da MQ Equação de Schrodinger Partícula numa caixa Limitações do modelo de Bohr A teoria de Bohr não era capaz
Rotor quântico. Quanticamente o rotor é descrito por uma função de onda, tal que: l A função de onda do estado estacionário é dada por:
Rotor quântico Vamos tratar o caso da rotação de um corpo rígido, que corresponde a 2 massas pontuais, ligadas por uma barra rígida e sem massa. Consideremos rotação livre em torno de um eixo perpendicular
Equações de Maxwell e densidades Lagrangiana e Hamiltoniana do eletromagnetismo clássico
Equações de Maxwell e densidades Lagrangiana e Hamiltoniana do eletromagnetismo clássico André Juan Ferreira Martins de Moraes Resumo Estas notas se baseiam na Seção 1.1 do artigo 1, na qual as equações
JORNADA DE FÍSICA TEÓRICA INSTITUTO DE FÍSICA TEÓRICA U.N.E.S.P. 19 a
JORNADA DE FÍSICA TEÓRICA 2010 INSTITUTO DE FÍSICA TEÓRICA U.N.E.S.P. 19 a 23-07-2010 Monday, July 19, 2010 1 CAMPOS CLÁSSICOS, QUÂNTICOS, DE CALIBRE E POR AÍ AFORA JORNADA DE FÍSICA TEÓRICA 2010 Instituto
Relatividade Especial Virtual - Uma Generalização da Relatividade Especial de Einstein
Relatividade Especial Virtual - Uma Generalização da Relatividade Especial de Einstein Edigles Guedes e-mail: [email protected] 24 de junho de 2012. RESUMO Nós construímos a Teoria da Relatividade
- identificar operadores ortogonais e unitários e conhecer as suas propriedades;
DISCIPLINA: ELEMENTOS DE MATEMÁTICA AVANÇADA UNIDADE 3: ÁLGEBRA LINEAR. OPERADORES OBJETIVOS: Ao final desta unidade você deverá: - identificar operadores ortogonais e unitários e conhecer as suas propriedades;
Fundamentos de Mecânica
Fundamentos de Mecânica 43151 Gabarito do estudo dirigido 3 (Movimento em uma dimensão) Primeiro semestre de 213 1. Um elevador sobe com uma aceleração para cima de 1, 2 m/s 2. No instante em que sua velocidade
O ÁTOMO DE HIDROGÊNIO
O ÁTOMO DE HIDROGÊNIO Alessandra de Souza Barbosa 04 de dezembro de 013 O átomo de hidrogênio Alessandra de Souza Barbosa CF37 - Mecânica Quântica I /36 Sistema de duas particulas um elétron e um próton;
aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal
DISTRIBUIÇÃO NORMAL - PARTE I 4 aula META Apresentar o conteúdo de distribuição normal OBJETIVOS Ao final desta aula, o aluno deverá: determinar a média e a variância para uma função contínua; padronizar
Física de Partículas
[email protected] http://www.ift.unesp.br/users/matheus/ Física de Partículas Parte 1 Ricardo D Elia Matheus O que queremos da Física de Partículas? Animação: Scales of the Universe II http://htwins.net/scale2/
Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo
Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática MTM3 - Pré-cálculo a lista complementar de eercícios (6//7 a 7//7) Diga quais dos conjuntos abaio
Eletromagnetismo I. Preparo: Diego Oliveira. Aula 2
Eletromagnetismo I Prof. Dr. R.M.O Galvão - 1 Semestre 2015 Preparo: Diego Oliveira Aula 2 Na aula passada recordamos as equações de Maxwell e as condições de contorno que os campos D, E, B e H devem satisfazer
Halliday & Resnick Fundamentos de Física
Halliday & Resnick Fundamentos de Física Mecânica Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica,
O spin do elétron. Vimos, na aula 2, que Goudsmit e Uhlenbeck propõem uma variável, quantizada, com 2 valores, com propriedades de momento angular.
O spin do elétron Vimos, na aula, que Goudsmit e Uhlenbeck propõem uma variável, quantizada, com valores, com propriedades de momento angular. Analogia com o momento angular orbital e e com e foram observadas
Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais:
Espaços Euclidianos Espaços R n O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: R n = {(x 1,..., x n ) : x 1,..., x n R}. R 1 é simplesmente o conjunto R dos números
5 Filtro de Kalman Aplicado ao Modelo de Schwartz e Smith (2000)
5 Filtro de Kalman Aplicado ao Modelo de Schwartz e Smith (2000) A primeira parte deste capítulo, referente à passagem dos modelos estocásticos para as equações do Filtro de Kalman, já foi previamente
Gases quânticos sem interação
UFABC - Mecânica Estatística Curso 2018.1 Prof. Germán Lugones CAPÍTULO 6 Gases quânticos sem interação!1 Regime clássico e regime quântico Para um gás ideal clássico em equilíbrio térmico a uma temperatura
Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino*
ROTAÇÃO Física Geral I (1108030) - Capítulo 07 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 25 Translação e Rotação Sumário Definições, variáveis da rotação e notação vetorial Rotação com aceleração angular
Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes
Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes Muitos problemas de física envolvem diversas equações diferenciais. Na seção 14, por exemplo, vimos que o sistema
