Medidas da radiação luminosa
|
|
|
- Diana Marina Cavalheiro Duarte
- 8 Há anos
- Visualizações:
Transcrição
1 Medidas da radiação luminosa Curso de Introdução à Astronomia e Astrofísca Dr. Francisco Jablonski DAS/INPE [email protected] O que medir? Vamos medir a quantidade de energia radiante produzida por fontes luminosas (uma lâmpada incandescente e uma lâmpada fluorescente) e verificar como a energia incidente por unidade de área varia com a distância à fonte. Como medir? Utilizaremos um dispositivo que converte o estímulo produzido pela energia radiante num sinal digital de freqüência variável. Trata-se de um circuito integrado (TSL 235) que é muito utilizado em câmaras fotográficas, equipamentos industriais, brinquedos, etc. A figura abaixo mostra esquematicamente como o dispositivo funciona. A luz incide sobre um fotodetector, o sinal resultante é amplificado e convertido em um sinal de freqüência proporcional à quantidade de energia incidente. O sinal digital de saída pode ser facilmente lido por um computador ou por um multímetro que tenha um modo de medir freqüências. Figura 1: O esquema de funcionamento do detector TSL 235
2 Características do detector TSL 235 Figura 2 Figura 3 As figuras acima mostram características importantes do funcionamento do detector que utilizaremos. Na Figura 2 temos a calibração do detector, ou seja, dado um valor de freqüência medido na saída, qual é a quantidade de energia radiante (denominada de Irradiância) que incidiu sobre ele. Note como o detector responde sempre na mesma proporção ao longo de mais de 5 décadas de estímulo luminoso. Como a nossa medida visa examinar a variação da irradiância com a distância à fonte de luz, os valores absolutos da irradiância não são relevantes. Outra coisa que eu devo mencionar é que a calibração da Figura 2 refere-se a luz monocromática de 670 nanômetros de comprimento de onda. Se a fonte de luz tiver um espectro amplo (como é o caso do espectro de uma lâmpada incandescente, muito próximo do espectro de um corpo negro), a calibração da Figura 2 passa a interceptar o eixo vertical em pontos distintos para distintas temperaturas. A inclinação, no entanto, é sempre a mesma. Esse detalhe também não é importante quando queremos examinar somente a variação da irradiância com a distância à fonte. Na Figura 3 nós podemos ver a sensibilidade espectral do detector. Para fins de comparação, coloquei no mesmo gráfico a curva de sensibilidade do olho humano. Esta curva é importante de ser lembrada quando você for interpretar as diferenças entre as medidas de irradiância de uma lâmpada incandescente e de uma lâmpada fluorescente para uma mesma distância.
3 Os resultados das medidas Figura 4 Vista frontal do detector Figura 5 Vista lateral do detector sobré o tripé As medidas foram realizadas posicionando o detector montado sobre um tripé (Figura 5) a diferentes distâncias da fonte. As distâncias foram marcadas com ajuda de uma régua. A tabela abaixo contém os resultados das medidas. A primeira coluna é a distância à fonte (em cm), a segunda e terceira colunas referem-se às medidas (freqüência de saída, em Hz) com uma lâmpada incandescente. A quarta coluna corresponde à lâmpada fluorescente. As medidas para a lâmpada incandescente foram repetidas (ida e volta ao longo da régua) para que pudéssemos verificar quão bem elas se repetem. Tabela 1 As medidas de irradiância Distância (cm) Incandescente (Ida) Incandescente (Volta) Fluorescente
4 Interpretação dos resultados Olhando os resultados da Tabela 1, podemos concluir sem dúvida alguma que a irradiância decresce rapidamente com a distância até a fonte. As medidas de volta são sistematicamente mais baixas que as medidas de ida, e nós discutiremos as possíveis razões para isso. A maneira mais interessante de visualizar os resultados desta experiência é fazer um gráfico como o da Figura B Incand. Ida C Incand. Volta D Fluores. Ida E Fluores. Volta Freqüência (khz) 10 1 Inclinações: Incand. (Ida): / Incand. (Volta): / Fluor. (Ida): / Fluor. (Volta): / Distância (m) Figura 6: A irradiância em função da distância, num gráfico em escala logarítmica, para os três conjuntos de dados coletados. A razão para montarmos o gráfico da Figura 6 em escala logarítmica é explicada a seguir. Nós temos razões teóricas para acreditar que a irradiância caia com o quadrado da distância. Em termos matemáticos isso pode ser escrito como 1 I 2. D Se tomarmos o logaritmo de ambos os lados da equação acima podemos reescreve-la como
5 log I = α log D + const que é a equação de uma reta onde o coeficiente angular é α=-2. Na Figura 6 estão mostrados os valores de α (± a incerteza nesses valores) obtidos a partir do ajuste de retas aos três conjuntos de dados. Pode-se notar que os valores são um pouco diferentes da nossa expectativa teórica, principalmente para a lâmpada incandescente. Quais seriam as principais razões para não obtermos exatamente o valor esperado de 2? Vamos listar algumas: As especificações do fabricante do dispositivo TSL 235 indicam que a partir de 500 khz há significativa não-linearidade no detector. Isto contribui para fazer com que a medida a 0.3 m apresente valor menor do que deveria influindo na inclinação das retas que graficamos na Figura 6. O efeito vai no sentido de a inclinação não ser tão negativa quanto 2. Nós estamos supondo que a fonte de luz seja pontual. Isso certamente não é verdade, principalmente para as pequenas distâncias. Quando a fonte é extensa, espera-se que para distâncias muito pequenas, o valor da irradiância atinja um patamar e não varie mais. Isto tende a provocar inclinações das curvas na Figura 6 que vão na direção dos valores observados. Quantificamos a presença de contaminação nas medidas pela presença de luz proveniente de outras fontes (frestas nas cortinas, por exemplo). Verificamos que a contribuição é desprezível, mesmo quando comparada às medidas na maior distância. Qual é a potência radiante da lâmpada incandescente que utilizamos? A calibração da Figura 2 mostra que uma frequência de 1 khz corresponde a 1 µw/cm 2 de irradiância. Para 100 cm de distância, temos um valor de 73 µw/cm 2. Isto quer dizer que em todas as direções são emitidos 4π x x 73 = 9.17 x 10 6 µw = 9.17 W. Caso a temperatura da lâmpada seja 2500 K, o fator de correção que temos que utilizar para levar em conta a fração de radiação que cai fora da faixa em que o detector é sensível é de 7.7. Isto daria 70 W para a potência radiante da lâmpada, o que pode ser considerado uma estimativa razoável para o valor real. Note que como a potência irradiada por um corpo negro é proporcional a T 4, é necessário saber com boa precisão a temperatura do filamento para poder estimar a potência radiante corretamente. Um outro ponto interessante surgido durante a discussão foi a respeito da eficiência luminosa (para o olho humano) das lâmpadas incandescentes e fluorescentes. Embora a sensação ao olho fosse de que a lâmpada fluorescente emitia quase a mesma quantidade de luz, a potência irradiada (conforme Tabela 1 ou Figura 6) é muito maior para a lâmpada incandescente! É por isso que essas lâmpadas fluorescentes compactas, como a que utilizamos, são chamadas de econômicas: não desperdiçam energia radiante como as lâmpadas incandescentes, que emitem muito no infravermelho, invisível aos nossos olhos.
6 Conclusão Realizamos um experimento simples, medindo a irradiância de fontes de luz à várias distâncias. O experimento demonstra o princípio utilizado para a determinação da quantidade de energia emitida pelas estrelas, ou de outra forma, demonstra o princípio da determinação de distâncias para estrelas que tenham a mesma luminosidade (por exemplo, estrelas do tipo solar). Na experiência, cobrimos todas as fases do método científico: isolamos uma hipótese a ser testada, realizamos as medidas necessárias para testar a hipótese, analisamos e discutimos os resultados e suas incertezas e produzimos um relatório que permite a repetição do experimento em outras circunstâncias.
Radiação do corpo negro
Radiação do corpo negro Radiação térmica. Um corpo a temperatura ambiente emite radiação na região infravermelha do espectro eletromagnético e portanto, não é detectável pelo olho humano. Com o aumento
Material: 1 lâmpada incandescente 1 resistor 10 Ω 2 multímetros
Um corpo negro trata se de um objeto que emite, na forma de radiação eletromagnética, toda energia que lhe é fornecida. Embora tal definição seja uma conveniência teórica, muitos objetos na natureza se
Radiação de corpo negro, f.e.m. termoelétrica, dependência da resistência com a temperatura.
1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Máximo F. da Silveira Instituto de Física - UFRJ Tópicos Relacionados Radiação de corpo negro, f.e.m. termoelétrica, dependência
F129 LINEARIZAÇÃO DE GRÁFICOS LEI DE POTÊNCIA. Prof. Jonhson Ordoñez VERSÃO 14
LINEARIZAÇÃO DE GRÁFICOS LEI DE POTÊNCIA Processos de Linearização de Gráficos O que é linearização? É o procedimento para tornar uma curva em uma reta cuja equação é y = ax +b. É encontrar uma relação
Prof. Dr. Lucas Barboza Sarno da Silva
Prof. Dr. Lucas Barboza Sarno da Silva Medidas de grandezas físicas Valor numérico e sua incerteza, unidades apropriadas Exemplos: - Velocidade (10,02 0,04) m/s - Tempo (2,003 0,001) µs - Temperatura (273,3
Simulação do Espectro Contínuo emitido por um Corpo Negro 1ª PARTE
ACTIVIDADE PRÁCTICA DE SALA DE AULA FÍSICA 10.º ANO TURMA A Simulação do Espectro Contínuo emitido por um Corpo Negro Zoom escala do eixo das ordenadas 1ª PARTE Cor do corpo Definir temperatura do corpo
TE243 Eletricidade Aplicada li. Capítulo 3 Luminotécnica
TE243 Eletricidade Aplicada li Capítulo 3 Luminotécnica 1. Conceitos Básicos de Luminotécnica Luz é a radiação eletromagnética capaz de produzir uma sensação visual; A sensibilidade visual para a luz varia
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO SUL CAMPUS RIO GRANDE INSTRUMENTAÇÃO INDUSTRIAL
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO SUL CAMPUS RIO GRANDE INSTRUMENTAÇÃO INDUSTRIAL Aula 24 2 TERMÔMETROS DE RADIAÇÃO São medidores de temperatura sem contato. Os componentes
INSTITUTO DE FÍSICA UNIVERSIDADE DE SÃO PAULO. Grupo:... (nomes completos) Prof(a).:... Diurno ( ) Noturno ( ) Experiência 7
INSTITUTO DE FÍSICA UNIVERSIDADE DE SÃO PAULO Laboratório de Eletromagnetismo (4300373) Grupo:......... (nomes completos) Prof(a).:... Diurno Noturno Data : / / Experiência 7 MAPEAMENTO DE CAMPO MAGNÉTICO
O sistema visual humano e noções de colorimetria
STV 3 MAR 2010 1 O sistema visual humano e noções de colorimetria Considera se que a cor consista em um atributo dos objetos, assim como a textura e a forma, entre outros. Depende basicamente de: 1. Características
Laboratório de Física Moderna Radiação de Corpo Negro Aula 01. Marcelo Gameiro Munhoz
Laboratório de Física Moderna Radiação de Corpo Negro Aula 01 Marcelo Gameiro Munhoz [email protected] 1 Contextualização Para iniciar nosso experimento, vamos compreender o contexto que o cerca Qual o
GRANDEZAS E UNIDADES FOTOMÉTRICAS
GRANDEZAS E UNIDADES FOTOMÉTRICAS GRANDEZAS LUMINOSAS FUNDAMENTAIS I GRANDEZAS LUMINOSAS FUNDAMENTAIS I 1 É A QUANTIDADE DE ENERGIA RADIANTE CAPAZ DE SENSIBILIZAR O OLHO HUMANO A UNIDADE DESTA GRANDEZA
Sensibilidade Visual. Temperatura de Cor
Luminotécnica Fernando Augusto Lopes Corrêa Engº Eletricista CREA/PR 28.393-D Luz Radiação eletromagnética capaz de produzir uma sensação visual 1 Sensibilidade Visual Varia de acordo com o comprimento
NOTAS DE AULAS DE FÍSICA MODERNA
NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 2 RADIAÇÃO TÉRMICA E CORPO NEGRO Edição de janeiro de 2009 CAPÍTULO 2 RADIAÇÃO TÉRMICA E CORPO NEGRO ÍNDICE 2.1- Radiação Térmica 2.2-
DESENVOLVIMENTO DE UM ESPECTRÔMETRO INFRAVERMELHO PARA MEDIÇÃO DE PROPRIEDADES ÓPTICAS DE ÓXIDOS E SEMICONDUTORES
DESENVOLVIMENTO DE UM ESPECTRÔMETRO INFRAVERMELHO PARA MEDIÇÃO DE PROPRIEDADES ÓPTICAS DE ÓXIDOS E SEMICONDUTORES MARCUS V.S. DA SILVA, DENIS. F.G. DAVID, I. M. PEPE, Laboratório de Propriedades Ópticas-
PRÁTICA CONSTRUÇÃO DE GRÁFICOS E DETERMINAÇÃO DOS COEFICIENTES ANGULAR E LINEAR PELO MÉTODO GRÁFICO MMQ 4.
PRÁTICA 4 4.1 - CONSTRUÇÃO DE GRÁFICOS E DETERMINAÇÃO DOS COEFICIENTES ANGULAR E LINEAR PELO MÉTODO GRÁFICO 4.2 - MMQ 4.1 Objetivos: a. Realizar a linearização das funções. b. Construir gráficos em papel
Verificação do valor da constante solar, da luminosidade e da temperatura efetiva do Sol
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Física Programa de Pós-Graduação em Ensino de Física Mestrado Profissional em Ensino de Física Verificação do valor da constante solar, da luminosidade
Seleção de um Método Analítico. Validação e protocolos em análises químicas. Validação de Métodos Analíticos
Seleção de um Método Analítico Capítulo 1 SKOOG, D.A.; HOLLER, F.J.; NIEMAN, T.A. Princípios de Análise Instrumental. 5 a edição, Ed. Bookman, Porto Alegre, 2002. Validação e protocolos em análises químicas
Prof. Henrique Barbosa Edifício Basílio Jafet - Sala 100 Tel
http://www.fap.if.usp.br/~hbarbosa Prof. Henrique Barbosa Edifício Basílio Jafet - Sala 100 Tel. 3091-6647 [email protected] Experiência 1: Lâmpada Queremos entender como uma lâmpada incandescente funciona.
Exercício cálculo de irradiância
Exercício cálculo de irradiância Uma fonte plana Lambertiana de diâmetro d = r s e radiância L é colocada no foco objecto de uma lente convergente de distância focal f e diâmetro D. Assume-se r s
Olimpíadas de Física Seleção para as provas internacionais. Prova Experimental B
SOCIEDADE PORTUGUESA DE FÍSICA Olimpíadas de Física 2014 Seleção para as provas internacionais Prova Experimental B 24/Maio/2014 Olimpíadas de Física 2014 Seleção para as provas internacionais Prova Experimental
Caracterização de uma Lâmpada
Caracterização de uma Lâmpada Laboratório de Eletricidade e Magnetismo Introdução Resistores não-lineares são dispositivos que não seguem a lei de Ohm quando submetidos a uma tensão ou corrente. Quando
TÍTULO: COMANDOS E LÂMPADAS EM INSTALAÇÕES ELÉTRICAS RESIDENCIAIS Profs.: Oswaldo Tadami Arimura e Norberto Nery
TÍTULO: COMANDOS E LÂMPADAS EM INSTALAÇÕES ELÉTRICAS RESIDENCIAIS Profs.: Oswaldo Tadami Arimura e Norberto Nery OBJETIVOS: - Identificar as principais características de equipamentos de comando de uma
Estrutura da Matéria II. Lei de Stefan-Boltzmann
Universidade do Estado do Rio de Janeiro Instituto de Física Departamento de Física Nuclear e Altas Energias Estrutura da Matéria II Lei de Stefan-Boltzmann Versão 1.1 (2006) Carley Martins, Jorge Molina,
O brilho aparente e a Luminosidade das estrelas. Roberto Ortiz EACH/USP
O brilho aparente e a Luminosidade das estrelas Roberto Ortiz EACH/USP Primeiras estimativas Hiparco (séc. II a.c.) catalogou cerca de 2000 estrelas, visualmente. Ele classificou as conforme seu brilho
MANUAL DE MEDIÇÃO E CÁLCULO DAS CONDIÇÕES LUMINOTÉCNICAS
1 Programa de Recuperação de Espaços Didáticos Pró-Reitoria de Graduação MANUAL DE MEDIÇÃO E CÁLCULO DAS CONDIÇÕES LUMINOTÉCNICAS 2 1. INTRODUÇÃO Adotou-se um processo de trabalho convencional, de desenvolvimento
- Papel milimetrado. Para o coeficiente linear: LEIA A COORDENADA DO PONTO no qual a reta cruza o eixo da função y para x = 0.
Gráficos O método mais eficiente de obter a relação entre dois parâmetros é colocar as medidas experimentais envolvendo essas duas quantidades em um gráfico. Normalmente procura-se obter um gráfico no
mono-log e di-log (log-log)
Prática 1 Representação gráfica de dados 1 Representação de dados: uso de gráficos linearlinear, mono-log e di-log (log-log Nas atividades experimentais, muitas vezes, pretende-se estudar a maneira como
Medidas de resistência elétrica e curvas características de elementos resistivos
Medidas de resistência elétrica e curvas características de elementos resistivos Alysson Ferreira Morais 43152 Introdução às Medidas em Física Instituto de Física, USP, São Paulo Resumo Neste experimento,
DICA: A lâmpada deverá ser acesa ou apagada por qualquer um dos interruptores, independentemente da posição do outro. Temos então 4 possibilidades:
DICA: O processo de transformação acima é usado em dispositivos puramente mecânicos, que fazem uso da energia elástica de objetos como molas e elásticos. (A) (B) (C) (D) (E) DICA: A força que a porta exerce
As seguintes considerações devem ser feitas inicialmente ou ao longo do trabalho:
EXPERIÊNCIA 1: Pesa-espíritos EXEMPLO DE RESOLUÇÃO: Esquema da montagem: H 0 h 0 M As seguintes considerações devem ser feitas inicialmente ou ao longo do trabalho: M = massa do tubo + massa adicionada
Objetivo: Determinar experimentalmente a resistividade elétrica do Constantan.
Determinação da resistividade elétrica do Constantan Universidade Tecnológica Federal do Paraná - Curitiba Departamento Acadêmico de Física Física Experimental Eletricidade Prof. Ricardo Canute Kamikawachi
MNPEF. Laboratório: introdução e Conceitos básicos.
MNPEF Laboratório: introdução e Conceitos básicos. Medidas e Incertezas Medir é um procedimento experimental em que o valor de uma grandeza é determinado em termos do valor de uma unidade definida através
5. Resultados e Discussão
47 5. Resultados e Discussão 5.1.1. Faixa de trabalho e Faixa linear de trabalho As curvas analíticas obtidas são apresentadas na Figura 14 e Figura 16. Baseado no coeficiente de determinação (R 2 ) encontrado,
Faculdade de Engenharia da Universidade do Porto. Circuitos Elétricos. Elementos lineares e não-lineares. Projeto FEUP 2016/2017 MIEEC
Faculdade de Engenharia da Universidade do Porto Circuitos Elétricos Elementos lineares e não-lineares Projeto FEUP 2016/2017 MIEEC Manuel Firmino José Nuno Fidalgo José Carlos Alves Equipa 1 Turma 3 Supervisor:
Modelos de Regressão Linear Simples parte I
Modelos de Regressão Linear Simples parte I Erica Castilho Rodrigues 27 de Setembro de 2017 1 2 Objetivos Ao final deste capítulo você deve ser capaz de: Usar modelos de regressão para construir modelos
Termo-Estatística Licenciatura: 22ª Aula (05/06/2013) RADIAÇÃO TÉRMICA. (ver livro Física Quântica de Eisberg e Resnick)
ermo-estatística Licenciatura: ª Aula (5/6/13) Prof. Alvaro Vannucci RADIAÇÃO ÉRMICA (ver livro Física Quântica de Eisberg e Resnick) Experimentalmente observa-se que os corpos em geral e principalmente
Experimento 8 Circuitos RC e filtros de freqüência
Experimento 8 Circuitos C e filtros de freqüência OBJETIO O objetivo desta aula é ver como filtros de freqüência utilizados em eletrônica podem ser construídos a partir de um circuito C Os filtros elétricos
Atenuação da radiação
Atenuação da radiação META: Vericar a lei do inverso do quadrado. OBJETIVOS: Ao m da aula os alunos deverão: Compreender a lei do inverso do quadrado. Entender como a radiação varia com a distância. PRÉ-REQUISITOS
Os seres humanos percebem as cores em alguns comprimentos de onda específicos.
Os seres humanos percebem as cores em alguns comprimentos de onda específicos. Comprimento de Onda Transmissão Ondas curtas FM Televisão Radar Infravermelho Luz Visível Ultravioleta Raios-X Raios-γ Vermelho
Apostila de Laboratório. ZAB0474 Física Geral e Experimental IV
Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos Departamento de Ciências Básicas Apostila de Laboratório ZAB0474 Física Geral e Experimental IV Caio Eduardo de Campos Tambelli
3 - Um objeto de 1,8 m de altura foi colocado diante de uma câmara escura de orifício conforme o esquema a seguir.
1 - Num dia ensolarado, um aluno de 1,8 m mede a sua sombra, encontrando 1,2 m. Se, naquele mesmo instante, a sombra de outra pessoa ao lado dele é de 1,0m então podemos concluir que a altura dessa pessoa
Modelos de Regressão Linear Simples - parte I
Modelos de Regressão Linear Simples - parte I Erica Castilho Rodrigues 19 de Agosto de 2014 Introdução 3 Objetivos Ao final deste capítulo você deve ser capaz de: Usar modelos de regressão para construir
Universidade Federal de Alagoas Instituto de Matemática. Cor. Prof. Thales Vieira
Universidade Federal de Alagoas Instituto de Matemática Cor Prof. Thales Vieira 2014 O que é cor? Cor no universo físico Cor no universo matemático Representação de cor Especificação de cor Colorimetria
Experimento 7. Circuitos RC e filtros de frequência. 7.1 Material. 7.2 Introdução. Gerador de funções; osciloscópio;
Experimento 7 Circuitos RC e filtros de frequência 7.1 Material Gerador de funções; osciloscópio; multímetros digitais (de mão e de bancada); resistor de 1 kω; capacitor de 100 nf. 7.2 Introdução Vimos
Lentes e Telescópios
Lentes e Telescópios Profª. Maria de Fátima Saraiva 1 Objetivos: Determinar a distância focal de uma lente Mostrar que as imagens formadas por lentes são invertidas Verificar como o tamanho da imagem se
CORRELAÇÃO E REGRESSÃO. Modelos Probabilísticos para a Computação Professora: Andréa Rocha. UNIVERSIDADE FEDERAL DA PARAÍBA Dezembro, 2011
CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Modelos Probabilísticos para a Computação Professora: Andréa Rocha UNIVERSIDADE FEDERAL DA PARAÍBA Dezembro, 2011 CORRELAÇÃO Introdução Quando consideramos
TRABALHO Nº 2 LEI DE MALUS
TRABALHO Nº 2 LEI DE MALUS Este trabalho tem como objectivo principal a verificação experimental da lei de Malus. Além disso vai procurar determinarse o estado de polarização de uma lâmpada de halogéneo
Aulas 1 a 3. Introdução à Ótica Geométrica
Aulas 1 a 3 Introdução à Ótica Geométrica Ótica Geométrica Análise de um fenômeno óptico: Fonte de Luz emite Luz Que se propaga em um Meio óptico E atinge um Sistema óptico Que é responsável Formação da
Leia atentamente o texto da Aula 6, Corrente alternada: circuitos resistivos, e responda às questões que seguem.
PRÉ-RELATÓRIO 6 Nome: turma: Leia atentamente o texto da Aula 6, Corrente alternada: circuitos resistivos, e responda às questões que seguem. 1 Explique o significado de cada um dos termos da Equação 1,
Laboratório de Análise Instrumental
Laboratório de Análise Instrumental Prof. Renato Camargo Matos Tutora: Aparecida Maria http://www.ufjf.br/nupis Caderno de Laboratório 1. Título 2. Introdução 3. Objetivo 4. Parte Experimental 4.1. Reagentes
AULA 21 INTRODUÇÃO À RADIAÇÃO TÉRMICA
Notas de aula de PME 3361 Processos de Transferência de Calor 180 AULA 1 INTRODUÇÃO À RADIAÇÃO TÉRMICA A radiação térmica é a terceira e última forma de transferência de calor existente. Das três formas,
Sérgio Ferreira de Paula Silva
Instalações Elétricas 1 Projeto de Instalações Elétricas Projetar uma instalação elétrica para qualquer tipo de prédio ou local consiste essencialmente em selecionar, dimensionar e localizar, de maneira
Avaliação e Expressão de Medições e de Suas Incertezas
Avaliação e Expressão de Medições e de Suas Incertezas INTRODUÇÃO A Física assim como todas as outras ciências é baseada em observações e medições quantitativas. A partir de observações e dos resultados
Prova 05/06/2012. Halliday Vol 3-6ª edição Cap 29, 30, 31,32. Halliday Vol 3-8ª edição Cap 28, 29, 30, 32. Aulas 9-15
7. Campo Magnético 7.1 - Campo magnético de uma corrente elétrica 7.2 - Linhas de força 7.3 - Fluxo magnético e indução magnética 7.4 - Campo magnético de uma espira 7.5 - Lei de Ampère 7.6 - Campo magnético
Departamento de Astronomia - Instituto de Física Universidade Federal do Rio Grande do Sul
Departamento de Astronomia - Instituto de Física Universidade Federal do Rio Grande do Sul FIS2010 - FUNDAMENTOS DE ASTRONOMIA E ASTROFÍSICA A 2.a PROVA 2012/1 - TURMA C - Profa. Maria de Fátima Saraiva
Espectroscopia de emissão/absorção com espectrómetro de prisma
Estrutura da Matéria 5/6 Espectroscopia de emissão/absorção com espectrómetro de prisma Objectivo: Estudar o espectro de emissão de um sólido incandescente (filamento de tungsténio); egistar e interpretar
Experimento 8 Circuitos RC e filtros de freqüência
Experimento 8 Circuitos C e filtros de freqüência OBJETIO O objetivo desta aula é ver como filtros de freqüência utilizados em eletrônica podem ser construídos a partir de um circuito C Os filtros elétricos
2 Radiometria e fotometria
2 Radiometria e fotometria Imagens HDR se preocupam em armazenar valores referentes as condições de iluminação do ambiente onde a imagem foi tirada. Dessa forma, a medição das quantidades de energia e
No sistema internacional de unidades (SI) esta é medida como Joule por segundo (J/s). Onde 1J/s é igual a 1 Watt (W).
81 Experimento 4: Irradiância Luminosa e Polarização da Luz 2.4.1 Objetivos Compreender o conceito de irradiância Luminosa. Medir a irradiância luminosa em função da distância à fonte. Estudar a polarização
Circuitos RC e filtros de frequência. 7.1 Material
Circuitos RC e filtros de frequência 7 7. Material Gerador de funções; osciloscópio; multímetros digitais (de mão e de bancada); resistor de kω; capacitor de 00 nf. 7.2 Introdução Vimos que a reatância
BC Fenômenos Mecânicos. Experimento 1 - Roteiro
BC 0208 - Fenômenos Mecânicos Experimento 1 - Roteiro Movimento Retilíneo Uniforme (MRU) Professor: Turma: Data: / /2015 Introdução e Objetivos Na disciplina de Fenômenos Mecânicos estamos interessados
Espectroscopia do Visível
Faculdade de Ciências da Universidade de Lisboa Faculdade de Belas Artes da Universidade de Lisboa Espectroscopia do Visível Relatório da Atividade Experimental Curso de Ciências da Arte e do Património
PROF. DANILO PRINCÍPIOS DA ÓTICA GEOMÉTRICA TERCEIRO ANO 13/02/2016 FOLHA 03
FOLHA 03 Após esta aula, a lista "INTRODUÇÃO AO ESTUDO DA ÓTICA"pode ser feita por completo. EXERCÍCIOS 1. Suponha que você tenha em mãos quatro corpos esféricos: A, B, C e D. Os corpos A, B e C foram
Introdução às Ciências Físicas Módulo 1 Aula 1
Experimento 2 A emissão da luz por diferentes fontes Objetivo: Construir um modelo para a emissão de luz por uma fonte não puntiforme. Material utilizado! caixa escura! máscaras! fonte de luz 1 com lâmpadas
INSTALAÇÕES ELÉTRICAS INDUSTRIAIS (IEI)
INSTALAÇÕES ELÉTRICAS INDUSTRIAIS (IEI) Aula 2 Revisão de luminotécnica Prof.: Bruno Gonçalves Martins [email protected] RECAPITULANDO Apresentação da ementa e avaliações da disciplina; Planejamento
RADIAÇÃO. 2. Radiação Eletromagnética. 1. Introdução. Características da Radiação Eletromagnética
O AQUECIMENTO DA ATMOSFERA RADIAÇÃO SOLAR E TERRESTRE 1. Introdução RADIAÇÃO Radiação = Modo de transferência de energia por ondas eletromagnéticas única forma de transferência de energia sem a presença
Estimativa do Comprimento de Onda de um LED
Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Cursos de Engenharia Laboratório de Física e Eletricidade: Estimativa do Comprimento de Onda de um LED Autor: Prof. Sandro Martini
Sensoriamento Remoto Hiperespectral PPGCC. Enner Alcântara Departamento de Cartografia Universidade Estadual Paulista Presidente Prudente
Sensoriamento Remoto Hiperespectral PPGCC Enner Alcântara Departamento de Cartografia Universidade Estadual Paulista Presidente Prudente 2014 Leis da Radiação Existem numerosas e complexas leis que explicam
Experimento 6 Corrente alternada: circuitos resistivos
1. OBJETIVO Experimento 6 Corrente alternada: circuitos resistivos O objetivo desta aula é estudar o comportamento de circuitos resistivos em presença de uma fonte de alimentação de corrente alternada.
Experimento 6 Corrente alternada: circuitos resistivos
1 OBJETIVO Experimento 6 Corrente alternada: circuitos resistivos O objetivo desta aula é estudar o comportamento de circuitos resistivos em presença de uma fonte de alimentação de corrente alternada 2
Este anexo estabelece os requisitos mínimos para as lanternas de estacionamento As definições dadas no Anexo 1 devem aplicar-se a este Anexo.
LANTERNAS DE ESTACIONAMENTO 1. PROPÓSITO ANEXO 9 Este anexo estabelece os requisitos mínimos para as lanternas de estacionamento. 2. DEFINIÇÕES Para efeito deste Anexo: 2.1. Lanterna de Estacionamento
SOLAR E TERRESTRE RADIAÇÃO O O AQUECIMENTO DA ATMOSFERA. 2. Radiação Eletromagnética. 1. Introdução. Características da Radiação Eletromagnética
O O AQUECIMENTO DA ATMOSFERA RADIAÇÃO SOLAR E TERRESTRE 1. Introdução RADIAÇÃO Radiação = Modo de transferência de energia por ondas eletromagnéticas única forma de transferência de energia sem a presença
Visão Humana. Vapores metálicos x Vapor de sódio
i l u m i n a ç ã o p ú b l i c a Hoje, a iluminação nas cidades tem sido direcionada no sentido da valorização de seu patrimônio histórico e da criação de ambientes urbanos voltados ao bem estar do cidadão.
DETERMINAÇÃO DO PERFIL TRANSVERSAL DE UM FEIXE LASER
DETERMINAÇÃO DO PERFIL TRANSVERSAL DE UM FEIXE LASER 1. Objectivo Determinação do perfil transversal de um feie laser através da técnica do pinhole e da técnica da lâmina. 2. Introdução As ondas associadas
Medidas da Onda Sonora Prof. Theo Z. Pavan
Medidas da Onda Sonora Prof. Theo Z. Pavan Física Acústica Aula 8 Energia transportada pelas ondas Ondas transportam energia. Intensidade I de uma onda: Potência transportada por unidade de área perpendicular
POLARIZAÇÃO DA LUZ. Figura 1 - Representação dos campos elétrico E e magnético B de uma onda eletromagnética que se propaga na direção x.
POLARIZAÇÃO DA LUZ INTRODUÇÃO Uma onda eletromagnética é formada por campos elétricos e magnéticos que variam no tempo e no espaço, perpendicularmente um ao outro, como representado na Fig. 1. A direção
TRABALHO Nº 1 DETERMINAÇÃO DO COMPRIMENTO DE ONDA DE UMA RADIAÇÃO DUPLA FENDA DE YOUNG
TRABALHO Nº 1 DETERMINAÇÃO DO COMPRIMENTO DE ONDA DE UMA RADIAÇÃO DUPLA FENDA DE YOUNG Pretende-se realizar a experiência clássica de Thomas Young e utilizar o padrão de interferência de duas fontes pontuais
Exercícios Dissertativos
Exercícios Dissertativos 1. (2002) O Sol tem diâmetro de 1, 4.10 9 m e a sua distância média à Terra é de 1, 5.10 11 m. Um estudante utiliza uma lente convergente delgada de distância focal 0,15 m para
Laboratório de Física Moderna Espectroscopia do H. Marcelo Gameiro Munhoz
Laboratório de Física Moderna Espectroscopia do H Marcelo Gameiro Munhoz [email protected] 1 Contextualização Para iniciar nosso experimento, vamos compreender o contexto que o cerca Qual o tipo de fenômeno
ENERGIA SOLAR: CONCEITOS BASICOS
ENERGIA SOLAR: CONCEITOS BASICOS Uma introdução objetiva dedicada a estudantes interessados em tecnologias de aproveitamento de fontes renováveis de energia. Prof. M. Sc. Rafael Urbaneja 0 4. LEIS DA EMISSÃO
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO SUL CAMPUS RIO GRANDE INSTRUMENTAÇÃO INDUSTRIAL
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO SUL CAMPUS RIO GRANDE INSTRUMENTAÇÃO INDUSTRIAL Aula 23 2 MEDIÇÃO DE TEMPERATURA COM TERMÔMETRO DE RADIAÇÃO CONTATO INDIRETO 3 INTRODUÇÃO
Circuitos RC e filtros de frequência. 6.1 Material. resistor de 1 kω; capacitor de 100 nf.
Circuitos RC e filtros de frequência 6 6. Material resistor de kω; capacitor de 00 nf. 6.2 Introdução Vimos que a reatância capacitiva depende da frequência: quanto maior a frequência do sinal que alimenta
ET7DE- Instrumentação Virtual. Prof. Winderson Sensores e Transdutores
ET7DE- Instrumentação Virtual Prof. Winderson Sensores e Transdutores Tópicos: 1. Sensores e transdutores 2. Características de sensores 3. Exercícios 1. Sensores e Transdutores Sensor é um dispositivo
sistemas fotovoltaicos conectados à rede elétrica
Fig. 1.1 Diagrama de energia de um semicondutor e fundamentos básicos da conversão solar fotovoltaica: (a) ilustração do espectro da radiação solar e da energia contida em cada fóton em função do comprimento
