MEDIDA DA CARGA ESPECÍFICA DO ELÉTRON (Thomson)
|
|
|
- Raul Prada Monteiro
- 8 Há anos
- Visualizações:
Transcrição
1 UFSC DEPARTAMENTO DE FÍSICA FSC55: LABORATÓRIO DE FÍSICA MODERNA MEDIDA DA CARGA ESPECÍFICA DO ELÉTRON (Thomson) OBJETIVO: Medir a carga específica do elétron e comparar com o método de Busch e com o valor tabelado e/m =,76 x 0 C/Kg FUNDAMENTOS: A experiência de J.J. Thomson realizada em.897, veio mostrar que os átomos não são indivisíveis, pois partículas elétricas negativas podem ser arrancadas pela ação de forças elétricas. O método que vamos utilizar na presente experiência é uma variante do original de Thomson, onde o campo elétrico é importante apenas na aceleração dos raios catódicos, sendo o campo magnético responsável pela modificação das suas trajetórias. O equipamento consiste de uma ampola de vidro onde um filamento metálico é montado no eixo de um eletrodo cônico de aceleração, o qual possui um orifício superior por onde irá passar um abundante fluxo de elétrons (feixe de raios catódicos). A atmosfera interna da ampola é de gás hidrogênio, sob pressão de 0 - mmhg, o que permite visualizar o feixe eletrônico como um traço de luz azul produzido pela excitação eletrônica dos átomos de hidrogênio. A ampola é montada no centro de duas bobinas de Helmholtz, que irão criar um campo magnético defletor dado pela equação (ver Halliday problema n o 50,cap. 34, 4 a edição: onde 4 5 3/ B o / N.I R o =,6 0-6 Wb/Am N = 30 (número de espiras em cada bobina) R = 0,50 m (raio de cada bobina) I = intensidade da corrente nas espiras. Quando um elétron de carga e e de massa m, se move num campo elétrico uniforme, como o formado quando duas placas paralelas são carregadas sob uma tensão V, ele adquire uma velocidade que pode ser calculada a partir da expressão: mv ev [] Se na região onde se move o elétron existir um campo magnético de indução magnética B, ele ficará sujeito à força de Lorentz, F = qvxb. Caso a trajetória do []
2 elétron seja perpendicular ao campo magnético B, a força F será perpendicular à sua velocidade v e o movimento resultante será uma trajetória circular de raio r. Neste caso a força centrípeta será igual à força de Lorentz: m.v R e e.v.b e v m.b.r Combinando a [] e a [3] resulta: e V m (R.B) [4] onde: e/m = carga específica da partícula R = raio da trajetória V = tensão do campo elétrico acelerador B = campo magnético de deflexão ( dado pela eq. []). [3] Nota: Quando o vetor velocidade do feixe eletrônico não for perpendicular ao vetor indução magnética, a trajetória será helicoidal. Peça auxílio ao instrutor para dar uma pequena rotação ao longo do eixo da ampola de vidro ( à esquerda e à direita); observe e interprete o movimento do feixe eletrônico. Você pode também observar a influencia sobre o feixe de um imã externo. O diâmetro da ampola deste equipamento Leybold é de 75 mm. PRÉ-RELATÓRIO: - Discuta como é possível determinar o sinal da carga elétrica de um feixe de partículas em movimento numa região de campo magnético. - Compare de forma resumida (através de diagramas) a determinação de e/m pelos métodos de Busch e Thomson. 3- Usando a lei de Biot-Savart deduza a equação [] (ver Halliday, capítulo 34, problema 50, 4 a edição). 4- Por que é necessário introduzir um gás na ampola, e por que a pressão deste gás deve ser baixa? 5- Considerando que o campo magnético da Terra na latitude de Florianópolis é de 0,30 Oersted, ele pode ser considerado apenas como uma perturbação? Como minimizar o seu efeito na montagem da experiência?
3 3 PROCEDIMENTO EXPERIMENTAL (Thomson): - Confira as conexões elétricas de acordo com o esquema abaixo. - Ligue as fontes de tensão e aguarde um minuto até aquecer o filamento do bulbo. 3- Coloque uma tira de papel milimetrado sobre o espelho. ATENÇÃO: A CORRENTE DAS BOBINAS NÃO DEVE ULTRAPASSAR,5 AMPERES use valores entre,0 e,5 Amperes. A MÁXIMA TENSÃO DE ANÔDO É 300 VOLTS use valores entre 50 e 50 Volts 4- Fixe o primeiro valor de corrente em,50 A. Varie a tensão de ânodo até obter uma trajetória circular. A colimação do feixe pode ser feita com o auxilio do reostato. 5- Você irá obter o raio da trajetória circular do feixe eletrônico, através da medida do diâmetro da órbita feita num papel milimetrado (colocado sobre o espelho) com o auxílio dos cursores de cobre. 6- Com a corrente no valor fixo de,50 A, varie a tensão aplicada até obter um feixe de diâmetro mínimo. Anote na Tabela I os valores de V, I e R. O raio da órbita deve ser medido sobre o papel milimetrado com o auxílio dos braços do paquímetro; tente evitar erros de paralaxe. 7- Mantendo em,50 A varie a tensão até obter pelo menos dois feixes circulares com diâmetros crescentes. Anote os raios na Tabela I. NOTA: órbitas com diâmetros muito grandes (isto é, chegando próximo às paredes da ampola) devem ser evitadas por dois motivos: (a) a equação [] que fornece o valor do campo magnético só vale ao longo do eixo das bobinas (de fato, pode-se demonstrar que também vale no entorno do eixo); (b) a ampola de vidro apresenta espessura de parede mais grossa próximo ao seu eixo e mais fina no seu diâmetro, o que introduz uma considerável refração (ou efeito lente ) ao medir o diâmetro do feixe para órbitas próximas à parede da ampola. 8- Repita os passos 6, 7 e 8 para um valor de corrente de,0 A. Tabela I e/m método de Thomson. R 0 - B 0-3 Veloc. 0 V (V) I (A) (m) (Wb/m ) (R B) (m/s) Relatório: Faça um gráfico de V (tensão) em função de ( RB ) reta e o valor de e/m. Dê o desvio percentual em relação ao tabelado. ; obtenha a melhor
4 4 APÊNDICE: Método alternativo para avaliar o raio: x x Ponto de observação (fixo) O d D Assim, pode-se atribuir a seguinte relação: trajetória circular Local de projeção e medição D d = x x
5 5 ESQUEMA Bobinas Konstante r A Campo Magnético Placas V Ânodo + - W Aquecimento H 600 V + - V Phywe N = 500 N=00 0 Fonte Tensão V k ~ 6,3 V ~0 V
CARGA ESPECÍFICA DO ELÉTRON
DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO - IFUFBa 009 ESTRUTURA DA MATÉRIA I (FIS101) EMN CARGA ESPECÍFICA DO ELÉTRON 1. Objetivo do Experimento Estudar a deflexão de elétrons em um campo magnético e determinar
Universidade Federal do Paraná Departamento de Física Laboratório de Física Moderna. Bloco 01: A RAZÃO CARGA/MASSA DO ELÉTRON
Universidade Federal do Paraná Departamento de Física Laboratório de Física Moderna Bloco 01: A RAZÃO CARGA/MASSA DO ELÉTRON Introdução A quantidade e/m foi medida experimentalmente pela primeira em 1897
Instituto de Física EXPERIÊNCIA 11. Deflexão de feixe de elétrons - razão carga massa (e/m) I. OBJETIVOS DESCRIÇÃO DO EXPERIMENTO
EXPERIÊNCIA 11 Deflexão de feixe de elétrons - razão carga massa (e/m) I. OBJETIVOS - Verificar a dependência da trajetória de um feixe de elétrons quando sujeito a diferentes potenciais de aceleração
1303 Determinação da razão e/m 0
1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Máximo F. da Silveira Instituto de Física UFRJ Tópicos Relacionados Raios catódicos, força de Lorentz, elétrons em campos transversais,
UFSC - DEPTO DE FÍSICA FSC 5151: LABORATÓRIO DE FÍSICA MODERNA MEDIDA DA CARGA ESPECÌFICA ( BUSCH )
1 UFSC - DEPTO DE FÍSICA FSC 5151: LABORATÓRIO DE FÍSICA MODERNA MEDIDA DA CARGA ESPECÌFICA ( BUSCH ) OBJETIVO Medir a carga específica do elétron ( e / m ). FUNDAMENTOS DA TEORIA De longa data, a Mecânica
Laboratório Física IV Experimento e/me
Laboratório Física IV Experimento e/me Profa. Clemencia Mora Herrera Prof. Helena Malbouisson baseado nos slides do Prof. Dilson Damião para Est. da Matéria I Introdução Os raios catódicos são feixes de
3B SCIENTIFIC PHYSICS
3B SCIENTIFIC PHYSICS Tubo de raios de feixe estreito sobre base de conexão R 1019957 Instruções de operação 05/16 ALF 1 Tubo de feixe estreito 2 Base de conexão 3 Conexão para ânodo 4 Conexão para cátodo
Física Experimental III - Experiência E8
Física Experimental III - Experiência E8 Experiência de Oersted e Medidas de campo magnético OBJETIVOS Reproduzir a experiência de Oersted. Estimar o campo magnético da Terra. Avaliar os campos magnéticos
Razão carga-massa q/m
Laboratório Avançado de Física Razão carga-massa q/m Introdução Enquanto a razão massa-carga m/q de alguns íons já era conhecida por intermédio de métodos eletroquímicos, a razão m/q do elétron foi obtida
EXPERIMENTO 12: MEDIDA DA RAZÃO CARGA/MASSA DO ELÉTRON
EXPERIMENTO 12: MEDIDA DA RAZÃO CARGA/MASSA DO ELÉTRON 12.1 OBJETIVO Medir a razão carga/massa do elétron pelo método de Thomsom usando um osciloscópio didático adaptado. 12.2 INTRODUÇÃO A razão e/m foi
Roteiro do Experimento Relação entre carga e massa do elétron.
CM Página 1 de 5 INSTRUÇÕES GERAIS: Universidade Estadual Paulista Julio de Mesquita Filho Departamento de Física Laboratório de Física Moderna Roteiro do Experimento Relação entre carga e massa do elétron.
Campo Magnético da Terra
Física Campo Magnético da Terra Campo Magnético da Terra Neste experimento mediremos a componente horizontal do campo magnético da Terra. Para isso utilizaremos um par de bobinas de Helmholtz de forma
Electromagnetismo e Óptica
Electromagnetismo e Óptica Experiência de Thomson (Grupos D e E) OBJECTIVOS Observar o efeito da força de Lorentz. Medir o campo de indução magnética produzido por bobinas de Helmholtz. Determinar experimentalmente
Laboratório de Física Moderna
Laboratório de Física Moderna DUALIDADE ONDA-PARTÍCULA MEDIDA DA RELAÇÃO CARGA/MASSA DO ELÉTRON (Experiência A.1) PRINCÍPIOS E OBJETIVOS A dualidade onda-partícula para o elétron é explorada em duas experiências
Determinação da razão entre a carga elementar e a massa eletrônica
Determinação da razão entre a carga elementar e a massa eletrônica B R E N N O G U S T A V O B A R B O S A T H I A G O S C H I A V O M O S Q U E I R O R E L A T Ó R I O 1 4 / 0 3 / 0 0 8 História da descoberta
Lista 02 Parte II Capítulo 32
Lista 02 Parte II Capítulo 32 01) Dada uma bateria de fem ε e resistência interna r, que valor deve ter a resistência de um resistor, R, ligado em série com a bateria para que o efeito joule no resistor
Física 3 - CÓDIGO Profa. Dra. Ignez Caracelli (DF)
Física 3 - CÓDIGO 09903-1 Profa. Dra. Ignez Caracelli (DF) 06 de janeiro de 2017 Lista de Exercícios CAMPOS MAGNÉTICOS Definição de Campo Magnético 1 Um próton cuja trajetória faz um ângulo de 23 com a
Quantização da Carga, Luz e Energia
Quantização da Carga, Luz e Energia Prof. Jaime Urban 1 / 13 Quantização da Carga Elétrica Primeiras medidas de e e de e/m Michael Faraday (1791-1867) Condução da eletricidade em ĺıquidos - Lei da eletrólise
Laboratório de Estrutura da Matéria I. Medida da Relação Carga-Massa do elétron
Laboratório de Estrutura da Matéria I Medida da Relação Carga-Massa do elétron Carga elétrica em átomos Elaborou experiências para o estudo dos raios catódicos. Mostrou que a corrente elétrica era constituída
Magnetismo. Aula 06/10/2016
Magnetismo { Aula 06/10/2016 Experiências mostraram que um campo magnético pode ser gerado não apenas por ímãs, mas também por correntes elétricas. Hoje atribui-se o magnetismo dos ímãs a existência de
RESOLUÇÃO PRATIQUE EM CASA - FÍSICA
SOLUÇÃO PC1. O eletroímã irá gerar um campo magnético muito intenso que provocará o surgimento de uma força magnética elevada a ponto de atrair as grandes peças de ferro. SOLUÇÃO PC. A deflexão da bússola
CURSO E COLÉGIO OBJETIVO TREINO PARA A PROVA DE FÍSICA F.3 PROF. Peixinho 3 o Ano E.M. 2 o Bimestre-2010
EXERCÍCIOS PARA ESTUDO 1. (Fuvest) O circuito a seguir mostra uma bateria de 6V e resistência interna desprezível, alimentando quatro resistências, em paralelo duas a duas. Cada uma das resistências vale
Prof. Flávio Cunha, (19) Consultoria em Física, Matemática e Programação.
CAMPO MAGNÉTICO 1. Considere as seguintes afirmações: I. Suspendendo-se um ímã pelo seu centro de gravidade, seu pólo norte se orienta na direção do pólo norte geográfico da Terra e seu pólo sul se orienta
Laboratório de Física Moderna
Laboratório de Física Moderna DUALIDADE ONDA-PARTÍCULA DIFRAÇÃO DE ELÉTRONS (Experiência B.1) PRINCÍPIOS E OBJETIVOS A dualidade onda-partícula para o elétron agora será explorada via a apresentação do
LISTA DE EXERCÍCIOS 4UL 3S14 3S15
LIST DE EXERCÍCIOS 4UL 3S14 3S15 1 (FTEC-SP) Um estreito feixe de luz monocromática, proveniente do ar, incide na superfície de um vidro formando ângulo de 49 com a normal à superfície no ponto de incidência.
Física 3 - EMB5043. Prof. Diego Duarte Campos magnéticos produzidos por correntes (lista 9) 7 de novembro de 2017
Física 3 - EMB5043 Prof. Diego Duarte Campos magnéticos produzidos por correntes (lista 9) 7 de novembro de 2017 1. A figura 1 mostra dois fios. O fio de baixo conduz uma corrente i 1 = 0,40 A e inclui
Física III-A /2 Lista 1: Carga Elétrica e Campo Elétrico
Física III-A - 2018/2 Lista 1: Carga Elétrica e Campo Elétrico 1. (F) Duas partículas com cargas positivas q e 3q são fixadas nas extremidades de um bastão isolante de comprimento d. Uma terceira partícula
Considere os seguintes dados nas questões de nº 01 a 04. Determine a grandeza que falta (F m,v,b)
Considere os seguintes dados nas questões de nº 01 a 04. Determine a grandeza que falta (F m,v,b) 01. 02. 03. 04. 05. A figura representa um fio condutor reto de comprimento 10cm, percorrido por corrente
Magnetismo e movimento de cargas. Fontes de Campo Magnético. Prof. Cristiano Oliveira Ed. Basilio Jafet sala 202
Eletricidade e Magnetismo - IME Fontes de Campo Magnético Prof. Cristiano Oliveira Ed. Basilio Jafet sala 202 [email protected] Magnetismo e movimento de cargas Primeira evidência de relação entre magnetismo
Física III-A /1 Lista 1: Carga Elétrica e Campo Elétrico
Física III-A - 2018/1 Lista 1: Carga Elétrica e Campo Elétrico Prof. Marcos Menezes 1. Duas partículas com cargas positivas q e 3q são fixadas nas extremidades de um bastão isolante de comprimento d. Uma
FÍSICA EXPERIMENTAL 3001
FÍSICA EXPERIMENTAL 3 EXPERIÊNCIA 9 BOBINAS DE HELMHOLTZ. OBJETIVOS.. Objetivo Geral Familiarizar os acadêmicos com o dispositivo conhecido como sonda Hall (sensor de campo magnético que funciona baseado
Campo Magnético. não existe campo elétrico. Se ao entrar em movimento aparece uma força na partícula existe campo magnético!
Força Magnética Campo Magnético Vimos: campo elétrico + carga elétrica força elétrica Considere-se uma região onde uma partícula com carga q em repouso não sinta força não existe campo elétrico. Se ao
Eletromagnetismo para Geociências. Experiência 1 Força elétrica sobre um feixe de elétrons. 1 o semestre de 2010
4310291 Eletromagnetismo para Geociências Experiência 1 Força elétrica sobre um feixe de elétrons 1 o semestre de 2010 10 de março de 2010 1. Força elétrica sobre um feixe de elétrons Objetivos: Estudar
FÍSICA - 2 o ANO MÓDULO 32 MAGNETISMO: FORÇA MAGNÉTICA REVISÃO
FÍSICA - 2 o ANO MÓDULO 32 MAGNETISMO: FORÇA MAGNÉTICA REVISÃO Fixação - 1) Em cada caso mostrado abaixo, determine a força magnética (direção e sentido) que atua na carga elétrica q, lançada com velocidade
EXERCÍCIOS FÍSICA 3ª SÉRIE
3ª SÉRIE PROF. HILTON 1. A figura a seguir mostra a posição inicial de uma espira retangular acoplada a um eixo de rotação, sob a ação de um campo magnético originado por ímãs permanentes, e percorrida
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO
27 Experimento 3: Lei de Faraday, transformadores e campo magnético da Terra 1.3.1 Objetivos Realizar experimentos que verifiquem a lei de indução de Faraday. Estudar o processo de transformação de tensão
Halliday Fundamentos de Física Volume 3
Halliday Fundamentos de Física Volume 3 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,
Física III-A /2 Lista 8: Indução Eletromagnética
Física III-A - 2018/2 Lista 8: Indução Eletromagnética 1. (F) Um fio condutor retilíneo e infinito transporta uma corrente estacionária de intensidade I. Uma espira condutora quadrada é posicionada de
Laboratório de Estrutura da Matéria II
Roteiro: Prof. Dr. Jair Freitas UFES - Vitória Laboratório de Estrutura da Matéria II Difração de elétrons PRINCÍPIO E OBJETIVOS Feixes eletrônicos de alta energia são difratados por um alvo de grafite
Lista de Exercícios 5 Corrente elétrica e campo magnético
Lista de Exercícios 5 Corrente elétrica e campo magnético Exercícios Sugeridos (13/04/2010) A numeração corresponde ao Livros Textos A e B. A22.5 Um próton desloca-se com velocidade v = (2 î 4 ĵ + ˆk)
Lista de Exercícios 3 Corrente elétrica e campo magnético
Lista de Exercícios 3 Corrente elétrica e campo magnético Exercícios Sugeridos (16/04/2007) A numeração corresponde ao Livros Textos A e B. A22.5 Um próton desloca-se com velocidade v = (2i 4j + k) m/s
Ismael Rodrigues Silva Física-Matemática - UFSC. cel: (48)
Ismael Rodrigues Silva Física-Matemática - UFSC cel: (48)9668 3767 R1 Quando duas cargas estão em movimento, além da força eletrostática manifesta-se uma outra força, chamada força magnética. Todos os
216 Demonstração da Lei de Ampère
1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Hermes Urébe Guimarães Tópicos Relacionados Campos magnéticos uniformes, indução magnética, força de Lorentz, portadores de carga,
Lista de exercícios 7 Campos Magnéticos. Letra em negrito são vetores; i, j, k são vetores unitários
Lista de exercícios 7 Campos Magnéticos Letra em negrito são vetores; i, j, k são vetores unitários 1. Um elétron com uma velocidade v = (2,0 x 106 m/s)i + (3,0 x 106 m/s)j está se movendo em uma região
Estudo da excitação e ionização atômicas (experimento de Franck-Hertz)
1 UFSC DEPARTAMENTO DE FÍSICA FSC 5151: Laboratório de Física Moderna I Estudo da excitação e ionização atômicas (experimento de Franck-Hertz) Objetivos Medir o primeiro potencial de excitação do mercúrio
Física Teórica II. Prova 2 1º. semestre de /05/2018
Física Teórica II Prova 2 1º. semestre de 2018 26/05/2018 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas 2- Analise sua resposta. Ela faz sentido? Isso poderá ajudá-lo a encontrar
Magnetismo Ímãs permanentes são objetos que produzem seus próprios campos magnéticos persistentes. Todos os ímãs permanentes possuem os pólos sul e
Magnetismo Ímãs permanentes são objetos que produzem seus próprios campos magnéticos persistentes. Todos os ímãs permanentes possuem os pólos sul e norte. Eles são feitos de materiais ferromagnéticos como
Física III-A /1 Lista 7: Leis de Ampère e Biot-Savart
Física III-A - 2019/1 Lista 7: Leis de Ampère e Biot-Savart 1. (F) Considere um solenoide como o mostrado na figura abaixo, onde o fio é enrolado de forma compacta. Justificando todas as suas respostas,
Prof. Joel Brito Edifício Basílio Jafet - Sala 102 Tel
Prof. Joel Brito Edifício Basílio Jafet - Sala 102 Tel. 3091-6925 [email protected] Alguns recados da disciplina Critérios de aprovação 3 experimentos + 1 projeto da turma Média dos experimentos + nota
Lista de Exercícios 1 - Magnetismo e Partícula em Campo Magnético
Lista de Exercícios 1 - Magnetismo e Partícula em Campo Magnético Exercícios de uma estrela são elementares, geralmente solucionados com base em conceitos básicos ou simples substituição em equações. Exercícios
CAMPO MAGNÉTICO EM CONDUTORES
CAMPO MAGNÉTICO EM CONDUTORES Introdução A existência do magnetismo foi observada há cerca de 2500 anos quando certo tipo de pedra (magnetita) atraía fragmentos de ferro, que são conhecidos como ímãs permanentes.
Introdução à Eletromecânica e à Automação PEA2211 Produção de Forças
Nome do Aluno Assinatura Parte experimental Procedimento experimental Eletroímã de Tração O eletroímã do laboratório está representado esquematicamente na Fig. A.1. Para a determinação do comportamento
Campo Magnético - Força de Lorentz
Campo Magnético - Força de Lorentz Evandro Bastos dos Santos 22 de Maio de 2017 1 Campo Magnético Podemos entender que a região próxima a um ímã influencia outros ímãs ou materiais ferromagnéticos e paramagnéticos,
Corrente contínua e Campo de Indução Magnética: CCB
CCB 01 Corrente contínua e Campo de Indução Magnética: CCB Um condutor elétrico cilíndrico encontra-se disposto verticalmente em uma região do espaço, percorrido por uma intensidade de corrente Oersted
Prof. Henrique Barbosa Edifício Basílio Jafet - Sala 100 Tel
Prof. Henrique Barbosa Edifício Basílio Jafet - Sala 100 Tel. 3091-6647 [email protected] http://www.fap.if.usp.br/~hbarbosa Exp. 2 Seletor de Velocidades PROGRAMAÇÃO Semana 1 Movimento em campo elétrico
Física III-A /2 Lista 7: Leis de Ampère e Biot-Savart
Física III-A - 2018/2 Lista 7: Leis de Ampère e Biot-Savart 1. (F) Considere um solenoide como o mostrado na figura abaixo, onde o fio é enrolado de forma compacta. Justificando todas as suas respostas,
FIS1053 Projeto de Apoio Eletromagnetismo 09-Setembro Lista de Problemas 15 ant Revisão G4. Temas: Toda Matéria.
FIS153 Projeto de Apoio Eletromagnetismo 9-Setembro-11. Lista de Problemas 15 ant Revisão G4. Temas: Toda Matéria. 1ª Questão (,): A superfície fechada mostrada na figura é constituída por uma casca esférica
Universidade Federal do Paraná Departamento de Física Laboratório de Física Moderna
Universidade Federal do Paraná Departamento de Física Laboratório de Física Moderna Bloco 02: O DUBLETO DO SÓDIO Os níveis de energia de um átomo de hidrogênio calculados pela equação de Schrödinger são
Laboratório de Física
Laboratório de Física Experimento 02: Força e Deslocamento Disciplina: Laboratório de Física Experimental I Professor: Turma: Data: / /20 Alunos: 1: 2: 3: 4: 5: 1/10 02 - Força e Deslocamento 1.1. Objetivos:
Estrutura física da matéria Difração de elétrons
O que você pode aprender sobre este assunto... - Reflexão de Bragg - Método de Debye-Scherer - Planos de rede - Estrutura do grafite - Ondas de matéria - Equação de De Broglie Princípio: Elétrons acelerados
TC 2º Ano Olímpico Professor: Eduardo Kilder
TC 2º Ano Olímpico Professor: Eduardo Kilder 01 ) (Unicamp-SP) Um fio condutor rígido de 200 g e 20 cm de comprimento é ligado ao restante do circuito por meio de contatos deslizantes sem atrito, como
Cargas elétricas em movimento (correntes) geram campos magnéticos B e sofrem forças
Capítulo 6 Campo Magnético 6.1 Introdução Cargas elétricas geram campos elétricos E e sofrem forças elétricas F e. Cargas elétricas em movimento (correntes) geram campos magnéticos B e sofrem forças magnéticas
Lista 6: Campo Magnético e Força Magnética (2017/2)
Lista 6: Campo Magnético e Força Magnética (2017/2) Prof. Marcos Menezes 1. Sobre a força magnética, responda: (a) Uma partícula carregada pode se mover em uma região de campo magnético sem sentir nenhuma
Sala de Estudos FÍSICA - Lucas 3 trimestre Ensino Médio 2º ano classe: Prof.LUCAS Nome: nº
Sala de Estudos FÍSICA - Lucas 3 trimestre Ensino Médio 2º ano classe: Prof.LUCAS Nome: nº SALA DE ESTUDOS: FORÇA MAGNÉTICA 1. (Ucs 2012) Dentro do tubo de imagem de um televisor, a corrente elétrica,
b) determine a direção e sentido do vetor campo magnético nesse ponto indicado.
COLÉGIO SHALOM Ensino Médio 3 Ano Prof.º: Wesley Disciplina Física Aluno (a):. No. Trabalho de Recuperação Data: /12/2017 Valor: 1 - (UEL-PR) Um fio longo e retilíneo, quando percorridos por uma corrente
TEORIAS ATÔMICAS. Menor partícula possível de um elemento (Grécia antiga) John Dalton (1807)
TEORIAS ATÔMICAS Átomo Menor partícula possível de um elemento (Grécia antiga) John Dalton (1807) 1. Os elementos são constituídos por partículas extremamente pequenas chamadas átomos; 2. Todos os átomos
Laboratório de Estrutura da Matéria II
Roteiro: Prof. Dr. Jair Freitas UFES - Vitória Laboratório de Estrutura da Matéria II Difração de raios X PRINCÍPIO E OBJETIVOS Feixes de raios X são analisados através de difração por monocristais, para
Modelos atômicos. Curso de Química. Prof. Rui Medeiros. quimicadorui.com.br
Modelos atômicos Curso de Química Prof. Rui Medeiros quimicadorui.com.br Módulo Extra - 2017 2 CURSO DE QUÍMICA PROFESSOR RUI MEDEIROS MÓDULO EXTRA - 2017 Modelos atômicos ü A representação esquemática
Eletrostática e Eletromagnetismo. Lista de Orientação Valendo 1 ponto.
Eletrostática e Eletromagnetismo Lista de Orientação Valendo 1 ponto. 1) Uma das aplicações tecnológicas modernas da eletrostática foi a invenção da impressora a jato de tinta. Esse tipo de impressora
Estudo da excitação e ionização atômicas (experimento de Franck-Hertz)
1 UFSC DEPARTAMENTO DE FÍSICA FSC 5151: Laboratório de Física Moderna I Estudo da excitação e ionização atômicas (experimento de Franck-Hertz) Objetivos xenônio. Medir o primeiro potencial de excitação
Roteiro de Atividades Experimentais para o Laboratório de Eletricidade Aplicada
Roteiro de Atividades Experimentais para o Laboratório de Eletricidade Aplicada Erick Santana 2016 1 EXPERIÊNCIA 1 TÍTULO: Campo e força magnética. OBJETIVO: (a) Analisar a força magnética sobre um condutor
ATENÇÃO LEIA ANTES DE FAZER A PROVA
Física Teórica II Segunda Prova A 2º. semestre de 2015 ALUNO TURMA PROF. NOTA DA _ PROVA ATENÇÃO LEIA ANTES DE FAZER A PROVA 1 Assine a prova antes de começar. 2 - Os professores não poderão responder
15.2 Determinação experimental do momento de dipolo
CAPÍTULO 15 Medida do Momento Magnético 15.1 Objetivos Neste experimento faremos a medida experimental do momento de dipolo magnético de espiras de corrente de diversos diâmetros, comparando o resultados
Prof. Henrique Barbosa Edifício Basílio Jafet - Sala 100 Tel
Prof. Henrique Barbosa Edifício Basílio Jafet - Sala 100 Tel. 3091-6647 [email protected] http://www.fap.if.usp.br/~hbarbosa O Seletor de Velocidades E > vb q 0 v 0x E B E < vb bobinas Campo magnético
Programa de pós-graduação em Física
Programa de pós-graduação em Física Universidade Federal de Lavras 21 de Novembro 2012 Prova número: Prova de Seleção: Primeiro Semestre de 2013. ATENÇÃO! Questão Nota Questão Nota - Justifique suas respostas.
Prof. Derig Almeida Vidal, MSc. 1
DEFINIÇÃO O osciloscópio é um instrumento cuja finalidade básica é visualizar fenômenos elétricos, possibilitando medir tensões contínuas, alternadas, períodos, freqüências e defasagem com elevado grau
Física Quântica. Momentos de Dipolo Magnético e Spin. Prof. Dr. Walter F. de Azevedo Jr Dr. Walter F. de Azevedo Jr.
2019 Dr. Walter F. de Azevedo Jr. Física Quântica Momentos de Dipolo Magnético e Spin Prof. Dr. Walter F. de Azevedo Jr. 1 Momento de Dipolo Magnético Orbital Consideremos uma carga elétrica (e) que se
Use, quando necessário: 3 2 sen 30 0 = 0,5 pressão atmosférica como. massa específica da água = 1,0
FÍSICA (cada questão vale até cinco pontos) Use, quando necessário: g = 10m / s 3 cos30 0 = 2 sen 30 0 = 0,5 pressão atmosférica como 3 massa específica da água = 1,0 10 kg / m 3 5 2 1,0 10 N / m Questão
PUC-RIO CB-CTC G1 Gabarito - FIS FÍSICA MODERNA Turma: 33-A Nome Legível: Assinatura: Matrícula:
PUC-RIO CB-CTC G1 Gabarito - FIS1061 - FÍSICA MODERNA 20-09-2013 Turma: 33-A Nome Legível: Assinatura: Matrícula: AS RESPOSTAS PRECISAM SER JUSTIFICADAS A PARTIR DE LEIS FÍSICAS E CÁLCULOS EXPLÍCITOS Não
Lista 7: Leis de Ampère e Biot-Savart (2017/2)
Lista 7: Leis de Ampère e Biot-Savart (2017/2) Prof. Marcos Menezes 1. Considere novamente o modelo clássico para o átomo de Hidrogênio discutido nas últimas listas. Supondo que podemos considerar que
LABORATÓRIO DE FÍSICA I - Curso de Engenharia Mecânica
LABORATÓRIO DE FÍSICA I - Curso de Engenharia Mecânica Experimento N 0 03: MOVIMENTO RETILINEO UNIFORME E MOVIMENTO RETILÍNEO UNIFORME VARIADO Objetivos Gerais Ao termino desta atividade o aluno deverá
Força magnética e campo magnético
Força magnética e campo magnético Introdução: O fenômeno do magnetismo já era conhecido pelos gregos por volta do ano 800 ac. Eles observaram que determinadas rochas que continham óxido de ferro tinham
Produto vetorial. prof. Daniel B. Oliveira
Baseado: Fundamentals of Physics 2007 Produto vetorial a b nˆ a b sen( ) A força magnética F b sobre uma particula é proporcional a carga q e a velocidade v da particula. A intensidade e a direção de F
