Canguru Matemático sem Fronteiras 2016
|
|
|
- Júlio Azevedo Nunes
- 8 Há anos
- Visualizações:
Transcrição
1 estinatários: alunos do 12. o ano de escolaridade uração: 1h 0min Nome: Turma: Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. s questões estão agrupadas em três níveis: Problemas de pontos, Problemas de 4 pontos e Problemas de 5 pontos. Inicialmente tens 0 pontos. Por cada questão correta ganhas tantos pontos quantos os do nível da questão, no entanto, por cada questão errada és penalizado em 1/4 dos pontos correspondentes a essa questão. Não és penalizado se não responderes a uma questão, mas infelizmente também não adicionas pontos. Problemas de pontos 1. soma das idades do Tomás e do João é 2 anos, a soma das idades do João e do leandre é 24 anos e a soma das idades do Tomás e do leandre é 25 anos. Qual é a idade do mais velho? () 10 (B) 11 (C) 12 () 1 (E) soma () 111 (B) é igual a: (C) 111 () (E) Maria quer construir uma ponte sobre um rio e sabe que, qualquer que seja o ponto de uma das margens, o caminho mais curto que o liga à outra margem tem sempre o mesmo comprimento. Qual destas imagens não pode representar um tal rio? () (B) (C) () (E) 4. Quantos números inteiros são maiores do que e menores do que ? () 0 (B) 1 (C) 2015 () 2016 (E) Na figura ao lado está representado um conjunto de pontos com a forma de um Canguru, num referencial cartesiano ortonormado O. s coordenadas e de cada ponto representado nessa figura foram trocadas. Qual foi o resultado? () (B) (C) () (E) EPRTMENTO E MTEMÁTIC
2 6. Qual é o menor número de planos necessários para delimitar uma região limitada do espaço tridimensional? () (B) 4 (C) 5 () 6 (E) 7 7. iana quer escrever nove números inteiros nos círculos do diagrama representado na figura ao lado, de modo a que a soma dos números nos vértices de cada um dos oito triângulos mais pequenos seja a mesma. Qual é o maior número possível de números inteiros diferentes que ela pode usar? () 1 (B) 2 (C) () 5 (E) 8 8. Os retângulos S 1 e S 2 representados na figura à direita têm a mesma área. Qual é o valor de? () 1 (B) 2 (C) 4 () 7 4 (E) Se = 0, então + 2 é igual a: () 4 (B) 2 (C) 0 () 2 (E) Os comprimentos dos arcos P e BP, indicados na figura, são 20 cm e 16 cm, respetivamente. Qual é a amplitude de XP? 20cm 16cm () 0 (B) 24 (C) 18 () 15 (E) 10 Problemas de 4 pontos 11. Os números naturais a, b, c e d verificam as igualdades a + 2 = b 2 = c 2 = d 2. Qual dos números a, b, c ou d é o maior? () a (B) b (C) c () d (E) Não é possível saber 12. Nos retângulos que constituem a pirâmide da figura inscrevem-se números de forma a que o número em cada retângulo superior é o produto dos dois números nos retângulos imediatamente abaio. Qual dos seguintes números não pode aparecer no retângulo do topo da pirâmide, se nos três retângulos da base da pirâmide só estiverem números naturais maiores do que 1? () 56 (B) 84 (C) 90 () 105 (E) 220 lunos do 12. o ano de escolaridade 2
3 1. Qual é o valor de 4, se 1 = 2 e n+1 = n n para n 1? () 2 2 (B) 2 24 (C) () (E) No retângulo [BC], o comprimento do lado [BC] é metade do comprimento da diagonal [C]. Seja M um ponto em [C] tal que M = MC. Qual é a amplitude de CM? () 12,5 (B) 15 (C) 27,5 () 42,5 (E) É outro valor 15. Sandra cortou um papel retangular, com medida de área igual a 2016, em 56 papéis quadrados geometricamente iguais. Os comprimentos dos lados do papel retangular e dos papéis quadrados são números inteiros. Para quantas formas retangulares diferentes do papel retangular é possível fazer isto? () 2 (B) 4 (C) 6 () 8 (E) Na ilha dos cavaleiros e dos vilões, cada cidadão ou é cavaleiro e fala sempre a verdade, ou é vilão e mente sempre. Numa viagem pela ilha um visitante encontrou 7 pessoas sentadas em torno de uma fogueira e cada uma delas disse: Eu estou sentado entre dois vilões!. Quantos vilões estavam sentados em torno da fogueira? () (B) 4 (C) 5 () 6 (E) É impossível saber 17. s equações 2 + a + b = 0 e 2 + b + a = 0 têm soluções reais. Sabe-se que a soma dos quadrados das soluções da primeira equação é igual à soma dos quadrados das soluções da segunda e que a b. Qual é o valor de a + b? () 0 (B) 2 (C) 4 () 4 (E) É impossível determinar 18. O perímetro do quadrado na figura ao lado é igual a 4. Qual é o valor do perímetro do triângulo equilátero na figura? () 4 (B) + (C) () + 2 (E) cada um dos dez pequenos círculos na figura foi atribuído um dos números: 0, 1 ou 2. Sabemos que a soma dos números nos vértices de cada triângulo branco é divisível por, enquanto que a soma dos números nos vértices de cada triângulo preto não é divisível por. Três desses números já foram marcados na figura. Que números podem ser atribuídos ao círculo central a cinzento? () Só pode ser o 0 (B) Só pode ser o 1 (C) Só pode ser o 2 () Tanto pode ser o 0 como o 1 (E) Tanto pode ser o 0, como o 1, como o 2 lunos do 12. o ano de escolaridade
4 20. Berta marcou cinco pontos, B, C, e E numa circunferência e desenhou a tangente à circunferência no ponto, de tal modo que os cinco ângulos assinalados com são geometricamente iguais (a figura não foi desenhada à escala). Qual é a amplitude de B? () 66 (B) 70,5 (C) 72 () 75 (E) 77,5 21. Quantas soluções reais distintas tem a equação ( ) = 1? () 1 (B) 2 (C) () 4 (E) Um número infinito 22. Um quadrilátero contém uma circunferência inscrita (isto é, uma circunferência tangente aos quatro lados do quadrilátero). razão entre o perímetro do quadrilátero e o da circunferência é 4 :. Qual é a razão entre as medidas das áreas do quadrilátero e do círculo definido pela circunferência? () 4 : π (B) 2 : π (C) 16 : 9 () π : (E) 4 : 2. Num referencial cartesiano ortonormado O, quantas funções quadráticas em, distintas, têm um gráfico que passa em pelo menos dos 9 pontos marcados? () 6 (B) 15 (C) 19 () 22 (E) 27 O 24. Num triângulo retângulo [BC], com ângulo reto em, as bissetrizes dos ângulos agudos intersetam- -se num ponto P. Se a distância de P à hipotenusa é 8, qual é a distância de P a? () 8 (B) (C) 10 () 12 (E) Três números com três algarismos cada foram construídos usando os algarismos de 1 a 9, cada um deles eatamente uma vez. Qual dos seguintes valores não pode ser a soma desses três números? () 1500 (B) 150 (C) 1512 () 1521 (E) Um cubo é decomposto em seis pirâmides por união de um dado ponto do interior do cubo com cada um dos seus vértices. Sabendo que a medida do volume de 5 dessas pirâmides é 2, 5, 10, 11 e 14, qual é a medida do volume da seta pirâmide? () 1 (B) 4 (C) 6 () 9 (E) 12 lunos do 12. o ano de escolaridade 4
5 B Figura Cristina está a fazer algumas dobragens utilizando uma tira retangular de papel [BC], com 5 cm de largura e 50 cm de comprimento. Um dos lados damtira tem cor branca C e o outro tem o padrão indicado na segunda figura. Primeiro, ela dobrou a tira de modo a fazer coincidir o vértice B com o Figura 1 ponto médio M do lado [C] e depois fez coincidir o vértice com o ponto médio N do lado [B]. B N M C Figura 1 Figura 2 Figura Qual é a área, em cm 2, da parte branca da tira de papel visível na terceira figura? () 50 N (B) 60 (C) 62,5 () 100 (E) na escolheu um inteiro positivo n e calculou a soma de todos os inteiros positivos de 1 a n. Ela observou que um número Figura 2 primo p divide a soma obtida, mas não divide nenhuma das parcelas. os números seguintes, qual pode ser o valor de n + p? () 217 (B) 221 (C) 229 Figura C () 245 (E) O fonso está a jogar um jogo que consiste em colorir as células de um tabuleiro 5 5 usando as cores branca e cinzenta. Inicialmente todas as células estão brancas. Em cada movimento é permitido mudar a cor de três células consecutivas numab linha ou numa coluna para a outra cor (isto é, se são brancas ficam cinzentas, se são cinzentas passam a brancas). Figura Qual C é o menor número de movimentos necessários para obter a coloração em adrez que se pode ver na figura da direita? 1 () Menos de 10 (B) 10 (C) 12 () Mais de 12 (E) É impossível obter esta coloração 0. O número natural N tem eatamente seis divisores positivos distintos incluindo o 1 e o N. O produto de cinco desses divisores é 648. Qual é o seto divisor de N? () 4 (B) 8 (C) 9 () 12 1 (E) 24 1 lunos do 12. o ano de escolaridade 5
Canguru Matemático sem Fronteiras 2016
Destinatários: alunos dos 10. o e 11. o anos de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões estão agrupadas em
Canguru de Matemática Brasil 2016 Nível S - Soluções
Problemas de pontos Canguru de Matemática Brasil 06 Nível S - Soluções. A soma das idades de Tom e João é, a soma das idades de João e Ale é 4 e a soma das idades de Tom e Ale é 5. Qual é a idade do mais
Canguru Matemático sem Fronteiras 2017
Destinatários: alunos do 12. o ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões estão agrupadas em três níveis:
Canguru Matemático sem Fronteiras 2014
http://www.mat.uc.pt/canguru/ Destinatários: alunos dos 10. o e 11. o anos de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta.
Canguru Matemático sem fronteiras 2008
Destinatários: alunos do 12º ano de Escolaridade Duração: 1h30min Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. Inicialmente tens 30 pontos. Por cada questão errada, és penalizado
Canguru Matemático sem Fronteiras 2010
Canguru Matemático sem Fronteiras 2010 Duração: 1h30min Destinatários: alunos do 12 Ano de Escolaridade Nome: Turma: Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. As questões
Canguru Matemático sem Fronteiras 2018
Destinatários: alunos dos 10. o e 11. o anos de escolaridade Duração: 1h 30min Nome: Turma: Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões estão agrupadas em
Canguru sem fronteiras 2006
Canguru sem fronteiras 006 Duração: 1h15 Destinatários: alunos dos 10º e 11º anos de Escolaridade Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. Inicialmente tens 30 pontos.
Canguru Matemático sem Fronteiras 2018
Destinatários: alunos do 12. o ano de escolaridade Duração: 1h 30min Nome: Turma: Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões estão agrupadas em três níveis:
Canguru Matemático sem Fronteiras 2009
Duração: 1h30min Destinatários: alunos do 9 ano de Escolaridade Nome: Turma: Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. As questões estão agrupadas em três níveis: Problemas
Canguru Matemático sem Fronteiras 2013
Canguru atemático sem Fronteiras 2013 http://www.mat.uc.pt/canguru/ Destinatários: alunos dos 10. o e 11. o anos de escolaridade Duração: 1h 30min Nome: Turma: Canguru atemático. Todos os direitos reservados.
Canguru Matemático sem Fronteiras 2017
Destinatários: alunos do 9. o ano de escolaridade Duração: 1h 30min Nome: Turma: Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões estão agrupadas em três níveis:
Canguru Matemático sem Fronteiras 2018
Destinatários: alunos do 9. o ano de escolaridade Duração: 1h 30min Nome: Turma: Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões estão agrupadas em três níveis:
Canguru Matemático sem Fronteiras 2009
Destinatários: alunos dos 7 e 8 anos de Escolaridade Nome: Turma: Duração: 1h30min Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. As questões estão agrupadas em três níveis:
Canguru Matemático sem Fronteiras 2011
http://www.mat.uc.pt/canguru/ Destinatários: alunos dos 0. e. anos de escolaridade Nome: Turma: Duração: h30min Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. As questões
Canguru Matemático sem fronteiras 2008
Destinatários: alunos do 9º ano de Escolaridade Duração:1h30min Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. Inicialmente tens 30 pontos. Por cada questão errada, és penalizado
Canguru Matemático sem Fronteiras 2012
http://wwwmatucpt/canguru/ Destinatários: alunos dos 10 o e 11 o anos de escolaridade Nome: Turma: Duração: 1h 0min Não podes usar calculadora Em cada questão deves assinalar a resposta correta As questões
Canguru sem fronteiras 2005
Duração: 1h30mn Destinatários: alunos do 12 ano de Escolaridade Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. Inicialmente tens 30 pontos. Por cada questão errada, és penalizado
Canguru Matemático sem Fronteiras 2017
Destinatários: alunos dos 10. o e 11. o anos de escolaridade Duração: 1h 30min Nome: Turma: Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões estão agrupadas em
Canguru Matemático sem Fronteiras 2017
Canguru Matemático sem Fronteiras 07 Destinatários: alunos dos 7. o e 8. o anos de escolaridade Duração: h 30min Nome: Turma: Não podes usar calculadora. Em cada questão deves assinalar a resposta correta.
Canguru Matemático sem Fronteiras 2012
Canguru Matemático sem Fronteiras 0 http://www.mat.uc.pt/canguru/ Destinatários: alunos do. o ano de escolaridade Nome: Turma: Duração: h 0min Não podes usar calculadora. Em cada questão deves assinalar
Canguru Matemático sem Fronteiras 2016
Destinatários: alunos do 9. o ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões estão agrupadas em três níveis:
Canguru Matemático sem Fronteiras 2018
Destinatários: alunos dos 7. o e 8. o anos de escolaridade Duração: 1h 30min Nome: Turma: Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões estão agrupadas em
Canguru Matemático sem Fronteiras 2013
http://www.mat.uc.pt/canguru/ Destinatários: alunos do 9. o ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões
Canguru Matemático sem Fronteiras 2011
http://www.mat.uc.pt/canguru/ Destinatários: alunos dos 9. ano de escolaridade Nome: Turma: Duração: 1h30min Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. As questões estão
Canguru Matemático sem Fronteiras 2009
Duração: 1h30min Destinatários: alunos dos 10 e 11 anos de Escolaridade Nome: Turma: Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. As questões estão agrupadas em três níveis:
Canguru sem fronteiras 2007
Canguru sem fronteiras 2007 Duração: 1h15mn Destinatários: alunos do 9 ano de Escolaridade Nome: Turma: Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. Inicialmente tens 30
Canguru Matema tico sem Fronteiras 2017
Canguru Matema tico sem Fronteiras 207 Categoria: Mini-Escolar - nı vel III Destinata rios: alunos do 4.o ano de escolaridade Durac a o: h 30min Turma: Nome: Na o podes usar calculadora. Em cada questa
Nome do aluno: N.º: Na resposta aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.
Teste de Matemática A 2018 / 2019 Teste N.º 3 Matemática A Duração do Teste (Caderno 1+ Caderno 2): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:
Proposta de teste de avaliação 2 Matemática 9
Proposta de teste de avaliação Matemática 9 Nome da Escola Ano letivo 0-0 Matemática 9.º ano Nome do Aluno Turma N.º Data Professor - - 0 Na resolução dos itens da parte A, podes utilizar a calculadora.
Canguru sem fronteiras 2005
Duração: 1h30mn Destinatários: alunos dos 10 e 11 anos de Escolaridade Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. Inicialmente tens 30 pontos. Por cada questão errada,
Canguru Matema tico sem Fronteiras 2012
Canguru Matema tico sem Fronteiras 2012 http://www.mat.uc.pt/canguru/ Destinata rios: alunos do 9.o ano de escolaridade Durac a o: 1h 30min Nome: Turma: Na o podes usar calculadora. Em cada questa o deves
30's Volume 15 Matemática
30's Volume 1 Matemática www.cursomentor.com 9 de junho de 014 Q1. Considere os segmentos AB = x, BC =, CD = x + 1 e DE = x 18 e que AB = CD. Encontre x. BC DE Q. Em um triângulo ABC, AM é bissetriz interna
Canguru Matemático sem Fronteiras 2015
http://www.mat.uc.pt/canguru/ Destinatários: alunos dos 10. o e 11. o anos de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta.
Canguru sem fronteiras 2005
Duração: 1h30mn Destinatários: alunos do 9 ano de Escolaridade Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. Inicialmente tens 30 pontos. Por cada questão errada, és penalizado
Canguru Matemático sem Fronteiras 2012
anguru Matemático sem Fronteiras 0 http://www.mat.uc.pt/canguru/ ategoria: Escolar estinatários: alunos dos 5. o e 6. o anos de escolaridade Nome: Turma: uração: h 0min Não podes usar calculadora. Em cada
Canguru Matema tico sem Fronteiras 2013
Canguru Matema tico sem Fronteiras 2013 http://www.mat.uc.pt/canguru/ Destinata rios: alunos dos 7.o e 8.o anos de escolaridade Durac a o: 1h 30min Nome: Turma: Na o podes usar calculadora. Em cada questa
Canguru Matemático sem Fronteiras 2016
Destinatários: alunos dos 7. o e 8. o anos de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões estão agrupadas em
INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material.
OPRM 07 Nível 3 (Ensino Médio) Primeira Fase 09/06/7 ou 0/06/7 Duração: 3 horas Nome: Escola: Aplicador(a): INSTRUÇÕES Escreva seu nome, o nome da sua escola e nome do APLICADOR nos campos acima. Esta
Canguru sem fronteiras 2006
Duração: 1h15 Destinatários: alunos dos 7º e 8º anos de Escolaridade Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. Inicialmente tens 30 pontos. Por cada questão errada, és
Prova Final ª chamada
Prova Final 01.ª chamada 1. Um saco contém várias bolas com o número 1, várias bolas com o número e várias bolas com o número. s bolas são indistinguíveis ao tato. Maria realizou dez vezes o seguinte procedimento:
Canguru Matemático sem Fronteiras 2018
Destinatários: alunos dos 5. o e 6. o anos de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões estão agrupadas em
Canguru sem fronteiras 2007
Duração: 1h15mn Destinatários: alunos dos 7 e 8 anos de Escolaridade Nome: Turma: Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. Inicialmente tens 30 pontos. Por cada questão
Proposta de teste de avaliação Matemática 9
Proposta de teste de avaliação Matemática 9 Oo Nome da Escola no letivo 0-0 Matemática 9.º ano Nome do luno Turma N.º Data Professor - - 0 PRTE Nesta parte é permitido o uso da calculadora.. Relativamente
Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:
Teste de Matemática A 2017 / 2018 Teste N.º 2 Matemática A Duração do Teste (Caderno 1+ Caderno 2): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:
Canguru Matemático sem Fronteiras 2017
Destinatários: alunos dos 5. o e 6. o anos de escolaridade Nome: Turma: Duração: h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões estão agrupadas em três
Canguru Matemático sem Fronteiras 2013
http://www.mat.uc.pt/canguru/ Destinatários: alunos dos 5. o e 6. o anos de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As
Canguru sem fronteiras 2006
Duração:1h15 Destinatários: alunos do 1º ano de Escolaridade Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. Inicialmente tens 0 pontos. Por cada questão errada, és penalizado
Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.
Teste Intermédio de Matemática Versão 2 Teste Intermédio Matemática Versão 2 Duração do Teste: 30 min (Parte 1) + 60 min (Parte 2) 12.04.2013 9.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de janeiro
Canguru Matemático sem Fronteiras 2015
http://www.mat.uc.pt/canguru/ Destinatários: alunos do 3. o ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões
Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano
Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano Teste de Avaliação 9 o D 30/05/017 Parte I - 30 minutos - É permitido o uso de calculadora Na resposta aos itens de escolha múltipla, seleciona
Entrelinha 1,5. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.
Teste Intermédio de Matemática Entrelinha 1,5 Teste Intermédio Matemática Entrelinha 1,5 (Versão única igual à Versão 1) Duração do Teste: 30 min (Parte 1) + 60 min (Parte 2) 12.04.2013 9.º Ano de Escolaridade
Prova da UFRGS Observe o gráfico abaixo
Prova da UFRGS - 216 1. Observe o gráfico abaio TRANSPLANTES REALIZADOS NO RS EM 215, ATÉ JULHO FILA DE ESPERA POR TRANSPLANTES EM JULHO NO RS 35 RIM 88 78 FÍGADO 174 27 PULMÃO 1 CORAÇÃO 13 5 487 RIM/PÂNCREAS
Canguru Matemático sem Fronteiras 2011
Canguru Matemático sem Fronteiras 20 http://www.mat.uc.pt/canguru/ Destinatários: alunos do 2. ano de escolaridade Nome: Turma: Duração: h30min Não podes usar calculadora. Há apenas uma resposta correcta
a média de gols da primeira rodada, M G a média de gols das duas primeiras rodadas e x o número de gols da segunda rodada, tem-se 15 + x 15 M G
MATEMÁTICA O número de gols marcados nos 6 jogos da primeira rodada de um campeonato de futebol foi 5,,,, 0 e. Na segunda rodada, serão realizados mais 5 jogos. Qual deve ser o número total de gols marcados
VESTIBULAR UFPE UFRPE / ª ETAPA
VSTIULR UFP UFRP / 1999 2ª TP NOM O LUNO: SOL: SÉRI: TURM: MTMÁTI 2 01. O triângulo da ilustração abaixo é isósceles ( = ) e = = (isto é,, trissectam ): nalise as afirmações: 0-0) Os ângulos, e são congruentes.
Teste Intermédio 2012
Teste Intermédio 01 1. Uma escola básica tem duas turmas de 9. ano: a turma e a turma. Os alunos da turma distribuem-se, por idades, de acordo com o seguinte diagrama circular. Idades dos alunos da turma
MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução
MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo a base do prisma é um quadrado, os lados adjacentes são perpendiculares,
Canguru Matemático sem Fronteiras 2009
Duração: 1h30min Destinatários: alunos dos 5 e 6 anos de Escolaridade Nome: Turma: Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. s questões estão agrupadas em três níveis:
Novo Espaço Matemática A 11.º ano Proposta de Teste Intermédio [janeiro 2015]
Proposta de Teste Intermédio [janeiro 015] Nome: Ano / Turma: N.º: Data: - - GRUPO I Na resposta a cada um dos itens deste grupo, seleciona a única opção correta. Escreve, na folha de respostas: o número
Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes
Circunferência MA092 Geometria plana e analítica Francisco A. M. Gomes UNICAMP - IMECC Setembro de 2016 A circunferência é o conjunto dos pontos de um plano que estão a uma mesma distância (denominada
MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano)
MTMÁTI - 3o ciclo ircunferência - ângulos e arcos (9 o ano) xercícios de provas nacionais e testes intermédios 1. Na figura ao lado, estão representados a circunferência de centro no ponto e diâmetro []
Canguru Matemático sem Fronteiras 2014
http://www.mat.uc.pt/canguru/ Destinatários: alunos do 3. o ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões
3ª Igor/ Eduardo. Competência Objeto de aprendizagem Habilidade
Matemática 3ª Igor/ Eduardo 9º Ano E.F. Competência Objeto de aprendizagem Habilidade C3 - Espaço e forma Números racionais. Números irracionais. Números reais. Relações métricas nos triângulos retângulos.
Canguru Matemático sem Fronteiras 2013
http://www.mat.uc.pt/canguru/ Destinatários: alunos do 4. o ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões
Ano / Turma: N.º: Data: - - Caderno 1. (É permitido o uso de calculadora.)
Proposta de teste de avaliação [outubro 018] Nome: Ano / Turma: N.º: Data: - - Caderno 1 (É permitido o uso de calculadora.) O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas
Canguru Matemático sem Fronteiras 2014
Canguru Matemático sem Fronteiras 014 http://www.mat.uc.pt/canguru/ Destinatários: alunos dos 5. o e 6. o anos de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão
Canguru Matemático sem Fronteiras 2012
Canguru Matemático sem Fronteiras 0 http://www.mat.uc.pt/canguru/ Destinatários: alunos dos 7. o e 8. o anos de escolaridade Duração: h 0min Nome: Turma: Não podes usar calculadora. Em cada questão deves
02 Do ponto P exterior a uma circunferência tiramos uma secante que corta a
01 Em um triângulo AB AC 5 cm e BC cm. Tomando-se sobre AB e AC os pontos D e E, respectivamente, de maneira que DE seja paralela a BC e que o quadrilátero BCED seja circunscritível a um círculo, a distância
MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução
MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo a reta T P é tangente à circunferência no ponto T é perpendicular ao
SAGRADO REDE DE EDUCAÇÃO PROFESSORA :MÁRCIA CONTE 3º ANO ENSINO MÉDIO 2012
SAGRADO REDE DE EDUCAÇÃO PROFESSORA :MÁRCIA CONTE 3º ANO ENSINO MÉDIO 2012 -POLÍGONOS REGULARES -APÓTEMAS DE BASES REGULARES -PONTOS NOTÁVEIS NO TRIÂNGULO -COMPRIMENTO DA CIRCUNFERÊNCIA -ÁREA DO CÍRCULO
EXERCICIOS - ÁREAS E ÂNGULOS:
EXERCICIOS - ÁREAS E ÂNGULOS: 32 - Sabendo-se que um ângulo externo de um triângulo retângulo mede 287, quais os valores dos ângulos internos deste? 37 - Assinale qual dos polígonos abaixo possui todos
COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No.
COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No. Trabalho de Recuperação Data: / 12/2016 Valor: Orientações: -Responder manuscrito; -Cópias de colegas, entrega
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste 0.º Ano de escolaridade Versão 4 Nome: N.º Turma: Professor: José Tinoco 0/0/07 É permitido o uso de calculadora científica Apresente o seu raciocínio de forma
GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.
PARTE 01 GEOMETRIA PLANA Introdução A Geometria está apoiada sobre alguns postulados, axiomas, definições e teoremas, sendo que essas definições e postulados são usados para demonstrar a validade de cada
