Sudokus quase mágicos
|
|
|
- Gabriel Henrique Azeredo Leão
- 8 Há anos
- Visualizações:
Transcrição
1 Seminário Brasileiro de Análise - SBA Instituto de Matemática e Estatatística - US Edição N 0 68 Novembro 2008 Sudokus quase mágicos a. barone & e. oda Resumo Nesta nota provamos uma surpreendente unicidade de um certo tipo de Sudoku. Quadrados Mágicos Um quadrado mágico é cada matriz quadrada, M n n, cujas entradas sejam injetoras no conjunto V n = {, 2,..., n 2 } e arranjadas de modo que a soma das entradas das linhas, colunas e diagonais, principal e secundária, sejam iguais. Neste texto vamos nos interessar apenas pelo caso n = 3. Às linhas e colunas chamaremos de triminós e às diagonais principal e secundária chamaremos apenas de diagonais. É possível obter um novo quadrado mágico a partir de um quadrado mágico conhecido. or exemplo, se M é um quadrado mágico então a transposta de M também é um quadrado mágico. Então, é natural que procuremos o grupo das operações que levam um quadrado mágico em outro e considerar o quociente do conjunto de todos os quadrados mágicos por este grupo. Definição Dois quadrados mágicos são equivalentes se um for imagem do outro por uma composição qualquer da transposição e da permutação de triminós paralelos não adjacentes. A soma dos elementos de V 3 é 4, logo a soma dos triminós e das diagonais deve ser. Além disso, do fato da média aritimética dos elementos do conjunto V 3 ser, a entrada central, intersecção das diagonais, deve ser. Com a soma deve ser ímpar, se um triminó ou uma diagonal contiver um algarismo ímpar, os outros dois algarismos deverão ter a mesma paridade. De maneira análoga, se um dos algarismos for par, os demais não terão a mesma paridade. Suponha que uma das células dos cantos é ímpar. Então, como a célula central é, o canto oposto também deve ser ímpar. Os demais cantos deverão Mathematics Subject Classifications: A, 00A08 Key words: Sudoku, quadrado mágico, Sudoku quase mágico. IME-US, S, Brasil, [email protected] IME-US, S, Brasil, [email protected]
2 SBA ter a mesma paridade, mas é fácil perceber que eles não podem ser pares nem ímpares, o que nos leva a concluir que os cantos devem ser pares. Com isso já conhecemos a paridade de cada célula do quadrado mágico. Veja Figura. I I I I I I I I I I I I I I I I I I Figura : aridade das entradas do quadrado mágico odemos escolher qualquer ímpar para colocar na entrada central do triminó superior, por exemplo. Neste caso, a entrada central do triminó inferior deve ser 9. Novamente 9 podemos escolher o algarismo ímpar a colocar na entrada central do triminó da esquerda. Escolhendo 3 a Figura 2 entrada central do triminó da direita deve ser 7. Agora o quadrado mágico já está determinado. De fato, o triminó que contém o 3 e o triminó que contém o não podem conter o 2. ortanto o 2 deve estar na intersecção do triminó inferior com o triminó direito e as posições do 4, 6 e 8 ficam trivialmente determinadas. Veja Figura 3. Note que este é um representante da única classe de equivalência dos quadrados mágicos de ordem 3. E, considerando a ordem lexicográfica das entradas, o menor elemento desta classe é aquele da Figura 2. 2 Sudokus Um tabuleiro de Sudoku é cada matriz 9 9. Às linhas e colunas chamamos de filas horizontais e filas verticais, respectivamente. À reunião das três primeiras linhas chamamos de banda superior. À reunião das três linhas centrais chamamos de banda média. À reunião das três últimas linhas chamamos de banda inferior. À reunião das três primeiras colunas chamamos de banda
3 68 0 SBA Ângelo Barone Netto & Eduardo Oda Figura 3: Encontrando um quadrado mágico esquerda. À reunião das três colunas centrais chamamos de banda central. À reunião das três últimas colunas chamamos de banda direita. Veja Figura 4. À intersecção de duas bandas chamamos de bloco. À intersecção de uma fila com um bloco chamamos de triminó. Uma solução de Sudoku é uma aplicação do tabuleiro de Sudoku em V 3, injetora, nas filas e nos blocos. Uma primeira tentativa de relacionar Sudokus com quadrados mágicos é procurar por uma solução de Sudoku cujos blocos são quadrados mágicos. esquerda central Figura 4 direita superior média inferior Mas vimos na seção anterior que todos os quadrados mágicos de ordem 3 tem o algarismo na entrada central, logo não é possível manter a injetividade nas filas. Isso nos leva à definição dos quadrados semi mágicos. 3 Quadrados semi mágicos 9 Um quadrado semi mágico é um quadrado mágico, mas cujas diagonais podem ter qualquer soma. 6 8 As operações que preservam quadrados semi mágicos são as mesmas que preservam os quadrados mágicos, com a diferença Figura que podemos permutar também triminós parelelos adjacentes. Como consequência todas as classes de equivalência contém um representante cuja primeira entrada é. E como os dois únicos
4 SBA triminós que contém o são o {,,9} e o {,6,8}, então em toda classe de equivalência o menor representante entradas como na Figura. Como 7 não pode estar no mesmo triminó que contém 8 ou 9, então necessariamente está na entrada central, e isso determina as demais entradas. Fica claro então que existe uma única classe de 9 equivalência de quadrados semi mágicos e o menor representante é o da Figura 6. É fácil ver que, dado um algarismo, só existem dois triminós que contém este algarismo e que podem estar no quadrado semi mágico. Figura 6 Assim, a classe de equivalência tem = 72 elementos, todos diferentes. 4 Sudokus quase mágicos Considere que cada entrada o tabuleiro de Sudoku é um cubo cujas faces tem todas o mesmo valor. Separando e empilhando as bandas verticais obtemos novos conjuntos de três entradas que chamaremos de pilares horizontais. Veja Figura 7. De maneira semelhante construímos os pilares verticais. Veja Figura 8. Figura 7: ilares horizontais Note que um pilar tem uma estrutura semelhante à de um triminó e por isso é natural associarmos aos pilares um objeto semelhante a um bloco que chamaremos de estrato. Na Figura 9 estão destacados dois estrados, um representado por e o outro por. Dizemos que uma solução de Sudoku é um Sudoku quase mágico quando todos os triminós e todos os pilares tiverem a mesma soma.
5 68 0 SBA Ângelo Barone Netto & Eduardo Oda Figura 8: ilares verticais Definição 2 Dois Sudokus quase mágicos são elementarmente equivalentes quando um se obtém do outro por:. transposição 2. permutação de duas bandas paralelas 3. permutação de duas triplas de linhas correspondentes em bandas paralelas Note que o grupo de simetria gerado por essas operações tem 288 elementos. Finalmente podemos enunciar e demonstrar o resultado principal deste trabalho. Teorema Existem 288 Sudokus quase mágicos, todos equivalentes. Figura 9: Estratos Demonstração: A estratégia da demonstração é, dado um Sudoku quase mágico, encontrar o menor representante de sua classe de equivalência. O resultado seguirá do fato de sempre obtermos o mesmo Sudoku quase mágico como o menor representante e de todos os elementos da classe de equivalência serem diferentes. Observe que dado qualquer Sudoku quase mágico 6 existe um outro, na mesma classe de equivalência, cuja 6 primeira entrada é. Como deve estar nos triminós e pilares {,,9} e {,6,8} e como a solução de Sudoku deve ser injetora nas linhas e colunas, já sabemos que o menor Figura 0
6 SBA elemento tem a forma da Figura 0. Afirmamos que neste ponto o Sudoku quase mágico já está completamente determinado. Antes de provar a afirmação, note no lugar de procurar o menor Sudoku quase mágico poderíamos ter procurado um representante que tivesse qualquer outro algarismo na primeira entrada. Todo o raciocínio seria análogo, pois, como visto na discussão sobre os quadrados semi mágicos, dado um algarismo determinamos dois triminós. odemos obter assim = 288 Sudokus quase mágicos, os quais resultam dois a dois distintos. rovamos agora a afirmação. Seguindo exatamente os mesmo passos do para encontrar o menor quadrado semi mágico, completamos o primeiro bloco como na Figura (a). Usando o mesmo raciocínio mas com a restrição da injetividade das linhas e colunas, completamos um estrato como na Figura (b) (a) (b) Figura Vejamos como fica o bloco na intersecção da banda esquerda com a banda média. O 6 só pode figurar nos 9 pilares {,6,8} e {2,6,7}, mas da injetividade das filas, sabemos que na primeira coluna o pilar que contém o é {2,6,7}. Como o 7 e o 9 não podem estar no mesmo triminó, sabemos que triminó da esquerda é {3,,7}. Veja Figura O triminó horizontal que contém o 3 deste bloco é Figura 2 {3,4,8}, pois o outro triminó que contém o 3 também contém e há injetividade no bloco. De maneira análoga, o triminó horizontal do 7 é {2,6,7}. Completando trivialmente o restante do bloco ele fica como na Figura 2. Aplicando este mesmo procedimento a cada um dos blocos, finalmente encontramos o menor Sudoku quase mágico na Figura 3. Escólio Sudokus quase mágicos são injetores nos estratos.
7 68 0 SBA Ângelo Barone Netto & Eduardo Oda Figura 3: Menor Sudoku quase mágico Referências [] BAILEY, R. A.; CAMERON,. J.; CONNELLY, R. Sudoku, gerechte designs, resolutions, affine space, spreads, reguli, and Hamming codes. American Mathematical Monthly, v.(), p ,2008. [2] BARONE, A. Sobre Sudoku. Seminário Brasileiro de Análise, v.67, 2008.
Problemas dos Círculos Matemáticos. Problemas extras para o Capítulo 4
Problemas dos Círculos Matemáticos Problemas extras para o Capítulo 4 Problemas dos Círculos Matemáticos - Capítulo 4 1 Exercícios Introdutórios Exercício 1. Quantos triângulos existem na figura abaixo?
QUADRADO MÁGICO - ORDEM 3
FORTRAN - LÚDICO CONCEITO Partindo da definição original, os QUADRADOS MÁGICOS devem satisfazer três condições: a) tabela ou matriz quadrada (número de linhas igual ao número de colunas); b) domínio: com
Determinantes. Prof. Márcio Nascimento
Determinantes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2015.2 4 de fevereiro
UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CURSO: CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR PROF.: MARCELO SILVA.
UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CURSO: CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR PROF.: MARCELO SILVA Determinantes Introdução Como já vimos, matriz quadrada é a que tem o mesmo número
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/81 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional
38 a OLIMPÍADA BRASILEIRA DE MATEMÁTICA 2 a Fase Nível 1 (6 o ou 7 o ano)
38 a OLIMPÍADA BRASILEIRA DE MATEMÁTICA a Fase Nível 1 (6 o ou 7 o ano) GABARITO PARTE A - Cada problema vale 5 pontos CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta
Semana Oĺımpica 2017
Semana Oĺımpica 017 Indução Nível Samuel Feitosa Exercício 1 Prove, por indução, que para todo n N, temos Exercício 1 Prove que 1 + + + n = nn + 1) Exercício Prove que, para todo n N, 1 + 3 + 5 + + n 1)
MATEMÁTICA. Aula 14 Matrizes. Prof. Anderson
MATEMÁTICA Aula Matrizes Prof. Anderson Assuntos Conceito Matrizes com Nomes Especiais Igualdade de Matrizes Operações com Matrizes Matriz Inversa Conceito As matrizes são quantidades de dados passíveis
Módulo Tópicos Adicionais. Recorrências
Módulo Tópicos Adicionais Recorrências Módulo Tópico Adicionais Recorrências 1 Exercícios Introdutórios Exercício 1 Considere a sequência definida por x 1 d e x n r + x n 1, para n > 1 Trata-se de uma
PLANO DE AULA IDENTIFICAÇÃO
PLANO DE AULA IDENTIFICAÇÃO Escola: IFC Campus Avançado Sombrio Município: Sombrio Disciplina: Matemática Série: 2 ano Nível: Ensino médio Professor: Giovani Marcelo Schmidt Tempo estimado: Cinco aulas
PLANO DE AULA IDENTIFICAÇÃO
PLANO DE AULA IDENTIFICAÇÃO Escola: IFC Campus Avançado Sombrio Município: Sombrio Disciplina: Matemática Série: 2 ano Nível: Ensino médio Professor: Giovani Marcelo Schmidt Tempo estimado: Cinco aulas
OBMEP - Novas Soluções para os Bancos de Questões
OBMEP - Novas Soluções para os Bancos de Questões 4 CONTEÚDO Banco 011 7 Banco 01 9 Banco 014 11 Banco 015 13 Banco 017 15 BANCO 011 1 Produto 000 (Problema 68 do Banco) Quantos números naturais de cinco
Tabuleiros. Problema 1. Determine se é possível cobrir ou não o tabuleiro abaixo (sem sobreposições) usando apenas dominós?
Polos Olímpicos de Treinamento Curso de Combinatória - Nível Prof. Bruno Holanda Aula 9 Tabuleiros Quem nunca brincou de quebra-cabeça? Temos várias pecinhas e temos que encontrar uma maneira de unir todas
Formação Continuada Nova Eja. Plano de Ação II INTRODUÇÃO
Nome: Armando dos Anjos Fernandes Formação Continuada Nova Eja Plano de Ação II Regional: Metro VI Tutor: Deivis de Oliveira Alves Este plano de ação contemplará as unidades 29 e 30. Unidade 29 I - Matrizes
Bases Matemáticas. Como o Conhecimento Matemático é Construído. Aula 2 Métodos de Demonstração. Rodrigo Hausen. Definições Axiomas.
1 Bases Matemáticas Aula 2 Métodos de Demonstração Rodrigo Hausen v. 2012-9-21 1/15 Como o Conhecimento Matemático é Construído 2 Definições Axiomas Demonstrações Teoremas Demonstração: prova de que um
XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO
XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Ensino Médio) GABARITO GABARITO NÍVEL ) D 6) C ) D 6) C ) B ) A 7) B ) B 7) B ) C ) D 8) C ) E 8) B ) B 4) D 9) E 4) D 9) C 4) D ) D 0) A ou
Polos Olímpicos de Treinamento. Aula 8. Curso de Combinatória - Nível 1. Prof. Bruno Holanda
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 8 Configurações Mágicas De maneira geral, podemos dizer que as configurações mágicas são tipos especiais de diagramas
Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 5 Contagem II Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em
Polos Olímpicos de Treinamento. Aula 8. Curso de Combinatória - Nível 1. Prof. Bruno Holanda
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 8 Configurações Mágicas De maneira geral, podemos dizer que as configurações mágicas são tipos especiais de diagramas
XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º. ou 9º. anos) (antigas 7ª. ou 8ª. séries) GABARITO
XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (8º. ou 9º. anos) (antigas 7ª. ou 8ª. séries) GABARITO GABARITO NÍVEL 1) D 6) B 11) A 16) A 1) B ) C 7) E 1) D 17) A ) B 3) C 8) C 13) C 18) B
OPRM a Fase Nível 1 01/09/18 Duração: 4 horas
1. Augusto propõe ao seu amigo o seguinte desafio: na figura abaixo, os números naturais de 1 a 12 são escritos de forma que a soma de quatro números em uma linha reta é a mesma para todas as linhas. Alguns
OBMEP a Fase Soluções Nível 2. N2Q1 Solução
1 N2Q1 Solução a) Com o número 92653 Mônica obteve a expressão 9 + 2 6 5 3. Efetuando primeiro a multiplicação e, em seguida, a divisão (ou então a divisão seguida da multiplicação), temos 9 + 2 6 5 3
Solução da prova da 2.ª Fase
Solução da prova da.ª Fase Nível 8.º e 9.º anos do Ensino Fundamental. a Fase de setembro de 08 QUESTÃO a) As páginas pares do álbum têm os números,,,..., 0 num total de 0 = 0 páginas e as páginas ímpares
38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO
38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 2 1) C 6) B 11) B 16) D 21) A 2) C 7) C 12) C 17) D 22) A 3) D 8) E 13) D 18) C
OPRM a Fase Nível 3 01/09/18 Duração: 4 horas
1. Considere os números de Fibonacci: 1, 1, 2, 3, 5, 8, 13, 21,..., onde cada termo na sequência é a soma dos dois termos anteriores. O ano mais próximo de 2018 que é número de Fibonacci foi o ano de 1597.
Representação decimal dos números racionais
Representação decimal dos números racionais Alexandre Kirilov Elen Messias Linck 21 de março de 2018 1 Introdução Um número é racional se puder ser escrito na forma a/b, com a e b inteiros e b 0; esta
MATEMÁTICA MÓDULO 11 DETERMINANTES. Professor Matheus Secco
MATEMÁTICA Professor Matheus Secco MÓDULO 11 DETERMINANTES INTRODUÇÃO Neste módulo, não daremos a definição padrão de determinantes via somatório envolvendo sinais de permutações, pois não há necessidade
_32109, _42109, _52109 e (o traço indica onde deve ser colocado o algarismo das centenas de milhar)
Questão 1 Como o algarismo das unidades é 1, para que o número seja aditivado, a soma dos algarismos das casas das dezenas, centenas e unidades de milhar deve ser igual a 1. Existe só um número com quatro
1 Conjuntos, Números e Demonstrações
1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para
Espaços vectoriais reais
ALGA - 00/0 - Espaços Vectoriais 49 Introdução Espaços vectoriais reais O que é que têm em comum o conjunto dos pares ordenados de números reais, o conjunto dos vectores livres no espaço, o conjunto das
Apostila de Matemática 11 Determinante
Apostila de Matemática 11 Determinante 1.0 Definições A determinante só existe se a matriz for quadrada. A tabela é fechada por 2 traços. Determinante de matriz de ordem 1 a 11. 1 2.0 Determinante Matriz
MATEMÁTICA Professores: Andrey, Cristiano e Julio
MATEMÁTICA Professores: Andrey, Cristiano e Julio Questões Substituindo os valores dados na fórmula teremos: x 1 = x 0+1 = (x 0 )2 +a 2.x 0 = (2)2 +5 = 9 2.2 4 e x 2 = x 1+1 = (x 1 )2 +a = ( 9 4 )2 +5
Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F.
Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 1 Exercícios Introdutórios Exercício 1.
Aplicações das Técnicas Desenvolvidas. Soluções de Exercícios e Tópicos Relacionados a Combinatória. 2 a série E.M.
Aplicações das Técnicas Desenvolvidas Soluções de Exercícios e Tópicos Relacionados a Combinatória 2 a série E.M. Professores Tiago Miranda e Cleber Assis Aplicações das Técnicas Desenvolvidas Soluções
Capítulo 2. Conjuntos Infinitos. 2.1 Existem diferentes tipos de infinito
Capítulo 2 Conjuntos Infinitos O conjunto dos números naturais é o primeiro exemplo de conjunto infinito que aprendemos. Desde crianças, sabemos intuitivamente que tomando-se um número natural n muito
Congruências I. Por exemplo, 7 2 (mod 5), 9 3 (mod 6), 37 7 (mod 10) mas 5 3 (mod 4). Veja que a b (mod m) se, e somente se, m a b.
Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Prof. Samuel Feitosa Aula 6 Congruências I Definição 1. Dizemos que os inteiros a e b são congrentes módulo m se eles deixam o mesmo
XXXVII OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase 9 de agosto de 2014 Nível (6º e 7º anos do Ensino Fundamental)
XXXVII OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase 9 de agosto de 2014 Nível (6º e 7º anos do Ensino Fundamental) Resoluções www.opm.mat.br PROBLEMA 1 a) O total de segundos destinados à visualização
SOLUÇÕES N item a) Basta continuar os movimentos que estão descritos no enunciado:
N1Q1 Solução SOLUÇÕES N1 2015 Basta continuar os movimentos que estão descritos no enunciado: Basta continuar por mais dois quadros para ver que a situação do Quadro 1 se repete no Quadro 9. Também é possível
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/26 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)
XXXVIII Olimpíada Cearense de Matemática Nível 2 - Oitavo e Nono Anos
XXXVIII Olimpíada Cearense de Matemática Nível 2 - Oitavo e Nono Anos Problema 1. Antônio e Bruno compraram ingressos para um evento. Ao chegarem em casa, eles perceberam que os ingressos eram numerados
Polos Olímpicos de Treinamento. Aula 7. Curso de Teoria dos Números - Nível 2. Aula de Revisão e Aprofundamento. Prof.
Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Prof. Samuel Feitosa Aula 7 Aula de Revisão e Aprofundamento Observação 1. É recomendável que o professor instigue seus alunos a pensarem
Universidade Federal do ABC MCTA Programação Estruturada 2018.Q3
Universidade Federal do ABC MCTA028-15 - Programação Estruturada 2018.Q3 Lista de Exercícios 4 Professores Emílio Francesquini e Carla Negri Lintzmayer 16 de outubro de 2018 1. Crie uma função que recebe
Capítulo 2. Conjuntos Infinitos. 2.1 Existem diferentes tipos de infinito
Capítulo 2 Conjuntos Infinitos Um exemplo de conjunto infinito é o conjunto dos números naturais: mesmo tomando-se um número natural n muito grande, sempre existe outro maior, por exemplo, seu sucessor
Códigos perfeitos e sistemas de Steiner
CAPÍTULO 7 Códigos perfeitos e sistemas de Steiner Sistemas de Steiner são um caso particular de configurações (ou designs. Neste capítulo pretende-se apenas fazer uma breve introdução aos sistemas de
DOMINÓ DAS QUATRO CORES
DOMINÓ DAS QUATRO CORES Aparecida Francisco da SILVA 1 Hélia Matiko Yano KODAMA 2 Resumo: O jogo Quatro Cores tem sido objeto de estudo de muitos profissionais que se dedicam à pesquisa da aplicação de
Resolução do efólio A
Resolução do efólio A Álgebra Linear I Código: 21002 I. Questões de escolha múltipla. Em cada questão de escolha múltipla apenas uma das armações a), b), c), d) é verdadeira. Indique-a marcando ˆ no quadrado
LISTA DE EXERCÍCIOS. Demonstrações diretas e por absurdo
LISTA DE EXERCÍCIOS Matemática Básica Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 02 Demonstrações diretas e por absurdo Diga se cada uma das sentenças abaixo é verdadeira ou falsa.
Maratona de Matemática
Maratona de Matemática - 8 Todos os problemas possuem a mesma pontuação ( pontos. Deve ser entregue apenas uma solução por equipe para cada problema. A prova possui 4 horas de duração. Considere um tabuleiro
Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano
Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Os números irracionais Ao longo
XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA Segunda Fase Nível 2 (7 a. ou 8 a. séries)
PROBLEMA No desenho ao lado, o quadrado ABCD tem área de 30 cm e o quadrado FHIJ tem área de 0 cm. Os vértices A, D, E, H e I dos três quadrados pertencem a uma mesma reta. Calcule a área do quadrado BEFG.
Referências e materiais complementares desse tópico
Notas de aula: Análise de Algoritmos Centro de Matemática, Computação e Cognição Universidade Federal do ABC Profa. Carla Negri Lintzmayer Conceitos matemáticos e técnicas de prova (Última atualização:
Capítulo 6. Operadores Ortogonais. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo
Capítulo 6 Operadores Ortogonais Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula 6: Operadores Ortogonais
Combinatória. Samuel Barbosa. 28 de março de 2006
Combinatória Samuel Barbosa 28 de março de 2006 1 Princípios Básicos de Contagem Em contagem, tentamos abordar o problema de contar o número de elementos de um conjunto sem efetivamente contá-los de um
Material Teórico - Módulo: Vetores em R 2 e R 3. O Conceito de Vetor. Terceiro Ano do Ensino Médio
Material Teórico - Módulo: Vetores em R 2 e R 3 O Conceito de Vetor Terceiro Ano do Ensino Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Segmentos orientados Nesta seção
38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO
38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO GABARITO NÍVEL 3 1) E 6) E 11) E 16) B 21) D 2) A 7) B 12) D 17) D 22) A 3) C 8) D 13) A 18) E 23) C 4) B 9) D 14) A
Capítulo 1. Os Números. 1.1 Notação. 1.2 Números naturais não nulos (inteiros positivos) Última atualização em setembro de 2017 por Sadao Massago
Capítulo 1 Os Números Última atualização em setembro de 2017 por Sadao Massago 1.1 Notação Números naturais: Neste texto, N = {0, 1, 2, 3,...} e N + = {1, 2, 3, }. Mas existem vários autores considerando
Análise I Solução da 1ª Lista de Exercícios
FUNDAÇÃO EDUCACIONAL SERRA DOS ÓRGÃOS CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS Centro de Ciências e Tecnologia Curso de Graduação em Matemática Análise I 0- Solução da ª Lista de Eercícios. ATENÇÃO: O enunciado
Aula 1: Introdução ao curso
Aula 1: Introdução ao curso MCTA027-17 - Teoria dos Grafos Profa. Carla Negri Lintzmayer [email protected] Centro de Matemática, Computação e Cognição Universidade Federal do ABC 1 Grafos Grafos
OBMEP 2010 Soluções da prova da 2ª Fase Nível 2. Questão 1
Questão a) Para saber o número que deve dizer ao matemágico, Joãozinho deve fazer quatro contas: ª conta: multiplicar o número no cartão escolhido por 2; 2ª conta: somar 3 ao resultado da primeira conta;
EAD DETERMINANTES CONCEITO:
1 EAD DETERMINANTES CONCEITO: Dada uma Matriz Quadrada de ordem n, dizemos que Determinante de ordem n é um número associado a essa Matriz conforme determinadas leis. Representamos o Determinante de uma
1. Métodos de prova: Construção; Contradição.
Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Bacharelado em Ciência da Computação Fundamentos Matemáticos para Computação 1. Métodos de prova: Construção; Contradição.
Módulo de Princípios Básicos de Contagem. Segundo ano
Módulo de Princípios Básicos de Contagem Permutação simples Segundo ano Permutação Simples 1 Exercícios Introdutórios Exercício 1. De quantas formas se pode dispor quatro pessoas em fila indiana? Exercício
Jogos e Brincadeiras II
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. runo Holanda ula 2 Jogos e rincadeiras II Neste artigo continuaremos o assunto iniciado no material anterior. O primeiro exercício,
Resumo: Nestas notas faremos um breve estudo sobre as principais propriedades. mínimos, gráficos e algumas aplicações simples.
Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Equação quadrática Prof. Doherty
Geometria anaĺıtica e álgebra linear
Geometria anaĺıtica e álgebra linear Francisco Dutenhefner Departamento de Matematica ICEx UFMG 22/08/13 1 / 24 Determinante: teorema principal Teorema: Se A é uma matriz quadrada, então o sistema linear
Polo Olímpico de Treinamento Intensivo UFPR Curso de Combinatória, Nível 3 1 o semestre de 2019
Polo Olímpico de Treinamento Intensivo UFPR Curso de Combinatória, Nível 3 1 o semestre de 2019 Marcel Thadeu de Abreu e Souza Vitor Emanuel Gulisz Análise Combinatória: Introdução Vamos buscar contar
MAT 1202 ÁLGEBRA LINEAR II SUBESPACCOS FUNDAMENTAIS E TRANSF. LINEARES 23/08/12 Profs. Christine e Pedro
MAT 1202 ÁLGEBRA LINEAR II 2012.2 SUBESPACCOS FUNDAMENTAIS E TRANSF. LINEARES 23/08/12 Profs. Christine e Pedro 1. Subespaços Fundamentais de uma Matriz (1.1) Definição. Seja A uma matriz retangular m
XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase
XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 3 Segunda Fase Parte A PARTE A Na parte A serão atribuídos pontos para cada resposta correta e a pontuação máima para essa
Resumo: Nestas notas faremos um breve estudo sobre as principais propriedades. mínimos, gráficos e algumas aplicações simples.
Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Equação quadrática Prof. Doherty
Capítulo 2. Conjuntos Infinitos
Capítulo 2 Conjuntos Infinitos Não é raro encontrarmos exemplos equivocados de conjuntos infinitos, como a quantidade de grãos de areia na praia ou a quantidade de estrelas no céu. Acontece que essas quantidades,
Capítulo Coordenadas no Espaço. Seja E o espaço da Geometria Euclidiana tri-dimensional.
Capítulo 9 1. Coordenadas no Espaço Seja E o espaço da Geometria Euclidiana tri-dimensional. Um sistema de eixos ortogonais OXY Z em E consiste de três eixos ortogonais entre si OX, OY e OZ com a mesma
Cálculo Diferencial e Integral 2 Formas Quadráticas
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral 2 Formas Quadráticas 1 Formas quadráticas Uma forma quadrática em R n é um polinómio do
Notas de Aulas 3 - Cônicas Prof Carlos A S Soares
Notas de Aulas 3 - Cônicas Prof Carlos A S Soares 1 Parábolas 1.1 Conceito e Elementos Definição 1.1 Sejam l uma reta e F um ponto não pertencente a l. Chamamos parábola de diretriz l e foco F o conjunto
Soluções dos Problemas do Capítulo 6
Soluções do Capítulo 6 171 Soluções dos Problemas do Capítulo 6 Seção 1 1. A resposta da primeira questão pode ser marcada de 5 modos diferentes. A da segunda, também de 5 modos, etc. A resposta é 5 10.
A forma canônica de Jordan
A forma canônica de Jordan 1 Matrizes e espaços vetoriais Definição: Sejam A e B matrizes quadradas de orden n sobre um corpo arbitrário X. Dizemos que A é semelhante a B em X (A B) se existe uma matriz
P2 de Álgebra Linear I Data: 10 de outubro de Gabarito
P2 de Álgebra Linear I 2005.2 Data: 10 de outubro de 2005. Gabarito 1 Decida se cada afirmação a seguir é verdadeira ou falsa. Itens V F N 1.a F 1.b V 1.c V 1.d F 1.e V 1.a Considere duas bases β e γ de
Álgebra Linear I - Aula Matriz de uma transformação linear em uma base. Exemplo e motivação
Álgebra Linear I - Aula 19 1. Matriz de uma transformação linear em uma base. Exemplo e motivação 2. Matriz de uma transformação linear T na base β 1 Matriz de uma transformação linear em uma base. Exemplo
Ficha de Exercícios nº 1
Nova School of Business and Economics Álgebra Linear Ficha de Exercícios nº 1 Espaços Vectoriais 1 Qual das seguintes afirmações é verdadeira? a) Um espaço vectorial pode ter um número ímpar de elementos.
Polos Olímpicos de Treinamento. Aula 1. Curso de Teoria dos Números - Nível 2. Divisibilidade I. Samuel Barbosa Feitosa
Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Samuel Barbosa Feitosa Aula 1 Divisibilidade I Teorema 1. (Algoritmo da Divisão) Para quaisquer inteiros positivos a e b, existe um
Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente
Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Prof. Ulisses Lima Parente 1 Os números irracionais Ao longo deste módulo, vimos que a representação
Portal OBMEP. Material Teórico - Módulo Cônicas. Terceiro Ano do Ensino Médio
Material Teórico - Módulo Cônicas Parábolas Terceiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 1 Introdução ω Nesta aula vamos revisar o conceito
RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA (CARGOS DE NÍVEL MÉDIO)
RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA (CARGOS DE NÍVEL MÉDIO) Caro aluno, Disponibilizo abaixo a resolução resumida das 10 questões de Matemática da prova de nível médio da Petrobrás. Caso você entenda
Teorema de Pitágoras
Teorema de Pitágoras Luan Arjuna 1 Introdução Uma das maiores preocupações dos matemáticos da antiguidade era a determinação de comprimentos: desde a altura de um edifício até a distância entre duas cidades,
Método Simplex dual. Marina Andretta ICMC-USP. 24 de outubro de 2016
Método Simplex dual Marina Andretta ICMC-USP 24 de outubro de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211 - Otimização
3. Ana Júlia, tia de Alfredo, vende trufas de chocolate...
1. Para construir uma estante completa... Nível 1 O marceneiro possui pranchas grandes suficientes para montar 6 estantes e pranchas pequenas suficientes para 5, os demais materiais são mais abundantes
54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) =
54 CAPÍTULO. GEOMETRIA ANALÍTICA.5 Cônicas O grá co da equação + + + + + = 0 (.4) onde,,,, e são constantes com, e, não todos nulos, é uma cônica. A equação (.4) é chamada de equação geral do grau em e
38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO
38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 1 1) E 6) E 11) C 16) E ) D 7) D 1) A 17) A 3) D 8) A 13) E 18) B 4) C 9) C 14)
