OPTIMIZAÇÃO NÃO LINEAR
|
|
|
- Stella Estrada Caminha
- 8 Há anos
- Visualizações:
Transcrição
1 OPTIMIZAÇÃO NÃO LINEAR Opção IV - LESI Método de penalidade para PSI 2004/2005
2 Optimização não linear - Opção IV - LESI 1 Formulação - Programação Semi-Infinita (PSI) min f(x) x R n s.t. g i (x, t) 0, i = 1,..., m t T f(x) é a função objectivo g i (x, t), i = 1,..., m são as funções das restrições infinitas Ignoram-se as restrições finitas e as de limites simples nas variáveis finitas T R p é um produto cartesiano de intervalos ([α 1, β 1 ] [α 2, β 2 ]... [α p, β p ])
3 Optimização não linear - Opção IV - LESI 2 Método de transcrição de restrições As restrições infinitas g i (x, t) 0, t T, são transformadas em T [g i(x, t)] + dt = 0 em que [z] + = max{0, z}. O problema de PSI transforma-se em min s.a G i (x) x R n T f(x) [g i (x, t)] + dt = 0 i = 1,..., m Funções das restrições não diferenciáveis.
4 Optimização não linear - Opção IV - LESI 3 Problema aproximado min s.a G i,ɛ (x) x R n T f(x) i = 1,..., m g i,ɛ (x, t)dt = 0 com ɛ > 0(ɛ 0) e g i,ɛ (x, t) = 0, se g i (x, t) < ɛ; (g i (x,t)+ɛ) 2 4ɛ, se ɛ g i (x, t) ɛ; g i (x, t), se g i (x, t) > ɛ, Funções das restrições uma vez diferenciáveis.
5 Optimização não linear - Opção IV - LESI 4 Funções de penalidade simples e m φ 1 S(x, µ) = f(x) + µ φ 2 S(x, µ) = f(x) + µ 2 i=1 m T i=1 T g i,ɛ (x, t)dt (1) g i,ɛ (x, t) 2 dt (2) φ 3 S(x, µ) = f(x) + µ m i=1 T ( ) e gi,ɛ(x,t) 1 dt (3)
6 Optimização não linear - Opção IV - LESI 5 Problema aproximado para satisfazer a qualificação da restrição usual (problema relaxado) min x R n f(x) s.a G i,ɛ (x) τ i = 1,..., m τ > 0 (τ = τ(ɛ) 0) Lagrangeana L(x, λ) = f(x) + m i=1 λ i (G i,ɛ (x, t) τ) onde λ é o vector dos multiplicadores.
7 Optimização não linear - Opção IV - LESI 6 Função de penalidade Lagrangeana aumentada e exponencial Lagrangeana aumentada φ AL (x, λ, µ) =f(x) + + µ 2 m ( λ i i=1 m ( i=1 T T ) g i,ɛ (x, t)dt τ ) 2 (4) g i,ɛ (x, t)dt Exponencial φ EMP (x, λ, µ) = f(x) + 1 µ m λ i ( e µ ( R T g i,ɛ(x,t)dt τ) 1 ) (5) i=1
8 Optimização não linear - Opção IV - LESI 7 Método de penalidade (multiplicadores) Resolve-se uma sucessão de subproblemas min φ(x, µ) ( φal/e (x, λ, µ) ) x R n para uma sucessão de valores de µ > 0, em que φ é uma função de penalidade
9 Optimização não linear - Opção IV - LESI 8 Fórmula de actualização para estimar os multiplicadores de Lagrange Lagrangeana aumentada λ k+1 i = λ k i + µ T g i,ɛ (x k, t)dt, i = 1,..., m. Exponencial λ k+1 i = λ k i e µk ( R T g i,ɛ(x k,t)dt τ), i = 1,..., m.
10 Optimização não linear - Opção IV - LESI 9 Esquema de penalidade 1. Dada uma aproximação inicial para x (e para λ), e parâmetros µ e ɛ. 2. Iteração exterior. Aproximação inicial para as iterações interiores é a última aproximação calculada. 3. Iterações interiores. Para µ (e λ), resolver o problema sem restrições min φ(x, µ) ( φal/e (x, λ, µ) ) x R n através de uma técnica quasi-newton usando uma fórmula de actualização BFGS e uma procura unidimensional com uma regra do tipo Armijo que provoca uma redução significativa na função de penalidade. Solução: x (µ).
11 Optimização não linear - Opção IV - LESI Se a aproximação calculada não é admissível ( T g i,ɛ(x(µ), t)dt τ > 0, i = 1,..., m) então actualiza-se o parâmetro de penalidade µ e o vector dos multiplicadores λ e inicia-se uma nova iteração exterior. 5. Caso contrário, se há uma evolução significativa entre as duas últimas aproximações calculadas para diferentes parâmetros de diferenciabilidade (ɛ e τ(ɛ)) então actualiza-se o parâmetro de diferenciabilidade e inicia-se uma nova iteração exterior. 6. Termina-se com a última aproximação calculada como uma aproximação à solução do problema de PSI (x x (µ)).
12 Optimização não linear - Opção IV - LESI 11 O solver NSIPS Nonlinear Semi-Infinite Programming Solver Os vários métodos são seleccionadas com a opção method: disc hett discretização - versão modificada de Hettich; disc halt discretização - versão modificada de Hettich com pontos pseudo-aleatórios de Halton; disc reem discretização - versão modificada de Reemtsen; penalty penalidade; penalty m multiplicadores (penalidade); sqp programação quadrática sequencial; intp pontos interiores;
13 Optimização não linear - Opção IV - LESI 12 Exemplo de selecção de método Para seleccionar o método de penalidade pode-se usar as variáveis de ambiente % nsips options= method=penalty % export nsips options para o sistema operativo Linux (bash) ou % type nsipsopt.ini option nsips options method=penalty ; % set OPTIONS IN=.\nsipsopt.ini para o sistema operativo Windows, invocando de seguida o solver.
14 Optimização não linear - Opção IV - LESI 13 Selecção das funções de penalidade A opção pf type=[p1 p2 p3] selecciona a função de penalidade a usar. Método pf type Penalidade penalty p1 φ 1 S (1) p2 φ 2 S (2) p3 φ 3 S (3) penalty m p1 φ AL (4) p3 φ E (5)
15 Optimização não linear - Opção IV - LESI 14 Opções para os métodos de penalidade e multiplicadores Opção Tipo Default Descrição armijo Duplo 10 1 Constante η no critério de Armijo damped Inteiro 1 0 estratégia damped BFGS não usada. Outro valor para usar. maxiteri Inteiro 400 Máximo de iterações interiores permitidas maxitero Inteiro 400 Mínimo de iterações interiores permitidas mu0 Duplo 1 Valor inicial para o parâmetro de penalidade µ 0 muf Duplo 10 Factor multiplicativo para o parâmetro de penalidade pf preci Duplo 10 4 Critério de paragem da iteração interior δ 1 pf preco Duplo 10 4 Critério de paragem da iteração exterior δ 2 pf eps Duplo 10 4 Valor inicial do parâmetro de suavização ɛ 0 reset Inteiro 0 0 sem estratégia de reinicialização da estimativa da Hessiana. Outro valor para reset. scale Inteiro 0 0 sem escalonamento da direcção. Outro valor para escalonamento.
16 Optimização não linear - Opção IV - LESI 15 Cálculo numérico da função de penalidade
17 Optimização não linear - Opção IV - LESI 16 Cálculo numérico da função de penalidade Fórmula adaptativa do trapézio. A fórmula do trapézio simples no intervalo T = [a, b] é b a h(x)dx b a 2 [h(a) + h(b)]. O cálculo do integral com uma dada precisão ɛ é feito recursivamente.
18 Optimização não linear - Opção IV - LESI 17 Calcula-se o integral no intervalo [a, b] e nos subintervalos [ ] [ a, a+b 2 e a+b 2, b]. Se o erro entre as duas aproximações é maior que ɛ T, i.e., ( b a+b 2 b h(x)dx h(x)dx + h(x)dx) > ɛ T a a então procede-se recursivamente nos subintervalos [ ] [ a, a+b 2 e a+b 2, b]. Caso contrário aceita-se a+b 2 h(x)dx + b a+b h(x)dx como uma boa a 2 aproximação do integral. a+b 2
19 Optimização não linear - Opção IV - LESI 18 Opções para o cálculo do integral A opção pf int=gaussian selecciona a fórmula adaptativa Gaussiana (cada subintervalo é calculado com uma fórmula Gaussiana). A opção pf int=trapezoid selecciona a fórmula adaptativa do trapézio (cada subintervalo é calculado com uma fórmula do trapézio. Opção Tipo Default Descrição int amp Duplo 10 2 Amplitude mínima do intervalo ρ int error Duplo 10 8 Precisão de cálculo do integral ɛ T int n Inteiro 20 Número de intervalos iniciais na versão do trapézio ni, ou o número de pontos na fórmula Gaussiana. 6, 8, 16 são os números de pontos permitidos.
Departamento de Matemática da Universidade de Coimbra. Licenciatura em Matemática. e B =
Departamento de Matemática da Universidade de Coimbra Optimização Numérica Licenciatura em Matemática Ano lectivo 2006/2007 Folha 1 1. Considere as matrizes A = [ 1 1 1 2 ] e B = [ 1 3 1 2 (a) Verifique
Métodos para resolver problemas de otimização restrita
Métodos para resolver problemas de otimização restrita Marina Andretta ICMC-USP 22 de novembro de 2010 Marina Andretta (ICMC-USP) sme0212 - Otimização não-linear 22 de novembro de 2010 1 / 13 Problema
Método do Lagrangiano aumentado
Método do Lagrangiano aumentado Marina Andretta ICMC-USP 23 de novembro de 2010 Marina Andretta (ICMC-USP) sme0212 - Otimização não-linear 23 de novembro de 2010 1 / 17 Problema com restrições gerais Vamos
Capítulo 5 - Optimização Não-Linear
Capítulo 5 - Optimização Não-Linear [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Mestrados em Engenharia da Construção Métodos de Aproximação em Engenharia
MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Interpolação e Integração. φ(x k ) ψ(x k ).
MAP 22 - CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Interpolação e Integração : Sejam x =, x =, x 2 = 2 e x 3 = 3. (a) Determine os polinômios de Lagrange L i (x) correspondentes a estes pontos
Matemática Computacional - Exercícios
Matemática Computacional - Exercícios 1 o semestre de 2007/2008 - Engenharia Biológica Teoria de erros e Representação de números no computador Nos exercícios deste capítulo os números são representados
Exercícios TP/P. 1 Condições de optimalidade - Restrições de igualdade
Campus de Gualtar Escola de Engenharia 4710-057 Braga - P Departamento de Produção e Sistemas Exercícios TP/P Mestrado e curso de especialização em Engenharia Industrial - MEI Ramo Logística e Distribuição
Matemática Computacional - Exercícios
Matemática Computacional - Exercícios 2 o semestre de 2005/2006 - LEE, LEGI e LERCI Programação em Mathematica 1. Calcule no Mathematica e comente os resultados: (a) 7; (b) 7.0; (c) 14406; (d) cos π 6
Matemática Computacional - 2 o ano LEMat e MEQ
Instituto Superior Técnico Departamento de Matemática Secção de Matemática Aplicada e Análise Numérica Matemática Computacional - o ano LEMat e MEQ Exame/Teste - 1 de Janeiro de 1 - Parte I (1h3m) 1. Considere
Lista de Exercícios de Métodos Numéricos
Lista de Exercícios de Métodos Numéricos 1 de outubro de 010 Para todos os algoritmos abaixo assumir n = 0, 1,, 3... Bisseção: Algoritmo:x n = a+b Se f(a) f(x n ) < 0 então b = x n senão a = x n Parada:
Capítulo 7: Equações Diferenciais Ordinárias. 1. Problema de valor inicial
Capítulo 7: Equações Diferenciais Ordinárias. Problema de valor inicial Definição: Sea uma função de e n um número inteiro positivo então uma relação de igualdade que envolva... n é camada uma equação
Resolução de problemas difíceis de programação linear através da relaxação Lagrangeana
problemas difíceis de programação linear através da relaxação Lagrangeana Ana Maria A.C. Rocha Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho [email protected] http://www.norg.uminho.pt/arocha
Aula 19 06/2014. Integração Numérica
CÁLCULO NUMÉRICO Aula 19 06/2014 Integração Numérica Objetivo: Calcular integrais utilizando métodos numéricos Cálculo Numérico 3/41 Integração Numérica Cálculo Numérico 4/41 Integração Numérica Em determinadas
Otimização Multiobjetivo
Otimização Multiobjetivo Otimização Restrita Prof. Frederico Gadelha Guimarães Lucas S. Batista Eduardo G. Carrano Universidade Federal de Minas Gerais Programa de Pós-Graduação em Engenharia Elétrica,
Resumos de CDI-II. 1. Topologia e Continuidade de Funções em R n. 1. A bola aberta de centro em a R n e raio r > 0 é o conjunto
Resumos de CD- 1. Topologia e Continuidade de Funções em R n 1. A bola aberta de centro em a R n e raio r > 0 é o conjunto B r (a) = {x R n : x a < r}. 2. Seja A R n um conjunto. m ponto a A diz-se: (i)
Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar Área Interdepartamental de Matemática
Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar Área Interdepartamental de Matemática Análise Numérica Licenciaturas em Engenharia Ambiente,Civil e Química I - Equações Não Lineares.
INSTITUTO SUPERIOR TÉCNICO Mestrado Integrado em Engenharia Física Tecnológica Ano Lectivo: 2007/2008 Semestre: 1 o
INSTITUTO SUPERIOR TÉCNICO Mestrado Integrado em Engenharia Física Tecnológica Ano Lectivo: 27/28 Semestre: o MATEMÁTICA COMPUTACIONAL Exercícios [4 Sendo A M n (C) mostre que: (a) n A 2 A n A 2 ; (b)
Notas de Aula de Cálculo Numérico
IM-Universidade Federal do Rio de Janeiro Departamento de Ciência da Computação Notas de Aula de Cálculo Numérico Lista de Exercícios Prof. a Angela Gonçalves 3 1. Erros 1) Converta os seguintes números
Aula 3 11/12/2013. Integração Numérica
CÁLCULO NUMÉRICO Aula 3 11/12/2013 Integração Numérica Objetivo: Calcular integrais utilizando métodos numéricos Cálculo Numérico 3/64 Integração Numérica Cálculo Numérico 4/64 Integração Numérica Em determinadas
Matemática Computacional - 2 o ano LEMat e MEQ
Instituto Superior Técnico Departamento de Matemática Secção de Matemática Aplicada e Análise Numérica Matemática Computacional - o ano LEMat e MEQ Exame/Teste - 5 de Fevereiro de - Parte I (h3m). Considere
Matemática Computacional. Exercícios. Teoria dos erros
Matemática Computacional Exercícios 1 o Semestre 2014/15 Teoria dos erros Nos exercícios deste capítulo os números são representados em base decimal. 1. Represente x em ponto flutuante com 4 dígitos e
Sumário e Objectivos. Mecânica dos Sólidos não Linear Capítulo 2. Lúcia Dinis 2005/2006
Sumário e Objectivos Sumário: Deformações. Sólido Uniaxial. Descrição Lagrangeana e Euleriana. Gradiente de Deformação. Decomposição Polar. Tensores das Deformações de Green e Lagrange. Deformação de Corte.
Método de Newton modificado
Método de Newton modificado Marina Andretta ICMC-USP 14 de setembro de 2010 Marina Andretta (ICMC-USP) sme0212 - Otimização não-linear 14 de setembro de 2010 1 / 36 Método de Newton Como já vimos, o método
Cálculo Numérico Algoritmos
Cálculo Numérico Algoritmos Valdenir de Souza Junior Abril de 2007 Sumário 1 Introdução 1 2 Raízes de Equações 1 2.1 Método da Bisseção......................... 2 2.2 Método de Newton-Raphson.....................
Métodos Numéricos - Notas de Aula
Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Zeros de equações transcendentes e Tipos de Métodos polinomiais São dois os tipos de métodos para se achar a(s) raízes de uma equação:
Algoritmos Numéricos 2 a edição
Algoritmos Numéricos 2 a edição Capítulo 7: Equaç~oes diferenciais ordinárias c 2009 FFCf 2 Capítulo 7: Equações diferenciais ordinárias 7.1 Solução numérica de EDO 7.2 Métodos de Runge-Kutta 7.3 Métodos
Método de restrições ativas para minimização em caixas
Método de restrições ativas para minimização em caixas Marina Andretta ICMC-USP 20 de outubro de 2014 Marina Andretta (ICMC-USP) sme5720 - Otimização não-linear 20 de outubro de 2014 1 / 25 Problema com
UNIVERSIDADE FEDERAL DO ABC
UNIVERSIDADE FEDERAL DO ABC BC49 Cálculo Numérico - LISTA - sistemas lineares de equações Profs André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda Métodos diretos Analise os sistemas
Cálculo Numérico. Resumo e Exercícios P1
Cálculo Numérico Resumo e Exercícios P1 Fórmulas e Resumo Teórico Parte 1 Aritmética de ponto flutuante Operar com o número de algarismos significativos exigido. Arredondar após cada conta. Método de escalonamento
SME0300 Cálculo Numérico Aula 6
SME0300 Cálculo Numérico Aula 6 Maria Luísa Bambozzi de Oliveira marialuisa @ icmc. usp. br Sala: 3-241 Página: tidia-ae.usp.br 20 de agosto de 2015 Aula Passada Equações Não-Lineares: Determinar raiz
Disciplina que estuda métodos analíticos para auxiliar na tomada de decisões.
Edgard Jamhour Disciplina que estuda métodos analíticos para auxiliar na tomada de decisões. Procura encontrar soluções ótimas ou próximo de ótimas para problemas de engenharia industrial, economia e finanças,
Lista 1 de Exercícios de MAT Cálculo Numérico /II
Lista 1 de Exercícios de MAT 271 - Cálculo Numérico - 2017/II OBS.: Utilize arredondamento por corte (truncamento) com 5 casas decimais após a virgula (caso seja necessário). 1) Converta os números abaixo
Instituto Universitário de Lisboa
Instituto Universitário de Lisboa Departamento de Matemática Exercícios de Extremos 1 Extremos Livres 1. Dada uma função f : R n R e a R n, (a) Qual a propriedade que f(a) deve vericar para ser um máximo
Cálculo Numérico P2 EM33D
Cálculo Numérico P EM33D 8 de Abril de 03 Início: 07h30min (Permanência mínima: 08h40min) Término: 0h00min Nome: GABARITO LER ATENTAMENTE AS OBSERVAÇÕES, POIS SERÃO CONSIDERADAS NAS SUA AVALIAÇÃO ) detalhar
DEPARTAMENTO DE ENGENHARIA MECÂNICA
DEPARTAMENTO DE ENGENHARIA MECÂNICA Otimização: Algoritmos e Aplicações na Engenharia Mecânica ENG1786 & MEC2403 Ivan Menezes 2018-2 1 EMENTA 1. Introdução 1.1 Definições Básicas 1.2 Classificação dos
Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA
Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo IV Aproximação de Funções 1 Interpolação Polinomial 1. Na tabela seguinte
II. Funções de uma única variável
II. Funções de uma única variável 1 II.1. Conceitos básicos A otimização de de funções de de uma única variável consiste no no tipo mais elementar de de otimização. Importância: Tipo de problema encontrado
Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares
Exercícios de MATEMÁTICA COMPUTACIONAL Mestrado Integrado em Engenharia Biomédica 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x) e x = 0. a) Prove que
Lista de exercícios de MAT / II
1 Lista de exercícios de MAT 271-26 / II 1. Converta os seguintes números da forma decimal para a forma binária:x 1 = 37; x 2 = 2347; x 3 =, 75; x 4 =(sua matrícula)/1; x 5 =, 1217 2. Converta os seguintes
Resolução do Exame Tipo
Departamento de Matemática e Engenharias Análise e Computação Numérica Resolução do Exame Tipo 1. O computador IBM 3090 possuía um sistema de vírgula flutuante F F(16, 5, 65, 62) (em precisão simples),
Cálculo Numérico. Resumo e Exercícios P2
Cálculo Numérico Resumo e Exercícios P2 Fórmulas e Resumo Teórico P2 Interpolação Em um conjunto de n pontos (x #, y # ), consiste em encontrar uma função f tal que f x # = y # para todo i = 1,2,, n. Na
Utilização de Métodos de Cálculo Numérico em Aerodinâmica
Erro Numérico: - Erro de arredondamento - Erro iterativo - Erro de discretização Três componentes do erro numérico têm comportamentos diferentes com o aumento do número de graus de liberdade (refinamento
Lista 7.4 Optimização com Restrições de Desigualdade
Faculdade de Economia da Universidade Nova de Lisboa Apontamentos Cálculo II Lista 7.4 Optimização com Restrições de Desigualdade 1. Problema de optimização de uma função escalar f, de n variáveis reais,
Métodos iterativos para sistemas lineares.
Métodos iterativos para sistemas lineares. Alan Costa de Souza 7 de Setembro de 2017 Alan Costa de Souza Métodos iterativos para sistemas lineares. 7 de Setembro de 2017 1 / 46 Introdução. A ideia central
Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017
Análise Complexa e Equações Diferenciais 1 ō Semestre 016/017 ō Teste Versão A (Cursos: MEBiol, MEQ 17 de Dezembro de 016, 10h [,0 val 1 Considere a equação diferencial e t + y e t + ( 1 + ye t dy dt 0
Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA
Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo II Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x)
4. O algoritmo LMS e variantes
Apontamentos de Processamento Adaptativo de Sinais 4. O algoritmo LMS e variantes Família de algoritmos do gradiente Na prática usam-se estimativas do gradiente, ˆ (n), em vez do verdadeiro gradiente (n),
MÉTODOS NUMÉRICOS II ENGENHARIA POLÍMEROS EXERCÍCIOS TEÓRICO-PRÁTICOS
MÉTODOS NUMÉRICOS II ENGENHARIA POLÍMEROS EXERCÍCIOS TEÓRICO-PRÁTICOS Ano lectivo de 2003/2004 1 1 Celina Pinto Leão, DPS (2004) Métodos Numéricos II - Eng a Polimeros Exercícios - Optimização não linear
exercícios de análise numérica II
exercícios de análise numérica II lic. matemática aplicada e computação (4/5) aulas práticas - capítulo Exercício. Mostre que a soma dos polinómios base de Lagrange é a função constante. Exercício. Usando
6 MÉTODO DE ELEMENTOS FINITOS - MEF
6 MÉTODO DE ELEMENTOS FINITOS - MEF O Método de Elementos Finitos é uma técnica de discretização de um problema descrito na Formulação Fraca, na qual o domínio é aproximado por um conjunto de subdomínios
Um algoritmo sem derivadas para otimização restrita
Um algoritmo sem derivadas para otimização restrita Paulo Domingos Conejo Elizabeth Wegner Karas UNIOESTE - Dep. Matemática UFPR - Dep. Matemática 85819-110, Cascavel, PR 81531-990, Curitiba, PR [email protected]
CÁLCULO NUMÉRICO UFRJ Lista 0: revisão de cálculo e álgebra linear
CÁLCULO NUMÉRICO UFRJ 2016 LISTAS DE EXERCÍCIOS Lista 0: revisão de cálculo e álgebra linear 1. Ao longo desta curso usaremos frequentemente as seguintes propriedades de uma função contínua g definida
Neste capítulo estamos interessados em resolver numericamente a equação
CAPÍTULO1 EQUAÇÕES NÃO-LINEARES 1.1 Introdução Neste capítulo estamos interessados em resolver numericamente a equação f(x) = 0, onde f é uma função arbitrária. Quando escrevemos resolver numericamente,
Cálculo Diferencial e Integral II Resolução do Exame/Teste de Recuperação 02 de Julho de 2018, 15:00h - versão 2 Duração: Exame (3h), Teste (1h30)
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II do Exame/Teste de Recuperação 2 de Julho de 218, 15:h - versão 2 Duração: Exame (3h),
Otimização. por Mílton Procópio de Borba
Otimização por Mílton Procópio de Borba 1. Otimização sem restrições Seja f: D R, convexa, isto é, f[λ.p + (1-λ).q] λ.f(p) + (1-λ)f(q), p e q em D e λ [0, 1]. Maximizar f, significa encontrar o maior valor
Apresente todos os cálculos e justificações relevantes
Análise Matemática I 2 o Teste e o Exame Campus da Alameda 9 de Janeiro de 2006, 3 horas Licenciaturas em Engenharia do Ambiente, Engenharia Biológica, Engenharia Civil, Engenharia e Arquitectura Naval,
Distribuições Contínuas. Estatística. 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas UNESP FEG DPD
Estatística 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas 7- Distribuição Uniforme A variável aleatória contínua pode ser qualquer valor no intervalo [a,b] A probabilidade da variável
Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então
Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então Seja D v f(p 0 ) = lim λ 0 f(p 0 + λ v) f(p 0 ) λ v representa a derivada direcional de f segundo
Cálculo Diferencial e Integral II
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Exame/Teste de Recuperação v2-8h - 29 de Junho de 215 Duração: Teste - 1h3m; Exame -
Métodos Numéricos I. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho
Métodos Numéricos I A. Ismael F. Vaz Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho [email protected] Engenharia Mecânica Ano lectivo 2007/2008 A. Ismael F. Vaz (UMinho)
Aula 10 Sistemas Não-lineares e o Método de Newton.
Aula 10 Sistemas Não-lineares e o Método de Newton MS211 - Cálculo Numérico Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade
Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II
Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II 13 de Dezembro de 2013 Exercício 1. Descreva o espaço de probabilidade associado às seguintes experiências aleatórias: 1. Uma moeda
Métodos iterativos dão-nos uma valor aproximado para s. Sequência de valores de x que convergem para s.
Análise Numérica 1 Resolução de equações não lineares ou Cálculo de zeros de funções Problema: Dada a função f(x) determinar o valor s tal que f(s) = 0. Slide 1 Solução: Fórmulas exemplo: fórmula resolvente
ESTATÍSTICA COMPUTACIONAL
ESTATÍSTICA COMPUTACIONAL Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Se a integração analítica não é possível ou
Lista de Exercícios 1
Lista de Exercícios 1 MAT 01169 - Cálculo Numérico 2 de Agosto de 2015 As respostas de alguns exercícios estão no final da lista. Exercício 1. Converta para binário os números abaixo: (a) (102) 10 = (b)
Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I
Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I 2014/2015 Os exercícios assinalados com (*) têm um nível de dificuldade superior. Exercício 1. Seja (X, F) um espaço mensurável. Mostre
Prof. Wagner Hugo Bonat. Bacharelado em Estatística Universidade Federal do Paraná. 15 de outubro de 2018
Sistemas de Equações não lineares Prof. Wagner Hugo Bonat Bacharelado em Estatística Universidade Federal do Paraná 15 de outubro de 2018 Conteúdo Wagner Hugo Bonat Sistemas de Equações não lineares 2/34
Exercícios de Matemática Computacional
Exercícios de Matemática Computacional 1 Teoria dos erros 1.1 Representação de números reais 1. Os resultados aproximados da medição de uma ponte e de uma viga foram, respectivamente, 9999 cm e 9 cm. Se
Método de Newton para polinômios
Método de Newton para polinômios Alan Costa de Souza 26 de Agosto de 2017 Alan Costa de Souza Método de Newton para polinômios 26 de Agosto de 2017 1 / 31 Seja f(x) uma função polinomial de grau n. A princípio.
Cálculo Numérico BCC760
Cálculo Numérico BCC760 Resolução de Sistemas de Equações Lineares Simultâneas Departamento de Computação Página da disciplina http://www.decom.ufop.br/bcc760/ 1 Introdução! Definição Uma equação é dita
MÉTODOS NUMÉRICOS. ENGENHARIA e GESTÃO INDUSTRIAL
UNIVERSIDADE DO MINHO MÉTODOS NUMÉRICOS ENGENHARIA e GESTÃO INDUSTRIAL EXERCÍCIOS PRÁTICOS Ano lectivo de 2005/2006 Métodos Numéricos - L.E.G.I. Exercícios práticos - CONUM Solução de uma equação não linear
