O Problema da cerca. Série Matemática na Escola
|
|
|
- Thais Cabreira de Almada
- 8 Há anos
- Visualizações:
Transcrição
1 O Problema da cerca Série Matemática na Escola Objetivos 1. Estudar máximo de funções quadráticas através de uma aplicação; 2. Analisar funções definidas por partes; 3. Discutir um problema de otimização. O problema da cerca 1/9
2 O Problema da cerca Série Matemática na Escola Conteúdos Funções quadráticas, máximos e mínimos. Duração Aprox. 10 minutos. Objetivos 1. Estudar máximo de funções quadráticas através de uma aplicação; 2. Analisar funções definidas por partes; 3. Discutir um problema de otimização. Sinopse Seu Joaquim deseja construir uma cerca para seu jardim. Como só pode comprar arame suficiente para 120 metros de cerca, pede ajuda a Janete sobre qual a melhor forma de dispor o arame de modo a cercar a maior parte possível do terreno, usando apenas ângulos retos. Material relacionado Vídeos: Roda de Samba, A Lenda de Dido. Experimentos: Otimização da Cerca, Polígonos e Circunferência. Software: Otimização de Janelas. O problema da cerca 2/9
3 Introdução Sobre a série A série Matemática na Escola aborda o conteúdo de matemática do ensino médio através de situações, ficções e contextualizações. Os programas desta série usualmente são informativos e podem ser introdutórios de um assunto a ser estudado em sala de aula ou fechamentos de um tema ou problema desenvolvidos pelo professor. Os programas são ricos em representações gráficas para dar suporte ao conteúdo mais matemático e pequenos documentários trazem informações interdisciplinares. Sobre o programa Este é um vídeo sobre máximos de funções quadráticas, baseado no texto de Flaviano Vieira, Laís Rodrigues e Edson Agustini, citado na referência. Trata do caso de Seu Joaquim, que quer cercar seu quintal e dispõe de recursos para 120m cerca. Janete é quem o ajuda a decidir qual o melhor formato do cercado de modo que o jardim tenha a maior área possível, tendo somente ângulos retos. O problema da cerca 3/9
4 Trata-se de um problema de encontrar a maior área entre regiões com o mesmo perímetro. Seu Joaquim explica que a casa está à beira do rio, que será uma das extremidades do jardim, como indicado na figura acima. A casa tem medidas 10 por 20 metros e dista 30 metros do rio. Para que todo arame seja usado, ela sugere que a frente e o fundo da casa sejam usados como fronteiras da cerca. Como os dois lados do jardim são simétricos, Janete sugere dividir os 120 metros em duas partes, uma para o lado direito e outra para o lado esquerdo da casa, que deverão ser iguais. Portanto, vamos considerar apenas um deles, com 60 metros de cerca. A primeira opção é fazer o cercado como mostrado abaixo. Chamando um segmento de x e o outro de y, precisamos encontrar suas medidas de forma que a área delimitada por eles seja máxima. Sabemos que são 60 metros de arame em cada lado, portanto x+y=60, e mais do que isso, os segmentos x e y determinam um retângulo, de área A = xy. Portanto, podemos escrever a função A(x) = x(60-x), lembrando que x deve variar entre 30 e 40 metros para que a cerca fique apoiada na lateral da casa. Assim, temos o gráfico abaixo para a função obtida. O problema da cerca 4/9
5 Seu Joaquim pede para Janete considerar outra situação, com a cerca começando da parte de trás de casa. Contudo, Janete mostra a seu Joaquim que essa configuração não aproveita bem a quantidade de cerca disponível, pois pode ser transformada em uma nova configuração com o mesmo perímetro, mas com área maior. O problema da cerca 5/9
6 Para entender melhor o que Janete sugerimos, note que a sugestão de seu Joaquim gerava um polígono convexo delimitando a área 3, porém, podemos sempre transformar um polígono convexo em um côncavo preservando o perímetro e delimitando uma área maior. É isso que ela faz ao deslocar os segmentos e, mais adiante no vídeo, ao discutir o caso da cerca contornando uma árvore presente no terreno. Convencido, seu Joaquim começa então a analisar as melhores medidas para essa segunda configuração, em que a cerca se apóia atrás da casa. O problema da cerca 6/9
7 Temos que a área 3 é dada por x.y e a quantidade de cerca usada é x+y+z=60 metros, onde z=x Portanto, a área 3 é dada pela função a(x)=100x-2x 2, sendo que, desta vez, x deve ser maior 40m. Portanto, para decidir qual a melhor decisão, é necessário comparar a área máxima dada por cada uma das duas opções, mas no vídeo isso é deixado para a sala de aula. Durante da execução Anote na lousa um esquema visual com os dois casos de cerca (com dois e com três segmentos) e as funções obtidas para cada caso. Com isso, você pode iniciar a discussão após o vídeo com a análise dos dois gráficos. Depois da execução Para descobrirmos os valores dos segmentos que maximizam a área em cada caso, os alunos devem notar que os gráficos das funções são parábolas com concavidade para baixo. Neste caso, o máximo das funções ocorrerá no vértice da parábola ou nos extremos do domínio. Este problema, por lidar com funções de domínio limitado, é boa uma oportunidade para discutir esse componente, que normalmente não aparece em problemas de otimização propostos em livros didáticos. É importante lembrar que o máximo (ou mínimo) de uma função ocorre sempre em um ponto crítico (que corresponde ao vértice, no caso de uma parábola) ou nas extremidades do domínio. Reunindo os dois gráficos em um mesmo eixo cartesiano, temos o seguinte gráfico. O problema da cerca 7/9
8 Com isso, fica claro que o primeiro caso (cerca apoiada na lateral da casa, com apenas dois segmentos) dá a maior área e para obter exatamente quais as medidas que resultam nessa área, basta calcular as coordenadas do vértice da parábola e o valor da função nas extremidades do domínio. Para um melhor aprofundamento destas questões, e de outras relacionadas a problemas dessa natureza (isoperimétricos) sugerimos a leitura completa do artigo usado como referência para elaboração deste vídeo. Por fim, o professor pode sugerir aos alunos que obtenham novas soluções para o problema sem considerar que os 120 metros de cerca disponíveis serão divididos em duas partes. Por exemplo, o seu Joaquim poderia usar apenas 30 metros de um lado da casa, para fechar a região entre ela e o rio e os outros 90 metros para fazer um cercado maior do outro lado. Será que há alguma configuração dessas que resulta em uma área cercada ainda maior? O problema da cerca 8/9
9 Sugestões de leitura O Teorema Isoperimétrico e o Problema da Cerca, Flaviano Bahia P. Vieira, Laís Bássame Rodrigues e Edson Agustini; FAMAT em Revista n o 4 (2005). Disponível em nolaisedson.pdf Ficha técnica Conteudista Leonardo Barichello e Rafael Santos de Oliveira Alves Revisão Samuel Rocha de Oliveira Coordenação de Mídias Audiovisuais Prof. Dr. Eduardo Paiva Coordenador acadêmico Prof. Dr. Samuel Rocha de Oliveira Universidade Estadual de Campinas Reitor Fernando Ferreira Costa Vice-reitor Edgar Salvadori de Decca Pró-Reitor de Pós-Graduação Euclides de Mesquita Neto Instituto de Matemática, Estatística e Computação Científica Diretor Caio José Colletti Negreiros Vice-diretor Verónica Andrea González-López O problema da cerca 9/9
Esse tal de Bhaskara. Série Matemática na Escola
Esse tal de Bhaskara Série Matemática na Escola Objetivos 1. Proporcionar um passeio histórico sobre os processos de resolução de equações quadráticas. Esse tal de Bhaskara 1/7 Esse tal de Bhaskara Série
A Comunidade. Série Matemática na Escola. Objetivos 1. Apresentar uma aplicação de um ponto notável do triângulo, o circuncentro.
A Comunidade Série Matemática na Escola Objetivos 1. Apresentar uma aplicação de um ponto notável do triângulo, o circuncentro. A Comunidade Série Matemática na Escola Conteúdos Pontos notáveis do triângulo:
A velha história das multidões. Série Matemática na Escola
A velha história das multidões Série Matemática na Escola Objetivos 1. Revelar como é feita a estimativa do número de pessoas em um evento 2. Mostrar como cálculos matemáticos simples nos auxiliam a confrontar
Série Matemática na Escola. Objetivos
A mãe Série Matemática na Escola Objetivos 1. Apresentar funções descontínuas; 2. Apresentar problemas cotidianos relacionados a funções. A mãe. Série Matemática na Escola Conteúdos Funções lineares, funções
Um Caminho para o Curral. Série Matemática na Escola
Um Caminho para o Curral Série Matemática na Escola Objetivos 1. Revisar o Teorema de Pitágoras e a teoria de semelhança de triângulos; 2. Iniciar o estudo de trigonometria no triângulo retângulo. Um Caminho
O Dilema do Prisioneiro. Série Matemática na Escola. Objetivos 1. Discutir sobre um problema clássico da Teoria dos Jogos
O Dilema do Prisioneiro Série Matemática na Escola Objetivos 1. Discutir sobre um problema clássico da Teoria dos Jogos O Dilema do Prisioneiro Série Matemática na Escola Conteúdos Lógica, Teoria dos Jogos
Oferenda Musical de Bach. Série Matemática na Escola
Oferenda Musical de Bach Série Matemática na Escola Objetivos 1. Apresentar isometrias no plano por meio de uma música chamada Oferenda Musical de Bach; 2. Discutir isometria na música, isometria nas artes,
Xeque-Mate. Série Matemática na Escola
Xeque-Mate Série Matemática na Escola Objetivos 1. Introduzir o Princípio Fundamental de Contagem; 2. Apresentar os conceitos de Arranjo e Permutação. Xeque-Mate Série Matemática na Escola Conteúdos Arranjo,
Bombons a Granel. Série Matemática na Escola. Objetivos 1. Introduzir e mostrar aplicações do produto de matrizes.
Bombons a Granel Série Matemática na Escola Objetivos 1. Introduzir e mostrar aplicações do produto de matrizes. Bombons a granel Série Matemática na Escola Conteúdos Produto de matrizes. Duração Aprox.
Os Infinitos de Cantor. Série Matemática na Escola
Os Infinitos de Cantor Série Matemática na Escola Objetivos 1. Abordar os temas de cardinalidade, conjuntos e subconjuntos infinitos, correspondência biunívoca; 2. Apresentar uma demonstração matemática
Noite de Forró. Série Matemática na Escola
Noite de Forró Série Matemática na Escola Objetivos 1. Definir a probabilidade de eventos; 2. Calcular a probabilidade de eventos complementares; 3. Introduzir a regra do produto em probabilidade. Noite
Volume, cones e cilindros. Série Problemas e soluções. Objetivo 1. Apresentar uma aplicação do cálculo do volume de sólidos no cotidiano.
Volume, cones e cilindros Série Problemas e soluções Objetivo 1. Apresentar uma aplicação do cálculo do volume de sólidos no cotidiano. Volume, cones e cilindros Série Problemas e Soluções Conteúdos Volumes
Para salvar o mundo. Série Matemática na Escola
Para salvar o mundo Série Matemática na Escola Objetivos 1. Apresentar o conteúdo de progressão geométrica através de situações problemas; 2. Apresentar os diferentes tipos de progressão geométrica: crescente,
A loira do banheiro. Série Matemática na Escola
A loira do banheiro Série Matemática na Escola Objetivos 1. Apresentar os princípios básicos da criptografia. 2. Mostrar o funcionamento de algumas cifras de substituição. 3. Apresentar alguns esquemas
Experimento. O experimento. Qual é a área do quadrilátero? Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia
Geometria e medidas O experimento Experimento Qual é a área do quadrilátero? Objetivos da unidade 1. Apresentar diferentes formas de se calcular ou aproximar a área de quadriláteros; 2. Analisar situações
Vinte um divisores naturais. Série Problemas e soluções
Vinte um divisores naturais Série Problemas e soluções Objetivo 1. Entender e resolver um problema que envolve números primos e a fatoração de números naturais. Vinte e um divisores naturais Série Problemas
Roda de Samba. Série Matemática na Escola
Roda de Samba Série Matemática na Escola Objetivos 1. Apresentar uma aplicação de funções quadráticas; 2. Analisar pontos de máximo de uma parábola;. Avaliar o comportamento da parábola com variações em
As aventuras do Geodetetive 6: GPS. Série Matemática na Escola
As aventuras do Geodetetive 6: GPS. Série Matemática na Escola Objetivos 1. Explicar o funcionamento do GPS 2. Mostrar a matemática envolvida na programação do GPS. As aventuras do Geodetetive 6 1/12 As
Onde está o peso extra? Série Problemas e Soluções. Objetivos 1. Estudar uma estratégia que valoriza ao máximo as informações disponíveis.
Onde está o peso extra? Série Problemas e Soluções Objetivos 1. Estudar uma estratégia que valoriza ao máximo as informações disponíveis. Onde está o peso extra? Série Problemas e soluções Conteúdos Lógica,
Tesouro Cartesiano. Série Matemática na Escola
Tesouro Cartesiano Série Matemática na Escola Objetivos 1. Apresentar um problema geométrico motivador; 2. Mostrar a eficácia da Geometria Analítica para a solução de um problema. Tesouro Cartesiano Série
Jardim de Números. Série Matemática na Escola
Jardim de Números Série Matemática na Escola Objetivos 1. Introduzir plano cartesiano; 2. Marcar pontos e traçar objetos geométricos simples em um plano cartesiano. Jardim de Números Série Matemática na
Experimento. Guia do professor. Baralho mágico. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação
Números e funções Guia do professor Experimento Baralho mágico Objetivos da unidade Examinar uma função logarítmica discreta a partir da execução de uma mágica com cartas; Motivar o estudo dos logaritmos.
A dança do Sol. Série Matemática na Escola
A dança do Sol Série Matemática na Escola Objetivos 1. Mostrar o movimento aparente e periódico do Sol no céu e sua dependência com a latitude do observador; 2. Explicar a relação entre o movimento aparente
O Mágico das Arábias. Série Matemática na Escola
O Mágico das Arábias Série Matemática na Escola Objetivos 1. Apresentar uma aplicação curiosa de operações aritméticas; 2. Reforçar o sistema decimal; 3. Mostrar outros sistemas numerais com base diferente.
A Dança do Embaralhamento. Série Matemática na Escola. Objetivos 1. Introduzir a noção de grupo de permutação; 2. Mostrar uma aplicação de MMC.
A Dança do Embaralhamento Série Matemática na Escola Objetivos 1. Introduzir a noção de grupo de permutação; 2. Mostrar uma aplicação de MMC. A dança do embaralhamento Série Matemática na Escola Conteúdos
O experimento. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância. números e funções
números e funções O experimento Objetivos da unidade Examinar uma função logarítmica discreta a partir da execução de uma mágica com cartas; Motivar o estudo dos logaritmos. licença Esta obra está licenciada
DESENHO GEOMÉTRICO 9º ANO Prof. Danilo A. L. Pereira. Atividades básicas no GEOGEBRA. Polígonos Regulares
Exercícios Polígonos Regulares 1 - Calcular a área de um triângulo. Para construção da figura você irá clicar no ícone que tem um triângulo, para fazer um polígono clique no ícone indicado por polígono,
O que é polinômio? Série O que é? Objetivos 1. Discutir o significado da palavra polinômio no contexto da Matemática.
O que é polinômio? Série O que é? Objetivos 1. Discutir o significado da palavra polinômio no contexto da Matemática. O que é polinômio? Série O que é? Conteúdos Polinômios. Duração Aprox. 10 minutos.
Software. Guia do professor. Geometria do táxi formas geométricas. Governo Federal. Ministério da Educação. Secretaria de Educação a Distância
Geometria e medidas Guia do professor Software Geometria do táxi formas geométricas Objetivo da unidade Utilizar o sistema de coordenadas cartesianas no plano e a noção de distância do táxi para explorar
O que é hipotenusa? Série O que é?
O que é hipotenusa? Série O que é? Objetivos 1. Discutir os significados da palavra hipotenusa no contexto da Matemática; 2. Apresentar o teorema dos cossenos. O que é hipotenusa? Série O que é? Conteúdos
A Parte do Leão. Série Matemática na Escola. por partes; afim por partes na resolução de um problema do cotidiano.
A Parte do Leão Série Matemática na Escola Objetivos 1. Introduzir o conceito de função por partes; 2. Aplicar o conceito de função afim por partes na resolução de um problema do cotidiano. A Parte do
Gasolina ou Álcool. Série Matemática na Escola
Gasolina ou Álcool Série Matemática na Escola Objetivos 1. Apresentar aplicações de Sistemas de Equações Lineares no balanceamento de reações químicas. Gasolina ou Álcool Série Matemática na Escola Conteúdos
Estudo da Trigonometria (I)
Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática 3º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira [email protected] Estudo da
O sonho. Série Matemática na Escola
O sonho Série Matemática na Escola Objetivos 1. Apresentar dois modelos matemáticos para o crescimento populacional humano, com a função exponencial e a função logística. 2. Analisar o crescimento populacional
Onde está o peso extra? Série Problemas e Soluções. Objetivos 1. Estudar uma estratégia que valoriza ao máximo as informações disponíveis.
Onde está o peso extra? Série Problemas e Soluções Objetivos 1. Estudar uma estratégia que valoriza ao máximo as informações disponíveis. Onde está o peso extra? Série Problemas e soluções Conteúdos Lógica,
Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar
Exercícios de Revisão 1º no Ensino Médio Prof. Osmar 1.- Sendo = { x Z / 0 x 2 } e = { y Z / 0 x 5}. esboce o gráfico da função f : tal que y = 2 x + 1 e dê seu conjunto imagem. 2.- No gráfico abaixo de
Direitos do Consumidor. Série Matemática na Escola
Direitos do Consumidor Série Matemática na Escola Objetivos 1. Introduzir o conceito de função afim; 2. Aplicar o conceito de função afim na resolução de um problema simples. Direitos do consumidor Série
A voz do interior. Série Matemática na Escola. 1. Mostrar como um problema simples pode ser resolvido com a ajuda de um sistema de equações lineares;
A voz do interior Série Matemática na Escola Objetivos 1. Mostrar como um problema simples pode ser resolvido com a ajuda de um sistema de equações lineares; A voz do interior Série Matemática na Escola
Cooperativa de Leite. Série Matemática na Escola
Cooperativa de Leite Série Matemática na Escola Objetivos 1. Introduzir matrizes através da representação tabular de dados numéricos; 2. Mostrar uma aplicação simples desse tipo de representação. Cooperativa
Qual o melhor caminho?
Qual o melhor caminho? Série Matemática na Escola Objetivos 1. Introduzir a métrica do taxista através de um exemplo cotidiano; 2. Aplicar o conceito de permutação com repetição; 3. Mostrar algumas identidades
O que é parábola? Série O que é? Objetivos. 1. Discutir os significados da palavra parábola no contexto da Matemática.
O que é parábola? Série O que é? Objetivos 1. Discutir os significados da palavra parábola no contexto da Matemática. O que é parábola? Série O que é? Conteúdos Geometria Analítica: Cônicas, Parábola.
Trigonometria na Circunferência
Formação Continuada em MATEMÁTICA Fundação CECIERJ/ Consórcio CEDERJ Matemática 1º ano 3º Bimestre/ 2012 Plano de Trabalho Trigonometria na Circunferência Fonte: http://www.slideshare.net/danielamendes2/trabalho-de-matematica-1008
Resumo: Nestas notas faremos um breve estudo sobre as principais propriedades. mínimos, gráficos e algumas aplicações simples.
Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Equação quadrática Prof. Doherty
Resumo: Nestas notas faremos um breve estudo sobre as principais propriedades. mínimos, gráficos e algumas aplicações simples.
Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Equação quadrática Prof. Doherty
Formação Continuada em Matemática Matemática 1º Ano 3º Bimestre/2012. Plano de Trabalho Função Polinomial do 2º Grau
Formação Continuada em Matemática Matemática 1º Ano 3º Bimestre/01. Plano de Trabalho Função Polinomial do º Grau Tarefa 1 Aluno: Raquel dos Santos Ramos Tutor: Denílson Herinque Cortes Introdução O plano
Aproximação da Distribuição Binomial pela Distribuição Normal
Aproximação da Distribuição Binomial pela Distribuição Normal Uma das utilidades da distribuição normal é que ela pode ser usada para fornecer aproximações para algumas distribuições de probabilidade discretas.
O que é permutação? Série O que é
O que é permutação? Série O que é Objetivos 1. Discutir o significado da palavra permutação no contexto da Matemática; 2. Apresentar os casos clássicos de problemas de análise combinatória; 3. Apresentar
TEORIA CONSTRUINDO E ANALISANDO GRÁFICOS 812EE 1 INTRODUÇÃO
CONSTRUINDO E ANALISANDO GRÁFICOS 81EE 1 TEORIA 1 INTRODUÇÃO Os assuntos tratados a seguir são de importância fundamental não somente na Matemática, mas também na Física, Química, Geografia, Estatística
Índice. AULA 5 Derivação implícita 3. AULA 6 Aplicações de derivadas 4. AULA 7 Aplicações de derivadas 6. AULA 8 Esboço de gráficos 9
www.matematicaemexercicios.com Derivadas Vol. 2 1 Índice AULA 5 Derivação implícita 3 AULA 6 Aplicações de derivadas 4 AULA 7 Aplicações de derivadas 6 AULA 8 Esboço de gráficos 9 www.matematicaemexercicios.com
Roda Roda. Série Matemática na Escola. Objetivos 1. Introduzir o conceito de permutação circular; 2. Aplicar o conceito de permutação simples.
Roda Roda Série Matemática na Escola Objetivos 1. Introduzir o conceito de permutação circular; 2. Aplicar o conceito de permutação simples. Roda Roda Série Matemática na Escola Conteúdos Permutações e
Quadra Poliesportiva. Série Matemática na Escola
Quadra Poliesportiva. Série Matemática na Escola Objetivos 1. Usar a semelhança de figuras e conceitos de geometria plana para construir uma maquete de uma quadra poliesportiva. Quadra poliesportiva Série
Naturalmente. Série Matemática na Escola
Naturalmente Série Matemática na Escola Objetivos 1. Apresentar algumas relações matemáticas presentes na natureza; 2. Motivar a descoberta de processos de otimização, que envolvem relações de geometria
Cronograma - 2º Bimestre / 2016
Prof.: TIAGO LIMA Disciplina: MATEMÁTICA Série: 1º ano EM 25/04 e 28/04 02/05 e 04/05 09/05 e 12/05 23/05 e 26/05 30/05 e 02/06 06/06 e 09/06 13/06 e 16/06 20/06 e 23/06 27/06 e 30/06 04/07 e 07/07 Função
MATEMÁTICA. O aluno achou interessante e continuou a escrever, até a décima linha. Somando os números dessa linha, ele encontrou:
MATEMÁTICA Passando em uma sala de aula, um aluno verificou que, no quadro-negro, o professor havia escrito os números naturais ímpares da seguinte maneira: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 O aluno
Teste de Gravidez. Série Matemática na Escola
Teste de Gravidez Série Matemática na Escola Objetivos 1. Exercitar a regra do produto e a construção da árvore de probabilidades; 2. Apresentar e exercitar o conceito de probabilidade condicional; 3.
1 a série E.M. Professores Tiago Miranda e Cleber Assis
Módulo de Função Quadrática Noções Básicas: Definição, Máximos e Mínimos 1 a série E.M. Professores Tiago Miranda e Cleber Assis Função Quadrática Noções Básicas: Definição, Máximos e Mínimos 1 Exercícios
PLANO DE ENSINO Disciplina: Matemática 8 a série Professor: Fábio Girão. Competências Habilidades Conteúdos. I Etapa
PLANO DE ENSINO 2015 Disciplina: Matemática 8 a série Professor: Fábio Girão I Etapa Competências Habilidades Conteúdos Construir significados e ampliar os já existentes para os números naturais, inteiros,
Plano de trabalho : Trigonometria na Circunferência
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: Escola Estadual Marques Rebelo MATRÍCULA: 0912761-4 SÉRIE: 1 a Série do Ensino médio. TUTOR (A): ANTôNIO DE ALMEIDA
TÓPICOS DE MATEMÁTICA II. O Curso está dividido em três unidades, temos que concluir todas.
TÓPICOS DE MATEMÁTICA II Roosevelt Imperiano da Silva Palavras iniciais Caros alunos, vamos iniciar o curso da disciplina Tópicos de Matemática II. Neste curso estudaremos os conjuntos numéricos e suas
3ª Igor/ Eduardo. Competência Objeto de aprendizagem Habilidade
Matemática 3ª Igor/ Eduardo 9º Ano E.F. Competência Objeto de aprendizagem Habilidade C3 - Espaço e forma Números racionais. Números irracionais. Números reais. Relações métricas nos triângulos retângulos.
CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 16: Máximos e Mínimos - 2 a Parte
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 16: Máximos e Mínimos - 2 a Parte Objetivos da Aula Denir e discutir a concavidade de uma função em um intervalo do domínio; Denir e calcular
Elipse. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Cônicas Elipse ano E.M. Professores Cleber Assis e Tiago Miranda Cônicas Elipse c) (x 1) (y ) 1 Exercícios Introdutórios Exercício 1. O ponto que representa o centro da elipse de (x 1) (y ) equação = 1
Experimento. O experimento. Como economizar cadarço. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação
geometrias e medidas O experimento Experimento Como economizar cadarço 1. 2. Objetivos da unidade Permitir ao aluno criar e testar hipóteses; Descrever situações e resolver problemas utilizando conceitos
Notas de Aulas 3 - Cônicas Prof Carlos A S Soares
Notas de Aulas 3 - Cônicas Prof Carlos A S Soares 1 Parábolas 11 Conceito e Elementos Definição 1 Sejam l uma reta e F um ponto não pertencente a l Chamamos parábola de diretriz l e foco F o conjunto dos
Trigonometria I. Círculo Trigonométrico. 2 ano E.M. Professores Cleber Assis e Tiago Miranda
Trigonometria I Círculo Trigonométrico ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria I Círculo Trigonométrico b) 6 1 Exercícios Introdutórios Exercício 1. Qual dos arcos abaixo é côngruo
RESUMO - GRÁFICOS. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação da reta
RESUMO - GRÁFICOS Função do Primeiro Grau - f(x) = ax + b O gráfico de uma função do 1 o grau, y = ax + b, é uma reta. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros
Exercícios Extras de Função Quadrática Extensivo Alfa Professor: Leandro (Pinda)
Exercícios Extras de Função Quadrática Extensivo Alfa Professor: Leandro (Pinda) 1. (Enem (Libras) 017) Suponha que para um trem trafegar de uma cidade à outra seja necessária a construção de um túnel
( ) = 0. ( ) = 30t 3t 2 é
QUESTÃO 01 t = 0 t +10t =1600 t 10t+1600 = 0 $ ou & t = 40 Portanto o primeiro momento em que o número de infectados é 1.600 é o 0 dia. QUESTÃO 0 9 Como D( x) = x + 18x+ 30, o valor de x que maximiza essa
Roteiro de estudo e exercícios de revisão
Nome Nº Série Ensino Turma 1a Médio Disciplinas Professores Natureza Trimestre/Ano Data da entrega Valor Matemática Matheus e Ocimar Roteiro de estudo e exercícios de revisão 2º / 2017 04/08/2017 0,5 Introdução
Coordenadas Cartesianas
1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos
1) (Unicamp) Três planos de telefonia celular são apresentados na tabela abaixo:
Exercícios resolvidos e comentados 1) (Unicamp) Três planos de telefonia celular são apresentados na tabela abaixo: Plano Custo fixo mensal Custo adicional por minuto A R$ 35,00 R$ 0,50 B R$ 20,00 R$ 0,80
MATERIAL COMPLEMENTAR FUNÇÃO QUADRÁTICA
MATERIAL COMPLEMENTAR FUNÇÃO QUADRÁTICA PROFESSOR SANDER 01. [FGV] João colocou para carregar seu celular que estava completamente descarregado e, em seguida, anotou diversas vezes o tempo decorrido de
GEOMETRIA ANALÍTICA. 2) Obtenha o ponto P do eixo das ordenadas que dista 10 unidades do ponto Q (6, -5).
GEOMETRIA ANALÍTICA Distância entre Dois Pontos Sejam os pontos A(xA, ya) e B(xB, yb) e sendo d(a, B) a distância entre eles, temos: Aplicando o teorema de Pitágoras ao triângulo retângulo ABC, vem: [d
Carro Flex. Série Matemática na Escola. Objetivos 1. Recordar conceitos básicos relacionados a funções; 2. Exemplificar o uso de funções no cotidiano.
Carro Flex Série Matemática na Escola Objetivos 1. Recordar conceitos básicos relacionados a funções; 2. Exemplificar o uso de funções no cotidiano. Carro flex Série Matemática na Escola Conteúdos Funções,
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º grau. Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.1 Função do 2º grau Lucas Araújo Engenharia de Produção Rafael Carvalho Engenharia Civil Roteiro Função do Segundo Grau; Gráfico da Função Quadrática;
PET FÍSICA GEOMETRIA ANALÍTICA TATIANA MIRANDA DE SOUZA JOSE CARLOS DE MORAES SILVA FREDERICO ALAN DE OLIVEIRA CRUZ
PET FÍSICA GEOMETRIA ANALÍTICA Aula 9 TATIANA MIRANDA DE SOUZA JOSE CARLOS DE MORAES SILVA FREDERICO ALAN DE OLIVEIRA CRUZ AGRADECIMENTOS Esse material foi produzido com apoio do Fundo Nacional de Desenvolvimento
O perímetro da figura é a soma de todos os seus lados: P = P =
PERÍMETRO Prof. Patricia Caldana O cálculo do perímetro de uma região pode vir a ser útil em certas situações do dia a dia; como por exemplo para se determinar a quantidade de arame farpado que é necessário
Cada gráfico no seu galho. Série Matemática na Escola
Cada gráfico no seu galho Série Matemática na Escola Objetivos 1. Apresentar diferentes tipos de gráficos 2. Mostrar que cada tipo de gráfico pode ser utilizado para determinado fim Cada gráfico no seu
Relembrando: Ângulos, Triângulos e Trigonometria...
Relembrando: Ângulos, Triângulos e Trigonometria... Este texto é apenas um resumo. Procure estudar esses assuntos em um livro apropriado. Ângulo é a região de um plano delimitada pelo encontro de duas
Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2002/03 Função quadrática - I 10.º Ano
Escola Secundária/ da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 00/0 Função quadrática - I 0º Ano Nome: Nº: Turma: Qual o rectângulo de maior área que podes construir com um cordel de metro?
Resumo Matemática Ensino Médio - 1º ano/série -3º bimestre provão - frentes 1 e 2
Frente 1 Algumas coisas retiradas de: http://www.brasilescola.com/matematica/funcao-segundo-grau.htm Critério 01: Função Quadrática: Introdução: Toda função estabelecida pela lei de formação f(x) = ax²
POSSIBILIDADES NA CONVERSÃO ENTRE REGISTROS DE GEOMETRIA PLANA Produto da dissertação Sequência Didática
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA MESTRADO PROFISSIONAL EM ENSINO DE MATEMÁTICA POSSIBILIDADES NA CONVERSÃO ENTRE REGISTROS DE GEOMETRIA PLANA
Huguinho e Zezinho. Série Matemática na Escola. Objetivos 1. Explicitar como são calculados os juros compostos
Huguinho e Zezinho Série Matemática na Escola Objetivos 1. Explicitar como são calculados os juros compostos Huguinho e Zezinho Série Matemática na Escola Conteúdos Matemática financeira; juros compostos
A equação da circunferência
A UA UL LA A equação da circunferência Introdução Nas duas últimas aulas você estudou a equação da reta. Nesta aula, veremos que uma circunferência desenhada no plano cartesiano também pode ser representada
Integral definida. Prof Luis Carlos Fabricação 2º sem
Integral definida Prof Luis Carlos Fabricação 2º sem Cálculo de Áreas Para calcular esta área, aproximamos a região por retângulos e fazemos o número de retângulos se tornar muito grande. A área exata
Conteúdos Exame Final e Avaliação Especial 2017
Componente Curricular: Matemática Série/Ano: 9º ANO Turma: 19 A, B, C, D Professora: Lisiane Murlick Bertoluci Conteúdos Exame Final e Avaliação Especial 017 1. Geometria: área de Figuras, Volume, Capacidade..
