DINÂMICA DE ESTRUTURAS E AEROELASTICIDADE
|
|
|
- Sabina Sales Cordeiro
- 9 Há anos
- Visualizações:
Transcrição
1 DINÂMICA DE ESTRUTURAS E AEROEASTICIDADE Prof. GI Aeroelasticidade Estática 1
2 Introdução à Aeroelasticidade Estática X-29 2
3 Triângulo de Collar SSA C D R A F B Z DSA DSA:Efeitos aeroelásticos na estabilidade dinâmica SSA: Efeitos aeroelásticos na estabilidade estática DS E I V A: Força aerodinâmica Fenômenos Aeroelásticos E: Força elástica F: Flutter I: Força inercial B: Buffeting Z: Resposta dinâmica Campos Relacionados : Distribuição de carga V: Vibrações mecânicas D: Divergência DS: Estabilidade dinâmica C: Eficiência de controle R: Reversão do sistema de controle 3
4 Aeroelasticidade Estática Centro Elástico (CE): é o ponto para o qual uma força normal à corda é aplicada e a seção não sofre torção, mas apenas flexão. Uma força aplicada fora do CE causa torção e flexão. CE - Centro Aerodinâmico (Ponto onde o Momento Aerodinâmico não muda) 4
5 Aeroelasticidade Estática Eixo Elástico: linha ao longo do comprimento da semi-asa, formada pelos pontos (CE) onde forças podem ser aplicadas sem resultar em torção da mesma. Esforço aplicado no eixo elástico (flexão) Esforço aplicado fora do eixo elástico (torção e flexão) Eixo elástico 5
6 : Distribuição da sustentação C C = M = x + M ( x ) M = CM q S c M xcp x x = c 4 c 2 Escoamento subsônico (consegue-se o valor exato quando se aplica a teoria dos perfis finos). Escoamento supersônico M x ac CP c CE 6
7 Seção Típica de uma Asa Seção mais representativa da asa. Em geral, é considerada a 75% da semi-envergadura da asa. Esta seção depende da rigidez torcional ao longo da asa. Eixo Elástico Seção Típica 75% CP W CE A resistência devido à rigidez torcional é a tendência de uma seção da asa em resistir à torção imposta pela seção adjacente. É representada pela Mola Torcional ( ). 7
8 Divergência Aeroelástica-1 GD e M CE e M M = V e - distância do CE ao - ângulo de ataque inicial - ângulo de torção elástica Obs.: V Geralmente o Flutter ocorre antes que a Divergência, exceto para asas com enflechamento negativo. 8
9 Equilíbrio de Momentos (ref. CE) M + e = Em termos de coeficientes aerodinâmicos, tem-se: C C M qsc + = ( + ) qse Determina o quanto tem de torção, dependendo da velocidade. Então, Obs.: = qs C e 1 q Se + cc C aumenta quando diminui o denominador. Denominador nulo corresponde a condição de divergência. M 9
10 Condição de divergência Pressão Dinâmica de Divergência (q D ): Que proporciona a divergência sobre um aerofólio. Velocidade de Divergência (V D ): Velocidade em que ocorre a Divergência. C ( + ) Total = Rígida Elástica Total = qs + O carregamento é alterado pela flexibilidade q V D D = = C Se 2 C ρse Para aumentar a V D : aumentar ; diminuir e; e reduzir o ρ (aumentar o nível de vôo). Se e <, não existe a condição de Divergência. 1
11 Condição de divergência Note os termos que compõem a relação abaixo: = qsec + qscc M qsec Rigidez Estrutural Rigidez Aerodinâmica Rigidez Aeroelástica A divergência é uma instabilidade independente da magnitude dos esforços (momentos), mas sim dependente da rigidez aeroelástica 11
12 Condição de divergência Rigidez Estrutural Rigidez Aeroelástica Rigidez Aerodinâmica 12
13 Condição de divergência Graficamente: < q SeC 2 > q SeC 1 13
14 Influência do peso O peso W, cujo ponto de aplicação é o CG, também tem influência sobre a torção elástica, devido o momento negativo gerado por ele, resultando em: M + e Wd = C ( ) CM qsc + + qse Wd = = qs C e + ccm Wd Se C 1 q Entretanto, note que a divergência independe desta força externa... 14
15 Acréscimo de sustentação Efeito Aeroelástico abaixo da VD: M C + e = Se M qse + c e C C C M + = ( + ) + qscc = = ângulo de ataque antes da torção elástica 15
16 Acréscimo de sustentação Como q D = C Se = q D Se C Então obtém-se : qse ( + ) C = q D Se C + = 1 1 q q D que é a expressão que indica o quanto de sustentação se tem em relação à asa rígida. 16
17 Sustentação Efetiva Efetiva Ex.: = V V D então Rígida + Elástica + Rígida q =,8 =, 64 q +, 3 2 Elástica D Rígida + 1 q q D Mas, com = 5 = 1, e + = 15 que está fora da faixa linear (tomar cuidado). 17
18 Considerações adicionais A eficiência da sustentação modifica o desempenho da aeronave, e deve ser considerada no projeto; A superfícies de sustentação devem ser dimensionadas considerando a flexibilidade; A redistribuição da sustentação move o centro de pressão de uma asa na direção da raiz, e para a frente (direção do BA); O estudo da estabilidade e controle da aeronave deve levar em conta os efeitos da flexibilidade. 18
19 Divergência Aeroelástica-2 GD e M h CE e M h M = V V +h e - distância do CE ao - ângulo de ataque inicial - ângulo de torção elástica h - deslocamento vertical h = rigidez em translação 19
20 Equilíbrio de Momentos e Forças (ref. CE) Sistema de duas equações a duas incógnitas: Agrupando: C M + e = = h h ( ) qs + = h h qsccm qse C + ( + ) = 2
21 Equilíbrio de Momentos e Forças (ref. CE) Na forma matricial: h h 1 h 1 qsc qsc qscc M = e + + e 1 h h 1 h 1 qsc qsc qscc M e = + e 1 qsc h h qsc 1 qscc M = qsec + e
22 Equilíbrio de Momentos e Forças (ref. CE) Na forma matricial: qsc qsc h h h qsc qsec h 1 1 h qscc qsec M 1 = + e qsec qsec
23 Equilíbrio de Momentos e Forças (ref. CE) Os deslocamentos são dados por: qsc qsc h qscc M h h = qsec qsec 1 1 qsc qsccm 1 = qsec qsec 1 1 Moral da história: A pressão dinâmica de divergência é a mesma que o caso com 1 GD. 23
24 Outros efeitos... A condição (pressão dinâmica, por exemplo) em que o aerofólio perde a sua resistência em torção é conhecida como divergência; Não apenas o efeito da compressibilidade, mas também um eventual aquecimento aerodinâmico pode mudar as características estruturais da estrutura, diminuindo a sua rigidez. (Aerotermoelasticidade). Ex. vôos em regime hipersônico. Uma falha estrutural pode alterar a característica aeroelástica e levar a divergência 24
25 Importante - efeito da compressibilidade Correção de Prandtl-Glauert: q D = Se C inc 1 M 2 A velocidade de divergência aumenta com a altitude, porém diminui com o efeito da compressibilidade. 25
EST-55 AEROELASTICIDADE. Aeroelasticidade Estática
EST-55 AEROEASTIIDADE Aeroelasticidade Estática Triângulo de ollar SSA D R A F B Z DSA DSA:Efeitos aeroelásticos na estabilidade dinâmica SSA: Efeitos aeroelásticos na estabilidade estática DS E I V A:
Uma viga em balanço (figura abaixo), com comprimento 2c, engastada rigidamente na estrutura do túnel de vento é representada graficamente por:
1 a Série de exercícios Aeroelasticidade Estática Prof. Gil 2º semestre 2009 1ª Questão: Estude o problema de um modelo de uma bomba cuja geometria é axissimétrica, a ser testado em túnel de vento. Os
DINÂMICA DE ESTRUTURAS E AEROELASTICIDADE
DINÂMICA DE ESTRUTURAS E AEROELASTICIDADE Prof. GIL Aeroelasticidade - Introdução 1 Um Modelo Dinâmico Diferente... Equações de movimento de um sistema dinâmico: {,,, } [ ]{ (,,, )} [ ] ( ) M u x y z t
DINÂMICA DE ESTRUTURAS E AEROELASTICIDADE
DINÂMICA DE ESTRUTURAS E AEROELASTICIDADE Prof. GIL Aeroelasticidade Estática Asas Enflechadas 1 O efeito do enflechamento Aeroelasticidade estática de asas enflechadas. Objetivo Determinar como a flexão,
EST-55 AEROELASTICIDADE. Aeroelasticidade Estática ASAS ENFLECHADAS
EST-55 AEROELASTICIDADE Aeroelasticidade Estática ASAS ENFLECHADAS O efeito do enflechamento Aeroelasticidade estática de asas Objetivo enflechadas. Determinar como a flexão, não somente a torção como
AEROELASTICIDADE. EST 55 Prof. Roberto Gil. R: IAE/ALA-L (Túnel de Vento)
AEROELASTICIDADE EST 55 Prof. Roberto Gil ([email protected]), R: 6482 - IAE/ALA-L (Túnel de Vento) Introdução AEROELASTICIDADE é a ciência que estuda as consequências da interação de forças de inércia, elásticas
AEROELASTICIDADE. AE-249 Prof. Roberto Gil A. Silva. R: IAE/ALA-L (Túnel de Vento) Instituto Tecnológico de Aeronáutica ITA/IEA
AEROELASTICIDADE AE-249 Prof. Roberto Gil A. Silva ([email protected]), R: 6482 - IAE/ALA-L (Túnel de Vento) Instituto Tecnológico de Aeronáutica ITA/IEA Introdução AEROELASTICIDADE é a ciência que estuda as
Introdução ao Projeto de Aeronaves. Aula 8 Características Aerodinâmicas dos Perfis
Introdução ao Projeto de Aeronaves Aula 8 Características Aerodinâmicas dos Perfis Tópicos Abordados Forças aerodinâmicas e momentos em perfis. Centro de pressão do perfil. Centro aerodinâmico do perfil.
Escolha do Perfil e da Geometria
Escolha do Perfil e da Geometria Antes de se iniciar o desenho da aeronave é necessário definir alguns parâmetros: Perfil; Geometria da asa; Geometria da cauda; Carga alar; Carga de tracção ou carga de
AERODINÂMICA Ramo da física que trata dos fenômenos que acompanham todo movimento relativo entre um corpo e o ar que o envolve.
AERODINÂMICA Ramo da física que trata dos fenômenos que acompanham todo movimento relativo entre um corpo e o ar que o envolve. CONCEITOS 1. Massa: Quantidade de matéria que forma um corpo ; Invariável.
Aeroelasticidade Estática - Torção de asas Instituto Tecnológico de Aeronáutica ITA/IEA
AE-49 - AEROELASTICIDADE Aeroelasticidade Estática - Torção de asas Instituto Tecnológico de Aeronáutica ITA/IEA Divergência de uma asa Caso de estudo divergência de uma asa sem enflechamento, com rigidez
Considerações acerca da Configuração
Considerações acerca da Configuração Existem considerações importantes que o projectista deve ter em conta quando define o arranjo inicial da aeronave; Estas considerações incluem aspectos aerodinâmicos,
Introdução ao Projeto de Aeronaves. Aula 11 Distribuição de Sustentação, Arrasto e Efeito Solo
Introdução ao Projeto de Aeronaves Aula 11 Distribuição de Sustentação, Arrasto e Efeito Solo Tópicos Abordados Distribuição Elíptica de Sustentação. Aproximação de Schrenk para Asas com Forma Geométrica
EST-55 - AEROELASTICIDADE. Aeroelasticidade Dinâmica - Flutter
EST-55 - AEROELASTICIDADE Aeroelasticidade Dinâmica - Flutter O que precisamos da aerodinâmica não estacionária para flutter? Theodorsen: ( 0.5 ) ( 1 8 ) ( 0.5 ) ( ) α ( 0.5 ) ( ) ( 0.5 ) Ck = πρ + α α
AA-220 AERODINÂMICA NÃO ESTACIONÁRIA
AA-220 AERODINÂMICA NÃO ESTACIONÁRIA Teoria das Faixas Prof. Roberto GIL Email: [email protected] Ramal: 6482 1 Teoria das Faixas Técnica para resolver um problema tridimensional empregando soluções bidimensionais
Modelo Aeroelástico na Base Modal Instituto Tecnológico de Aeronáutica ITA/IEA
AE-249 - AEROELASTICIDADE Modelo Aeroelástico na Base Modal Instituto Tecnológico de Aeronáutica ITA/IEA Modelo Aeroelástico Equações de movimento de um sistema aeroelástico geral: { s, s, s, } + [ ]{
PROJETO DE AERONAVES Uma abordagem teórica sobre os conceitos de aerodinâmica, desempenho e estabilidade Prof. MSc. Luiz Eduardo Miranda J.
PROJETO DE AERONAVES Uma abordagem teórica sobre os conceitos de aerodinâmica, desempenho e estabilidade Conceitos Fundamentais Fundamentos do Projeto Projeto conceitual Aerodinâmica Desempenho Estabilidade
Momentos Aerodinâmicos. Atmosfera Padrão. Equações nos eixos do Vento. Dinâmica Longitudinal.
Introdução ao Controle Automático de Aeronaves Momentos Aerodinâmicos. Atmosfera Padrão. Equações nos eixos do Vento. Dinâmica Longitudinal. Leonardo Tôrres [email protected] Escola de Engenharia Universidade
Escolha do Perfil e da Geometria
Escolha do Perfil e da Geometria Antes de se iniciar o desenho da aeronave é necessário definir alguns parâmetros: Perfil; Geometria da asa; Geometria da cauda; Carga alar; Tracção específica ou potência
Momentos Aerodinâmicos. Atmosfera Padrão. Equações nos eixos do Vento. Dinâmica Longitudinal.
Introdução ao Controle Automático de Aeronaves Momentos Aerodinâmicos. Atmosfera Padrão. Equações nos eixos do Vento. Dinâmica Longitudinal. Leonardo Tôrres [email protected] Escola de Engenharia Universidade
1 o Exame de Estabilidade de Voo O exame tem a duração de 3h00m. Justifique convenientemente todas as respostas.
Instituto Superior Técnico Ano Lectivo de 2014/2015 Mestrado Integrado em Engenharia Aeroespacial 5 de Janeiro de 2015 1 o Exame de Estabilidade de Voo O exame tem a duração de 3h00m. Justifique convenientemente
Introdução ao Projeto de Aeronaves. Aula 10 Características do Estol e Utilização de Flapes na Aeronave
Introdução ao Projeto de Aeronaves Aula 10 Características do Estol e Utilização de Flapes na Aeronave Tópicos Abordados O Estol e suas Características. Influência da Forma Geométrica da Asa na Propagação
Introdução ao Projeto de Aeronaves. Aula 28 Introdução ao Estudo de Cargas nas Aeronaves
Introdução ao Projeto de Aeronaves Aula 28 Introdução ao Estudo de Cargas nas Aeronaves Tópicos Abordados Introdução ao Estudo de Cargas nas Aeronaves. Tipos de Cargas nas Aeronaves Uma aeronave é projetada
Escolha do Perfil e da Geometria
Escolha do Perfil e da Geometria Antes de se iniciar o desenho da aeronave é necessário definir alguns parâmetros: Perfil; Geometria da asa; Geometria da cauda; Carga alar; Tracção específica ou potência
Introdução ao Projeto de Aeronaves. Aula 26 Estabilidade Latero-Direcional Dinâmica
Introdução ao Projeto de Aeronaves Aula 26 Estabilidade Latero-Direcional Dinâmica Tópicos Abordados Estabilidade Lateral Dinâmica. Estabilidade Direcional Dinâmica. Modos de Estabilidade Dinâmica. Fundamentos
1 03 Ge G om o etr t i r a i do o A v A iã i o, o, Fo F r o ç r as A e A ro r d o in i â n mic i as Prof. Diego Pablo
1 03 Geometria do Avião, Forças Aerodinâmicas Prof. Diego Pablo 2 - Asa - Hélice - Spinner - Carenagem da Roda - Roda - Trem de Pouso do Nariz / Bequilha - Trem de Pouso Principal - Trem de pouso - Fuselagem
DINÂMICA DE ESTRUTURAS E AEROELASTICIDADE
DINÂMICA DE ESTRUTURAS E AEROELASTICIDADE Prof. GIL Aeroelasticidade Dinâmica - Introdução 1 Introdução a aeroelasticidade dinâmica Exemplo de fenômeno aeroelástico dinâmico a ser abordado: Flutter é uma
Estabilidade Lateral-Direccional
Estabilidade Lateral-Direccional João Oliveira Departamento de Engenharia Mecânica, ACMAA Instituto Superior Técnico Estabilidade de Voo, MEAero (Versão de 26 de Outubro de 2010) João Oliveira (ACMAA,
TEORIA DE VOO E AERODINÂMICA MÓDULO 2. Aula 2.
TEORIA DE VOO E AERODINÂMICA MÓDULO 2 Aula 2 www.aerocurso.com TEORIA DE VÔO E AERODINÂMICA 2 8 COMANDOS DE VÔO E DISPOSITIVOS HIPERSUSTENTADORES Os movimentos de uma aeronave podem ser realizados em torno
EN ESTABILIDADE E CONTRoLE DE AERONAVES II - MOVIMENTO LONGITUDINAL DO AVIÃO. Maria Cecília Zanardi Fernando Madeira
EN 3205 - ESTABILIDADE E CONTRoLE DE AERONAVES II - MOVIMENTO LONGITUDINAL DO AVIÃO Maria Cecília Zanardi Fernando Madeira Estabilidade e Controle de Aeronaves II - MOVIMENTO LONGITUDINAL DO AVIÃO REFERENCIAS:
TEORIA DE VOO E AERODINÂMICA MÓDULO 2
1 TEORIA DE VOO E AERODINÂMICA MÓDULO 2 Aula 2 www.aerocurso.com 2 6 DISPOSITIVOS HIPERSUSTENTADORES. São dispositivos capazes de aumentar, consideravelmente, o coeficiente de sustentação de uma aeronave.
Introdução ao Projeto de Aeronaves. Aula 12 Empenagem, Polar de Arrasto e Aerodinâmica de Biplanos
Introdução ao Projeto de Aeronaves Aula 12 Empenagem, Polar de Arrasto e Aerodinâmica de Biplanos Tópicos Abordados Aerodinâmica da Empenagem. Polar de Arrasto da Aeronave. Considerações sobre a Aerodinâmica
Introdução. Introdução
7631 2º Ano da Licenciatura em Engenharia Aeronáutica 1. Objectivos Conhecer os princípios fundamentais do desempenho de aviões nas várias fases de voo. Analisar e optimizar o desempenho de uma dada aeronave.
INTRODUÇÃO À AERODINÂMICA DA AERONAVE
INTRODUÇÃO À AERODINÂMICA DA AERONAVE Kamal A. R. Ismail Fátima A. M. Lino 2011 Universidade Estadual de Campinas, UNICAMP [email protected] [email protected] ii INTRODUÇÃO À AERODINÂMICA DA
Introdução ao Projeto de Aeronaves. Aula 19 Introdução ao estudo de Estabilidade Estática
Introdução ao Projeto de Aeronaves Aula 19 Introdução ao estudo de Estabilidade Estática Tópicos Abordados Introdução à Estabilidade Estática. Definição de Estabilidade. Determinação da Posição do Centro
EQUIPE F-CARRANCA AERODESIGN
EQUIPE F-CARRANCA AERODESIGN PROCESSO SELETIVO 2018 (PROJETO ELÉTRICO) EDITAL Elaborado pelos membros da equipe F-Carranca Aerodesign Juazeiro-BA, janeiro de 2018 SUMÁRIO 1. A EQUIPE F-CARRANCA... 3 2.
Cargas e Estruturas. Feito por: Fabiano / Massuia
4º Fórum SAE Aerodesign 2009 Cargas e Estruturas Feito por: Fabiano / Massuia Índice Cargas: O que é... Importância Interfaces Fluxograma Condições de Vôo Cargas nos Componentes Cargas no Trem de Pouso
MVO-11: Dinâmica de Veículos Aeroespaciais
(carga horária: 64 horas) Departamento de Mecânica do Voo Divisão de Engenharia Aeronáutica Instituto Tecnológico de Aeronáutica 2014 PARTE II Modelo Aerodinâmico resultante aerodinâmica sustentação velocidade
Aeroelasticidade Estática - Torção de asas Instituto Tecnológico de Aeronáutica ITA/IEA
AE-49 - AEROELASTICIDADE Aeroelasticidade Estática - Torção de asas Instituto Tecnológico de Aeronáutica ITA/IEA Divergência de uma asa Caso de estudo divergência de uma asa sem enflechamento, com rigidez
AA-220 AERODINÂMICA NÃO ESTACIONÁRIA
AA-220 AERODINÂMICA NÃO ESTACIONÁRIA Aerofólio fino em regime incompressível não estacionário (baseado nas Notas de Aula do Prof Donizeti de Andrade) Prof. Roberto GIL Email: [email protected] Ramal: 6482 1 Relembrando
Ponto de Separação e Esteira
Ponto de Separação e Esteira p/ x=0 p/ x0 Escoamento separado O fluido é desacelerado devido aos efeitos viscosos. Se o gradiente de pressão é nulo, p/x=0, não há influência no escoamento. Na região
Introdução ao Projeto de Aeronaves. Aula 16 Vôo de Planeio, Desempenho de Decolagem e de pouso
Introdução ao Projeto de Aeronaves Aula 16 Vôo de Planeio, Desempenho de Decolagem e de pouso Tópicos Abordados Vôo de Planeio (descida não tracionada). Desempenho na Decolagem. Desempenho no Pouso. Vôo
Compressibilidade. Para todos os fins práticos, os líquidos e os sólidos são incompressíveis.
Compressibilidade Uma substância é compressível se seu volume variar (indiretamente) de acordo com a pressão por ele suportada. Caso contrário, isto é, se a substância não se modificar com a pressão ela
PRJ-22. Dimensionamento Estrutural. Prof. Dr. Adson Agrico de Paula Departamento de Projetos de Aeronaves Divisão de Engenharia Aeronáutica - ITA
PRJ-22 Dimensionamento Estrutural Prof. Dr. Adson Agrico de Paula Departamento de Projetos de Aeronaves Divisão de Engenharia Aeronáutica - ITA Elementos da aeronave Asa Empenagens Fuselagens Motor, armamento,
Escoamentos Compressíveis. Capítulo 09 Escoamentos linearizados
Escoamentos Compressíveis Capítulo 09 Escoamentos linearizados 1 9.1 Equação linearizada do potencial de velocidade Considere um escoamento bidimensional, isentrópico e irrotacional sobre um corpo imerso
Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13
Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 212/13 Exame de 2ª época, 2 de Fevereiro de 213 Nome : Hora : 8: Número: Duração : 3 horas 1ª Parte : Sem consulta 2ª Parte : Consulta
Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13
Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2012/13 Exame de 3ª época, 19 de Julho de 2013 Nome : Hora : 15:00 Número: Duração : 3 horas 1ª Parte : Sem consulta 2ª Parte : Consulta
1 ESCOLA POLITÉCNICA DA USP Estrutura Mecânica Eduardo L. L. Cabral ESCOLA POLITÉCNICA DA USP
[email protected] 1 PMR2560 Robótica Estrutura Mecânica Eduardo L. L. Cabral [email protected] [email protected] 2 Objetivos - ligamentos: Características; Materiais utilizados; Balanceamento: Estático (contra-peso,
Dinâmica de gases. Capítulo 04 Choques oblíquos e ondas de expansão
Dinâmica de gases Capítulo 04 Choques oblíquos e ondas de expansão 4. Introdução Choques normais são um caso especial de uma família de ondas oblíquas que ocorrem em escoamentos supersônicos. Choques oblíquos
1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm²
CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA O ENADE 1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional 42 knm² Formulário: equação
PROPOSTA CONCEITUAL DE EXCITADOR DE FLUTTER ALTERNATIVO PARA ENSAIOS EM VÔO
Jorge Henrique Bidinotto PROPOSTA CONCEITUAL DE EXCITADOR DE FLUTTER ALTERNATIVO PARA ENSAIOS EM VÔO Dissertação apresentada à Escola de Engenharia de São Carlos da Universidade de São Paulo para obtenção
Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2016/17
Mestrado Integrado em Engenharia Mecânica Aerodinâmica º Semestre 6/ Exame de ª época, 4 de Janeiro de Nome : Hora : 8: Número: Duração : 3 horas ª Parte : Sem consulta ª Parte : Consulta limitada a livros
Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2015/16
Mestrado Integrado em Engenharia Mecânica Aerodinâmica º Semestre 5/6 Exame de ª época, 8 de Janeiro de 6 Nome : Hora : 8:3 Número: Duração : 3 horas ª Parte : Sem consulta ª Parte : onsulta limitada a
Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2015/16
Mestrado Integrado em Engenharia Mecânica Aerodinâmica º Semestre 05/6 Exame de ª época, 5 de Janeiro de 06 Nome : Hora : :30 Número: Duração : 3 horas ª Parte : Sem consulta ª Parte : Consulta limitada
2 MÉTODO DIRETO 2.2 ELEMENTO DE MOLA 1-D. Escola Engenharia Universidade Presbiteriana Mackenzie Departamento de Engenharia Civil
Escola Engenharia Universidade Presbiteriana Macenzie MÉTODO DIRETO. ELEMENTO DE MOLA -D Escola Engenharia Universidade Presbiteriana Macenzie. ELEMENTO DE MOLA -D HIPÓTESES BÁSICAS Material elástico-linear
Sumário. CAPÍTULO 1 Os primeiros engenheiros aeronáuticos 1
Sumário CAPÍTULO 1 Os primeiros engenheiros aeronáuticos 1 1.1 Introdução 1 1.2 Primeiros avanços 3 1.3 Sir George Cayley (1773 1857): o verdadeiro inventor do avião 6 1.4 O interregno de 1853 a 1891 13
Aula 11 Conhecimentos Técnicos sobre Aviões
Universidade Federal do ABC Aula 11 Conhecimentos Técnicos sobre Aviões AESTS002 AERONÁUTICA I-A Suporte ao aluno Site do prof. Annibal: https://sites.google.com/site/annibalhetem/aes ts002-aeronautica-i-a
Segundo Exercício de Modelagem e Simulação Computacional Maio 2012 EMSC#2 - MECÂNICA B PME 2200
Segundo Exercício de Modelagem e Simulação Computacional Maio 01 EMSC# - MECÂNICA B PME 00 1. ENUNCIADO DO PROBLEMA Um planador (vide Fig. 1) se aproxima da pista do aeroporto para pouso com ângulo de
Introdução ao Projeto de Aeronaves. Aula 30 Cargas Atuantes nas Asas, na Empenagem, na Fuselagem e no Trem de Pouso
Introdução ao Projeto de Aeronaves Aula 30 Cargas Atuantes nas Asas, na Empenagem, na Fuselagem e no Trem de Pouso Tópicos Abordados Cargas Atuantes nas Asas. Cargas na Empenagem. Cargas Atuantes na Fuselagem.
Física 1. 2 a prova 02/07/2016. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 2 a prova 02/07/2016 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua
Prof. Raphael Carvalho
1 Prof. Raphael Carvalho LIVRO: MECÂNICA CAPÍTULO 5: Fornece uma introdução do conceito. CAPÍTULO 6: Explica o processo vetorial de soma das forças. CAPÍTULO 7: Aplicações do processo vetorial de soma
Apresentação do professor, da matéria e dos alunos. Aerodinâmica: caracterização; noções básicas.
Detalhes da Disciplina Código AER2031 Nome da Disciplina TEORIA DE VOO II Carga Horária 60 Créditos 4 Ementa Objetivos Gerais Teoria de voo de baixa e alta velocidade. Esforços estruturais. Mecânica de
Propriedades do ar que afetam o voo; O altímetro: função e características. Forças que operam durante o voo sobre a aeronave.
Detalhes da Disciplina Código AER2031 Nome da Disciplina TEORIA DE VOO II Carga Horária 60 Créditos 4 Ementa Objetivos Gerais Teoria de voo de baixa e alta velocidade. Esforços estruturais. Mecânica de
Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2014/15
Mestrado Integrado em Engenharia Mecânica Aerodinâmica º Semestre 4/5 Exame de ª época, 3 de Janeiro de 5 Nome : Hora : 8: Número: Duração : 3 horas ª Parte : Sem consulta ª Parte : onsulta limitada a
DIMENSIONAMENTO DE BARRA COMPRIMIDAS
UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONHA E MUCURI INSTITUTO DE CIÊNCIA, ENGENHARIA E TECNOLOGIA ENGENHARIA CIVIL ECV 113 ESTRUTURAS DE CONCRETO, METÁLICAS E DE MADEIRA DIMENSIONAMENTO DE BARRA COMPRIMIDAS
Aula 3 Equilíbrio de uma partícula
Aula 3 Equilíbrio de uma partícula slide 1 Condição de equilíbrio de uma partícula Para manter o equilíbrio, é necessário satisfazer a primeira lei do movimento de Newton: onde ΣF é a soma vetorial de
Introdução ao Projeto de Aeronaves. Aula 23 Estabilidade Direcional Estática e Controle Direcional
Introdução ao Projeto de Aeronaes Aula 23 Estabilidade Direcional Estática e Controle Direcional Tópicos Abordados Análise de Estabilidade Direcional Estática. Princípios do Controle Direcional. Estabilidade
Física 1. 2 a prova 02/07/2016. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 2 a prova 02/07/2016 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua
Aula 12 Conhecimentos Técnicos sobre Aviões
Universidade Federal do ABC Aula 12 Conhecimentos Técnicos sobre Aviões AESTS002 AERONÁUTICA I-A Suporte ao aluno Site do prof. Annibal: https://sites.google.com/site/annibalhetem/aes ts002-aeronautica-i-a
CONTEÚDOS PROGRAMADOS. (Análise Computacional de Tensões EEK 533)
(Análise Computacional de Tensões EEK 533) - AULAS POR UNIDADE 1 - Princípios Variacionais 1.1 - Princípio dos Trabalhos Virtuais 1.2 - Princípios da Mínima Energia Total e da Mínima energia complementar.
RESISTÊNCIA DOS MATERIAIS CONTROLE DE QUALIDADE INDUSTRIAL Aula 01 INTRODUÇÃO
CONTROLE DE QUALIDADE INDUSTRIAL A resistência dos materiais é um assunto bastante antigo. Os cientistas da antiga Grécia já tinham o conhecimento do fundamento da estática, porém poucos sabiam do problema
Aerodinâmica I. Cálculo Numérico do Escoamento em Torno de Perfis Método dos paineis Γ S
( P) σ Aerodinâmica I [ ln( r( P, q) )] σ ( q) ds + ( V ) + γ ov np = vwp + Γ S π np O método dos paineis transforma a equação integral de Fredholm da segunda espécie num sistema de equações algébrico,
SAPATAS - DIMENSIONAMENTO
SAPATAS - DIMENSIONAMENTO VERIFICAÇÕES PRELIMINARES ORDEM DE GRANDEZA DO CARREGAMENTO VERIFICAÇÕES PRELIMINARES VIABILIDADE DO EMPREGO DE FUNDAÇÃO DIRETA Exemplo VERIFICAÇÕES PRELIMINARES TENDÊNCIA AO
Aula 13 Conhecimentos Técnicos sobre Aviões
Universidade Federal do ABC Aula 13 Conhecimentos Técnicos sobre Aviões AESTS002 AERONÁUTICA I-A Suporte ao aluno Site do prof. Annibal: https://sites.google.com/site/annibalhetem/aes ts002-aeronautica-i-a
RESUMO MECFLU P2. 1. EQUAÇÃO DE BERNOULLI Estudo das propriedades de um escoamento ao longo de uma linha de corrente.
RESUMO MECFLU P2 1. EQUAÇÃO DE BERNOULLI Estudo das propriedades de um escoamento ao longo de uma linha de corrente. Hipóteses Fluido invíscido (viscosidade nula) não ocorre perda de energia. Fluido incompressível
MVO-10 Desempenho de Aeronaves
MVO-10 Desempenho de Aeronaves (carga horária: 64 horas) Flávio Silvestre / Maurício Morales Departamento de Mecânica do Vôo Divisão de Engenharia Aeronáutica Instituto Tecnológico de Aeronáutica 2012
Aula 6 Propriedades dos materiais
Aula 6 Propriedades Mecânicas dos Materiais E-mail: [email protected] Universidade Federal do ABC Princípios de Reabilitação e Tecnologias Assistivas 3º Quadrimestre de 2018 Conceitos fundamentais
UNIVERSIDADE FEDERAL DO ACRE
UNIVERSIDADE FEDERAL DO ACRE PRÓ-REITORIA DE GRADUAÇÃO EDITAL Nº 04/2016-PROGRAD PROVA ESCRITA ÁREA: FÍSICA GERAL Questão 1. (Valor 2,0) Um foguete modelo de 4,00 kg é lançado verticalmente para cima com
Sempre que há movimento relativo entre um corpo sólido e fluido, o sólido sofre a ação de uma força devido a ação do fluido.
V ESCOAMENTO F AO REOR E CORPOS SUBMERSOS F F F S F Sempre que há movimento relativo entre um corpo sólido e fluido, o sólido sofre a ação de uma força devido a ação do fluido. é a força total que possui
O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal.
CENTRÓIDES E MOMENTO DE INÉRCIA Centróide O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. De uma maneira bem simples: centróide
Com o aumento da carga alar de um determinado perfil: a) Aumenta a sua velocidade máxima. b) Aumenta o afundamento. c) Aumenta o planeio. d) Aumenta a
Num parapente: a) O princípio físico do voo, tem por base o efeito de Vortex criado nos bordos marginais. b) A utilização repentina do acelerador (movimento brusco) ajuda a que a asa não perca muita altitude.
