Linguagens Formais e Autômatos (LFA)
|
|
|
- Airton Fernandes Regueira
- 9 Há anos
- Visualizações:
Transcrição
1 Linguagens Formais e Autômatos (LFA) Aula de 28/08/2013 Sobre as respostas das duplas aos exercícios cios propostos 1
2 Fatos extraídos dos scores das duplas Tempo médio de resposta - A série inteira de exercício, conforme informado pelas duplas, foi resolvida em 31:28 minutos em média. - O percentual médio de confiança das duplas nas respostas dadas (opção completo e correto ) foi de 62%, Há duplas com menos de 30% de grau de certeza sobre seu desempenho: sinal não muito promissor de acúmulo de dúvidas sobre a matéria Sobre se as duplas que têm alto grau de certeza a respeito de seu desempenho estão de fato sabendo tudo ou não, vamos conferir nos próximos slides. 2
3 Exercício 1 Seja o autômato A = 1. Utilizando o seguinte formalismo simplificado: A : Q = <conjunto completo de estados> I = <conjunto unitário de estados iniciais> F = <conjunto completo de estados finais> = <alfabeto reconhecido> = tuplas de transição (qi,, qj) onde qi = estado corrente = símbolo lido pelo cabeçote qj = estado-alvo da transição defina formalmente o autômato A. 3
4 Resposta do Exercício 1 A : { Q = {q0, q1, q2} I = {q0} F = {q1} = {a,b} = { (q0,a,q0), (q0,b,q1), (q1,b,q, (q2,b,q1) } } 4
5 Exercício 2 - Resposta Seja o autômato A = 2. Que tipos de cadeias este autômato aceita? a*b(bb)* Ou seja, qualquer cadeias que resulte da concatenação de: Zero ou mais a com Um b com Zero ou mais bb (isto é, a cadeia formada pela concatenação de b com b, iterada (=repetida) zero ou mais vezes) 5
6 Comentário sobre a resposta do exercício 2 Algumas duplas responderam algo assim: Cadeias formadas por zero a infinitos a seguidos de 1 a infinitos b, sendo que o número de b tem de ser ímpar. É verdade. Este é o tipo de cadeia formada. Mas, como estamos aprendendo a formalizar linguagens, a resposta destas duplas é ainda informal (embora não esteja errada). Para dar uma resposta formal e correta, vamos utilizar os conceitos e as operações aprendidas na Aula 3 (slides de 8 em diante, sobretudo). É o que veem na resposta apresentada no slide anterior: a*b(bb)*. 6
7 Exercício Seja o autômato A = 3. Utilizando tuplas (qi,,qj) para representar (estado corrente, símbolo lido, próximo estado), apresente a sequência completa de reconhecimento para as seguintes cadeias: ab (q0,a,q0),(q0,b,q1) aaaaab (q0,a,q0), (q0,a,q0), (q0,a,q0), (q0,a,q0), (q0,a,q0),(q0,b,q1) abbbbb (q0,aq0),(q0,b,q1),(q1,b,q,(q2,b,q1), (q1,b,q,(q2,b,q1) b (q0,b,q1) a (q0,a,q0) -- Esta cadeia não é aceita: por quê? bb (q0,b,q1),(q1,b,q -- Esta cadeia não é aceita: por quê? 7
8 Exercício Seja o autômato A = 4. Utilizando os programas em Ruby apresentados na aula passada, implemente o reconhecedor associado a A. Basta que editem um dos arquivos Exemplo*.rb do diretório afd. Vejam no slide seguinte o resultado no ambiente instalado no computador de um dos professores da disciplina. 8
9 9
10 Exercício Seja o autômato A = 5. Escreva uma gramática regular que gere exatamente as mesmas cadeias aceitas pelo reconhecedor que você implementou. Lembrete - Uma gramática regular é definida por uma tupla {V,,P,S} onde: V=vocabulário finito e não vazio com TODOS os símbolos que aparecem à esquerda ou direita de regras de reescrita; é o alfabeto da linguagem (isto é, os símbolos terminais que podem aparecer em cadeias gramaticais da linguagem); P é o conjunto de regras de reescrita; e S é o símbolo raiz de todas as derivações. GramReg : V = {a,b,a,b,c,d,s} ; = {a,b} ; S; P = { S b A bc S bc C bd S aa D b A aa D bc A b } 10
11 Como conferir se uma gramática proposta está certa? JFLAP 1. Clique em Grammar 2. Na janela nova, transcreva a sua gramática candidata 3. Teste se a sua gramática é regular (menu Test ) 4. Se for, a mensagem diz entre parênteses (Regular Grammar and Context Free Grammar) ; prossiga. [Continua no próximo slide] 11
12 Como conferir se uma gramática proposta está certa? [Continuação] 5. Crie uma massa de testes, com cadeias que você sabe que devem ser aceitas e que devem ser rejeitadas. 6. Verifique o que acontece quando sua massa de testes é processada: Clique em Input e selecione Multiple CYK Parse Quando a nova janela abrir, forneça sua massa de teste e Clique em Run Inputs Se sua gramática for equivalente ao reconhecedor associado ao autômato A, então ela deverá: -- gerar corretamente (e fazer um parse bem sucedido) de cadeias a*b(bb)* [accept] -- não gerar cadeias cuja forma não seja w = a*b(bb)* Para testar a cadeia vazia, cliquem em Enter lambda. 12
13 Resultado da Gramática Proposta Este é o exercício mais difícil da série. É só para testar as intuições de vocês. Estudaremos algoritmos de conversão entre Gramáticas e Autômatos no próximo capítulo da matéria. 13
14 Exercícios Sejam as gramáticas G1, G2, G3, G4 e G5, cujas regras de reescrita são as seguintes: G1 S -> a S -> as Regular Tipo 3 G2 1. Diga que tipo de gramática é cada uma delas, segundo a Hierarquia de Chomsky. S -> AS bs ->Sb A -> a A -> b A -> aa Sensível a Contexto Tipo 1 G3 S -> AS S -> b A -> a A -> aa Livre de Contexto Tipo 2 G4 S -> ASB S -> c A -> a A -> aa B -> b B -> bb Livre de Contexto Tipo 2 G5 S -> XC X -> x X -> xx xxxx -> xxxx xxc -> xxc -> C Irrestrita Tipo 0 14
15 Exercícios Sejam as gramáticas G1, G2, G3, G4 e G5, cujas regras de reescrita são as seguintes: G1 G2 G3 G4 G5 S -> a S -> as S -> AS bs ->Sb A -> a A -> b A -> aa S -> AS S -> b A -> a A -> aa S -> ASB S -> c A -> a A -> aa B -> b B -> bb S -> XC X -> x X -> xx xxxx -> xxxx xxc -> xxc -> C 2. Mostre o caminho de derivação de pelos menos duas cadeias diferentes para cada uma delas, usando a notação do slide 5. 15
16 Exemplos de Derivações Para G1: S -> a S -> as -> aas -> aaa G1 S -> a S -> as Para G2: S -> AS -> as -> aas -> abs -> asb -> aasb -> aasb -> Temos um problema com esta gramática; o processo de derivação não para. Podem tentar vários caminhos alternativos, todos levarão a pontos da derivação - as ou bs -> Sb - que já foram visitados e de onde não se consegue sair. É um ciclo pernicioso que mostra que esta gramática está mal-formada. Mais adiante na matéria procuraremos caracterizar formalmente o sinal da má-formação desta gramática. G2 S -> AS bs ->Sb A -> a A -> b A -> aa 16
17 Exemplos de Derivações G3 Para G3: S -> AS -> aas -> aaas -> aaas -> aaab S -> AS -> aas -> aaas -> aaas -> aaaas -> aaaas -> aaaab Para G4: S -> ASB -> aasb -> aasb -> aacb -> aacbb -> aacbbb -> aacbbbb -> aacbbbb S -> ASB -> aasb -> aaasb -> aaaasb -> aaaasb -> aaaacb -> aaaacbb -> aaaacbbb -> aaaacbbbb -> aaaacbbbb S -> AS S -> b A -> a A -> aa G4 S -> ASB S -> c A -> a A -> aa B -> b B -> bb 17
18 Algumas Derivações para G5 G5 S -> XC S -> XC -> xc -- parou a derivação aqui! X -> x X -> xx S -> XC -> xxc -> xxc -> xxxx -> xxxx S -> XC -> xxc -> xxc -> C -- parou a derivação aqui! xxc -> S -> XC -> xxc -> xxxc -> xxxc -> x xxc -> C S -> XC -> xxc -> xxxc -> xxxxc -> xxxxc -> xxxxc -> xx S -> XC -> xxc -> xxxc -> xxxxc -> xxxxc -> xxxxxc -> xxxxxc -> xxx (Ufa!) -> xxxxxxxxxxxxx S -> XC -> xxc -> xxxc -> xxxxc -> xxxxc -> xxxxxc -> xxxxxc -> xxxc (Oh, não!) <complete uma derivação você mesmo> 18
19 Explorando o JFLAP na derivação gramatical Veja o vídeo de demonstração online. Video S-aS.mp4 Video S-aS-derivacao.mp4 19
20 Múltiplos caminhos de derivação O importante é que a cada passo seja válida da reescrita realizada, isto é: que haja uma regra autorizando a substituição. Diferentes caminhos têm, computacionalmente, diferentes vantagens e desvantagens, dependendo do propósito e do contexto da derivação. Vejam como a mesma cadeia é aceita por 3 parsers (analisadores sintáticos) diferentes, que geram 3 árvores diferentes! Video S-aS-parsers.mp4 20
Prova 1 de INF1626 Linguagens Formais e Autômatos
Prova 1 de INF1626 Linguagens Formais e Autômatos Aluno(a): Matrícula: Atenção: O tempo total de prova é de 110 minutos (09:05 às 10:55). Durante a prova não é permitido o uso de qualquer aparelho eletrônico
Gramática regular. IBM1088 Linguagens Formais e Teoria da Computação. Evandro Eduardo Seron Ruiz Universidade de São Paulo
Gramática regular IBM1088 Linguagens Formais e Teoria da Computação Evandro Eduardo Seron Ruiz [email protected] Universidade de São Paulo E.E.S. Ruiz (USP) LFA 1 / 41 Frase do dia Através de três métodos
Linguagens Formais. Aula 01 - Conceitos Básicos. Prof. Othon Batista Mestre em Informática
Linguagens Formais Aula 01 - Conceitos Básicos Prof. Othon Batista Mestre em Informática Sumário Introdução à Linguagem Alfabeto Cadeias de Símbolos, Palavras Tamanho de Palavra Prefixo, Sufixo ou Subpalavra
Construção de Compiladores Aula 16 - Análise Sintática
Construção de Compiladores Aula 16 - Análise Sintática Bruno Müller Junior Departamento de Informática UFPR 25 de Setembro de 2014 1 Introdução Hierarquia de Chomsky Reconhecedores Linguagens Livres de
LINGUAGEM LIVRE DE CONTEXTO GRAMÁTICA LIVRE DE CONTEXTO
LINGUAGEM LIVRE DE CONTEXTO As Linguagens Livres de Contexto é um reconhecedor de linguagens, capaz de aceitar palavras corretas (cadeia, sentenças) da linguagem. Por exemplo, os autômatos. Um gerador
Teoria da Computação Gramáticas, Linguagens Algébricas e Autómatos de Pilha
Teoria da Computação Gramáticas, Linguagens Algébricas e Autómatos de Pilha Simão Melo de Sousa 12 de Outubro de 2011 Conteúdo 1 Gramáticas e Definições básicas 1 2 Gramáticas e Linguagens 4 2.1 Gramáticas
Linguagens Livres de Contexto
Universidade Católica de Pelotas Centro Politécnico Bacharelado em Ciência da Computação 364018 Linguagens Formais e Autômatos TEXTO 4 Linguagens Livres de Contexto Prof. Luiz A M Palazzo Maio de 2011
Gramáticas Livres de Contexto
Gramáticas Livres de Contexto IBM1088 Linguagens Formais e Teoria da Computação Evandro Eduardo Seron Ruiz [email protected] Universidade de São Paulo E.E.S. Ruiz (USP) LFA 1 / 42 Frase do dia Quando vires
COMPILADORES. Revisão Linguagens formais Parte 01. Geovane Griesang
Universidade de Santa Cruz do Sul UNISC Departamento de informática COMPILADORES Revisão Linguagens formais Parte 01 [email protected] Legenda: = sigma (somatório) = delta ε = épsilon λ = lambda
Linguagens Formais e Autômatos P. Blauth Menezes
Linguagens Formais e Autômatos P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Ciência da Computação - P. Blauth Menezes
Compiladores I Prof. Ricardo Santos (cap 3 Análise Léxica: Introdução, Revisão LFA)
Compiladores I Prof. Ricardo Santos (cap 3 Análise Léxica: Introdução, Revisão LFA) Análise Léxica A primeira fase da compilação Recebe os caracteres de entrada do programa e os converte em um fluxo de
ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO
ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO 2. Linguagens Livres-do-Contexto Referência: SIPSER, M. Introdução à Teoria da Computação. 2ª edição, Ed. Thomson Prof. Marcelo S. Lauretto [email protected]
Compiladores Aula 4. Celso Olivete Júnior.
Aula 4 Celso Olivete Júnior [email protected] Na aula de hoje... Revisão: gramáticas Relações em uma gramática: Cabeça, Último, Primeiro (First) e Seguinte (Follow) Capítulo 4 (seção 4.4.2) do livro
Aula 8: Gramáticas Livres de Contexto
Teoria da Computação Primeiro Semestre, 2015 Aula 8: Gramáticas Livres de Contexto DAINF-UTFPR Prof. Ricardo Dutra da Silva Veremos agora maneira de gerar as strings de um tipo específico de linguagem,
COMPILADORES. Revisão Linguagens formais Parte 02. Prof. Geovane Griesang
Universidade de Santa Cruz do Sul UNISC Departamento de informática COMPILADORES Revisão Linguagens formais Parte 02 Prof. [email protected] Legenda: = sigma (somatório) = delta ε = epsilon λ =
Linguagens Regulares. Prof. Daniel Oliveira
Linguagens Regulares Prof. Daniel Oliveira Linguagens Regulares Linguagens Regulares ou Tipo 3 Hierarquia de Chomsky Linguagens Regulares Aborda-se os seguintes formalismos: Autômatos Finitos Expressões
Linguagens Livres de Contexto
Linguagens Livres de Contexto 1 Roteiro Gramáticas livres de contexto Representação de linguagens livres de contexto Formas normais para gramáticas livres de contexto Gramáticas ambíguas Autômatos de Pilha
Teoria da Computação Aula 02 Introdução
Teoria da Computação Aula 02 Introdução Prof. Esp. Pedro Luís Antonelli Anhanguera Educacional Alfabeto Um alfabeto é um conjunto finito de símbolos ou caracteres, representado pela letra sigma ( ). Portanto:
Conceitos básicos de Teoria da Computação
Folha Prática Conceitos básicos de 1 Conceitos básicos de Métodos de Prova 1. Provar por indução matemática que para todo o número natural n: a) 1 + 2 + 2 2 + + 2 n = 2 n+1 1, para n 0 b) 1 2 + 2 2 + 3
Linguagens e Programação Gramáticas. Paulo Proença
Linguagens e Programação Gramáticas Gramáticas Ferramenta para a descrição e análise de linguagens; Baseada num conjunto de regras que especificam o modo de construção das frases válidas na linguagem;
Gramáticas ( [HMU00], Cap. 5.1)
Gramáticas ( [HMU00], Cap. 5.1) Vimos que a seguinte linguagem não é regular L = {0 n 1 n n 0} Contudo podemos fácilmente dar uma definição indutiva das suas palavras: 1. ɛ L 2. Se x L então 0x1 L L é
IBM1088 Linguagens Formais e Teoria da
IBM1088 Linguagens Formais e Teoria da Computação Linguagens e Gramáticas Evandro Eduardo Seron Ruiz [email protected] Universidade de São Paulo E.E.S. Ruiz (USP) LFA 1 / 47 Frase do dia Sofremos muito com
Apostila 01 Fundamentação da Teoria da Computação e Linguagens Formais
Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e
Linguagens Formais e Autômatos (LFA)
Linguagens Formais e Autômatos (LFA) Aula de 18/11/2013 Linguagens Recursivamente Enumeráveis, Complexidade (Custo) de Tempo/Espaço, Transdutores para exibir complexidade de Tempo/Espaço 1 Linguagens Recursivamente
Disciplina: LINGUAGENS FORMAIS, AUTÔMATOS E COMPUTABILIDADE Prof. Jefferson Morais
UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS FACULDADE DE COMPUTAÇÃO CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO Disciplina: LINGUAGENS FORMAIS, AUTÔMATOS E COMPUTABILIDADE Prof.
Prova 2 de INF1626 Linguagens Formais e Autômatos
Prova 2 de INF1626 Linguagens Formais e Autômatos Aluno(a): Matrícula: Atenção: O tempo total de prova é de 110 minutos (09:05 às 10:55). Durante a prova não é permitido o uso de qualquer aparelho eletrônico
Gramáticas e Linguagens Independentes de Contexto
Gramáticas e Linguagens Independentes de Contexto 6.1 Responde às uestões seguintes considerando a gramática independente de contexto G = (V, {a, b}, P, R), onde o conjunto de regras P é: R XRX S S at
SCC 205 Teoria da Computação e Linguagens Formais
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Ciências de Computação SCC 205 Teoria da Computação e Linguagens Formais Autômatos com pilha Lista 3 1. Dê um
Conceitos Básicos. Vocabulário Cadeias Linguagens Expressões Regulares Problema X Linguagem
Conceitos Básicos Vocabulário Cadeias Linguagens Expressões Regulares Problema X Linguagem Alfabeto ou Vocabulário: Conjunto finito não vazio de símbolos. Símbolo é um elemento qualquer de um alfabeto.
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Curso de Ciências de Computação
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Curso de Ciências de Computação SCC-205 TEORIA DA COMPUTAÇÃO E LINGUAGENS FORMAIS Turma 1 2º. Semestre de 2012 Prof. João Luís
LFA Aula 09. Gramáticas e Linguagens Livres de Contexto 18/01/2016. Linguagens Formais e Autômatos. Celso Olivete Júnior.
LFA Aula 09 Gramáticas e Linguagens Livres de Contexto (Hopcroft, 2002) 18/01/2016 Celso Olivete Júnior [email protected] www.fct.unesp.br/docentes/dmec/olivete/lfa 1 Classes Gramaticais Linguagens
Linguagens Formais e Autômatos P. Blauth Menezes
Linguagens Formais e Autômatos P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Linguagens Formais e Autômatos - P. Blauth Menezes 1 Linguagens
Construção de Compiladores
Construção de Compiladores Parte 1 Introdução Linguagens e Gramáticas F.A. Vanini IC Unicamp Klais Soluções Motivação Porque compiladores? São ferramentas fundamentais no processo de desenvolvimento de
SCC Capítulo 3 Linguagens Sensíveis ao Contexto e Autômatos Limitados Linearmente
SCC-505 - Capítulo 3 Linguagens Sensíveis ao Contexto e João Luís Garcia Rosa 1 1 Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação - Universidade de São Paulo http://www.icmc.usp.br/~joaoluis
Linguagens Formais e Autômatos (LFA)
Linguagens Formais e Autômatos (LFA) Aula de 09/09/2013 Panorama do Restante da Disciplina 1 Próximo Tópicos da Matéria Linguagens Autômatos Regulares Autômatos Finitos Máquinas de Moore e Mealy Livres
Linguagens Formais e Autômatos P. Blauth Menezes
Linguagens Formais e Autômatos P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Linguagens Formais e Autômatos - P. Blauth Menezes 1 Linguagens
As linguagens regulares são I.C Proposição Qualquer linguagem regular é independente de contexto.
As linguagens regulares são I.C Proposição 16.1. Qualquer linguagem regular é independente de contexto. Dem. Seja L Σ uma linguagem regular, e seja r uma expressão regular tal que L = L(r).Por indução
Máquina de Turing Linguagens Sensíveis ao Contexto e Enumeráveis Recursivamente
ESIN/UCPel 058814 Linguagens Formais e Autômatos TEXTO 5 Máquina de Turing Linguagens Sensíveis ao Contexto e Enumeráveis Recursivamente Prof. Luiz A M Palazzo Maio de 2007 0. Introdução A Ciência da Computação
Linguagens Formais e Autômatos 02/2015. LFA Aula 02. introdução 28/09/2015. Celso Olivete Júnior.
LFA Aula 02 Linguagens regulares - introdução 28/09/2015 Celso Olivete Júnior [email protected] 1 Na aula passada... Visão geral Linguagens regulares expressões regulares autômatos finitos gramáticas
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Ciências de Computação
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Ciências de Computação SCC-0505 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO Lista de Exercícios do Capítulo 3 Gramáticas
TEORIA DAS LINGUAGENS 3. GRAMÁTICAS INDEPENDENTES DE CONTEXTO
LICENCIATURA EM CIÊNCIAS DA COMPUTAÇÃO TEORIA DAS LINGUAGENS 3. GRAMÁTICAS INDEPENDENTES DE CONTEXTO José Carlos Costa Dep. Matemática e Aplicações Universidade do Minho Braga, Portugal 31 de Maio de 2010
Reduce: reduz o que está imediatamente à esquerda do foco usando uma produção
Shift e reduce Shift: move o foco uma posição à direita A B C x y z A B C x y z é uma ação shift Reduce: reduz o que está imediatamente à esquerda do foco usando uma produção Se A x y é uma produção, então
Teoria de Linguagens 1 o semestre de 2018 Professor: Newton José Vieira Primeira Lista de Exercícios Data de entrega: 17/4/2018 Valor: 10 pontos
Departamento de Ciência da Computação ICEx/UFMG Teoria de Linguagens o semestre de 8 Professor: Newton José Vieira Primeira Lista de Exercícios Data de entrega: 7/4/8 Valor: pontos. Uma versão do problema
Gramáticas Livres de Contexto Parte 1
Universidade Estadual de Feira de Santana Engenharia de Computação Gramáticas Livres de Contexto Parte 1 EXA 817 Compiladores Prof. Matheus Giovanni Pires O papel do Analisador Sintático É responsável
Construção de Compiladores Aula 17 - Análise Sintática Descendente
Construção de Compiladores Aula 17 - Análise Sintática Descendente Bruno Müller Junior Departamento de Informática UFPR 3 de Novembro de 2014 1 Análise Sintática Descendente Eliminação de retrocessos Converter
Linguagens Formais e Problemas de Decisão
Linguagens Formais e Problemas de Decisão Mário S. Alvim ([email protected]) Fundamentos de Teoria da Computação (FTC) DCC-UFMG (2018/02) Mário S. Alvim ([email protected]) Linguagens Formais e Problemas
Exercícios 02. A gramática acima gera sentenças que tenham os N primeiros bits 0 e o último bit é sempre 1.
Exercícios 02 CENTRO UNIVERSITÁRIO DE BRASÍLIA - UniCEUB 1 a Questão Considere a gramática abaixo que gera sentenças da linguagem L onde L = { w w = 0 m 1, m 1. A gramática acima gera sentenças que tenham
Alfabeto, Cadeias, Operações e Linguagens
Linguagens de Programação e Compiladores - Aula 3 1 Alfabeto, Cadeias, Operações e Linguagens 1.Conjuntos Para representar um determinado conjunto é necessário buscar uma notação para representá-lo e ter
INE5317 Linguagens Formais e Compiladores. AULA 4: Gramáticas
INE5317 Linguagens Formais e Compiladores AULA 4: Gramáticas bas eado em material produzido pelo prof Olinto Jos é Varela Furtado Ricardo Azambuja Silveira INE-CTC-UFSC E-Mail: [email protected] URL:
Compiladores. Análise lexical. Plano da aula. Motivação para análise lexical. Vocabulário básico. Estrutura de um compilador
Estrutura de um compilador programa fonte Compiladores Análise lexical () Expressões Regulares analisador léxico analisador sintático analisador semântico análise gerador de código intermediário otimizador
ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO
ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO 2. Linguagens Livres-do-Contexto Referência: SIPSER, M. Introdução à Teoria da Computação. 2ª edição, Ed. Thomson Prof. Marcelo S. Lauretto [email protected]
INE5317 Linguagens Formais e Compiladores AULA 9: Propriedades e Reconhecimento das Linguagens Livres do Contexto
INE5317 Linguagens Formais e Compiladores AULA 9: Propriedades e Reconhecimento das Linguagens Livres do Contexto baseado em material produzido pelo prof Paulo Bauth Menezes e pelo prof Olinto José Varela
Linguagens Formais e Autômatos 02/2016. LFA Aula 01 24/10/2016. Celso Olivete Júnior.
LFA Aula 01 Apresentação 24/10/2016 Celso Olivete Júnior [email protected] 1 Professor Celso Olivete Júnior Bacharelado em Ciência da Computação (Unoeste-2002) Mestrado e Doutorado em Engenharia Elétrica
Apostila 02. Objetivos: Estudar os autômatos finitos Estudar as expressões regulares Estudar as gramáticas regulares Estudar as linguagens regulares
Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e
Compiladores - Análise Ascendente
Compiladores - Análise Ascendente Fabio Mascarenhas - 2013.1 http://www.dcc.ufrj.br/~fabiom/comp Análise Descendente vs. Ascendente As técnicas de análise que vimos até agora (recursiva com retrocesso,
Expressões Regulares e Gramáticas Regulares
Universidade Católica de Pelotas Escola de informática 053212 Linguagens Formais e Autômatos TEXTO 2 Expressões Regulares e Gramáticas Regulares Prof. Luiz A M Palazzo Março de 2007 Definição de Expressão
Formas normais. Forma normal de Greibach (FNG) todas as produções são da forma
Formas normais Em muitas aplicações, é útil que as GIC tenham regras de tipos especiais. Para tal é necessário que se possa transformar qualquer gramática numa equivalente (isto é que gere a mesma linguagem)
Compiladores - Análise Ascendente
Compiladores - Análise Ascendente Fabio Mascarenhas - 2013.2 http://www.dcc.ufrj.br/~fabiom/comp Análise Descendente vs. Ascendente As técnicas de análise que vimos até agora (recursiva com retrocesso,
SCC Capítulo 1 Linguagens Regulares e Autômatos Finitos
SCC-505 - Capítulo 1 Linguagens Regulares e Autômatos Finitos João Luís Garcia Rosa 1 1 Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo
SCC Capítulo 2 Linguagens Livres de Contexto e Autômatos de Pilha (versão 2)
SCC-505 - Capítulo 2 e (versão 2) João Luís Garcia Rosa 1 1 Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação - Universidade de São Paulo http://www.icmc.usp.br/~joaoluis
Teoria de Linguagens 2 o semestre de 2015 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 15/9.
Pós-Graduação em Ciência da Computação DCC/ICEx/UFMG Teoria de Linguagens 2 o semestre de 2015 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 15/9. Observações: Pontos
Linguagens Livres do Contexto. Adaptado de H. Brandão
Linguagens Livres do Contexto Adaptado de H. Brandão Linguagens Livres do Contexto Para as LLC, temos as Gramáticas Livres do Contexto; Linguagens Livres do Contexto Para as LLC, temos as Gramáticas Livres
Folha 2 Autómatos e respectivas linguagens
Folha 2 Autómatos e respectivas linguagens 1. Considere a linguagem L formada por todas as sequências sobre o alfabeto { 0, 1, 2 } cujo somatório seja divisível por 3. Construa um autómato finito A que
COMPILADORES. Análise sintática. Prof. Geovane Griesang Universidade de Santa Cruz do Sul UNISC Departamento de informática
Universidade de Santa Cruz do Sul UNISC Departamento de informática COMPILADORES Análise sintática Parte 02 Prof. [email protected] Data Conteúdo 23/09/2013 3. Análise Sintática: 3.1 analisadores
LINGUAGENS FORMAIS Definições. Desenvolveram-se na História em função da necessidade dos grupos humanos que as empregavam
Linguagens Naturais LINGUAGENS FORMAIS Definições Desenvolveram-se na História em função da necessidade dos grupos humanos que as empregavam São muito ricas, mas também ambíguas e imprecisas. Ex.: João
a n Sistemas de Estados Finitos AF Determinísticos
a n Sistemas de Estados Finitos AF Determinísticos 1 Relembrando Uma representação finita de uma linguagem L qualquer pode ser: 1. Um conjunto finito de cadeias (se L for finita); 2. Uma expressão de um
Linguagens Formais - Preliminares
Linguagens Formais - Preliminares Regivan H. N. Santiago DIMAp-UFRN 25 de fevereiro de 2007 Regivan H. N. Santiago (DIMAp-UFRN) Linguagens Formais - Preliminares 25 de fevereiro de 2007 1 / 26 Algumas
Teoria da Computação. Unidade 3 Máquinas Universais. Referência Teoria da Computação (Divério, 2000)
Teoria da Computação Referência Teoria da Computação (Divério, 2000) 1 L={(0,1)*00} de forma que você pode usar uma Máquina de Turing que não altera os símbolos da fita e sempre move a direita. MT_(0,1)*00=({0,1},{q
Automata e Linguagens Formais
Automata e Linguagens Formais 5 Prof. Carlos H. C. Ribeiro [email protected] Gramáticas A Hierarquia de Chomsky Tipos de gramáticas e linguagens Pré-normalização de GLCs Formas Normais: Chomsky e Greibach
Exercícios Associados à Aula 28 (27/11/2013) Feitos em sala e em equipes
Exercícios Associados à Aula 28 (27/11/2013) Feitos em sala e em equipes Questões do POSCOMP 2011 A resposta certa está assinalada em vermelho. Por que é correta e por que as demais alternativas são incorretas?
LINGUAGENS FORMAIS E AUTÔMATOS
LINGUAGENS FORMAIS E AUTÔMATOS O objetivo deste curso é formalizar a idéia de linguagem e definir os tipos de sintaxe e semântica. Para cada sintaxe, analisamos autômatos, ue são abstrações de algoritmos.
LFA Aula 05. AFND: com e sem movimentos 05/12/2016. Linguagens Formais e Autômatos. Celso Olivete Júnior.
LFA Aula 05 AFND: com e sem movimentos vazios 05/12/2016 Celso Olivete Júnior [email protected] www.fct.unesp.br/docentes/dmec/olivete/lfa 1 Na aula passada... Reconhecedores genéricos Autômatos finitos
Histórico e motivação
Expressões regulares 1. Histórico e motivação 2. Definição a) Sintaxe b) Semântica c) Precedência dos operadores 3. Exemplos 4. Leis algébricas 5. Dialetos 6. Aplicações 7. Exercícios Pré-requisito: básico
Linguagens Livres de Contexto
Linguagens Livres de Contexto 1 Roteiro Gramáticas livres de contexto Representação de linguagens livres de contexto Formas normais para gramáticas livres de contexto Gramáticas ambíguas Autômatos de Pilha
Gramáticas Sensíveis ao Contexto (GSC) Linguagens Sensíveis ao Contexto (LSC) Autômatos Linearmente Limitados (ALL)
Gramáticas Sensíveis ao Contexto (GSC) Linguagens Sensíveis ao Contexto (LSC) Autômatos Linearmente Limitados (ALL) 1 Gramática Sensível ao Contexto Definição: Uma gramática G é sensível ao contexto se
Gramática Livre de Contexto
Prof. Yandre Maldonado - 1 Gramática Livre de Contexto Árvore de derivação Ambigüidade Simplificação de Gramática Forma Normal de Chomsky (FNC) (FNG) Prof. Yandre Maldonado e Gomes da Costa [email protected]
Linguagens e Autômatos
167657 - Controle para Automação Curso de Graduação em Engenharia de Controle e Automação Departamento de Engenharia Elétrica Universidade de Brasília Linguagens e Autômatos Geovany A. Borges [email protected]
Gramáticas e Linguagens independentes de contexto
Capítulo 6 Gramáticas e Linguagens independentes de contexto 6.1 Gramáticas Nesta secção vamos introduzir gramáticas formais para caracterização das linguagens, estudando fundamentalmente as gramáticas
Hierarquia de Chomsky Exemplos de gramáticas
Hierarquia de Chomsky Exemplos de gramáticas 1 Formalmente, as gramáticas são caracterizadas como quádruplas ordenadas G = ( Vn, Vt, P, S) onde: Vn representa o vocabulário não terminal da gramática. Este
Linguagens Formais e Autômatos (LFA)
Linguagens Formais e Autômatos (LFA) Aula de 19/08/2013 Símbolos, Cadeias, Linguagens Propriedades e Representações Formais de Interesse 1 Nota preliminar ( O conceito de decomposição e suas representações
Gramática Livre de Contexto
Gramática Livre de Contexto Prof. Yandre Maldonado - 1 Árvore de derivação Ambigüidade Simplificação de Gramática Forma Normal de Chomsky (FNC) Forma Normal de Greibach (FNG) Prof. Yandre Maldonado e Gomes
1 INTRODUÇÃO E CONCEITOS BÁSICOS
1 INTRODUÇÃO E CONCEITOS BÁSICOS Inicia com uma breve história do surgimento e do desenvolvimento dos conceitos, resultados e formalismos nos quais a Teoria da Computação é baseada. Formalização dos conceitos
Linguagens Formais e Autômatos. Apresentação do Plano de Ensino
Linguagens Formais e Autômatos Apresentação do Plano de Ensino Linguagens Formais e Autômatos LFA Código - CMP4145 Turma C01 Engenharia da Computação e Ciência da Computação Horário: Segunda e Quinta:
Teoria de Linguagens 2 o semestre de 2017 Professor: Newton José Vieira Primeira Lista de Exercícios Data de entrega: 19/9/2017 Valor: 10 pontos
Departamento de Ciência da Computação ICEx/UFMG Teoria de Linguagens o semestre de 7 Professor: Newton José Vieira Primeira Lista de Exercícios Data de entrega: 9/9/7 Valor: pontos. Uma versão do problema
