TRATAMENTO TÉRMICO DOS AÇOS

Tamanho: px
Começar a partir da página:

Download "TRATAMENTO TÉRMICO DOS AÇOS"

Transcrição

1 TRATAMENTO TÉRMICO DOS AÇOS Tratamento térmico é o conjunto de operações de aquecimento e resfriamento a que são submetidas os aços, sob condições controladas de temperatura, tempo, atmosfera e velocidade de esfriamento, com o objetivo de altera as suas propriedades ou conferir-lhes característicos determinados. As propriedades dos aços dependem, em principio, da sua estrutura, os tratamentos térmicos modificam, em maior ou menor escala, a estrutura dos aços, resultando, em conseqüência na alteração, mais ou menos pronunciada, de suas propriedades. Pelo exposto acima se pode perfeitamente avaliar a importância dos tratamentos térmicos, sobretudo nos aços de alto carbono e nos que apresentam também elementos de liga. De fato se geralmente muitos aços de baixo e médio carbono são usados nas condições típicas do trabalho a quente, isto é, nos estado forjado e laminado, quase todos os aços de alto carbono ou com elementos de liga, são obrigatoriamente submetidos a tratamentos térmicos antes de serem colocados em serviço. Os principais objetivos dos tratamentos térmicos são os seguintes: Remoção de tensões internas (oriundas de esfriamento desigual, trabalho mecânico ou outra causa). Aumento ou diminuição da dureza. Aumento da resistência mecânica. Melhora da ductilidade. Melhora da usinabilidade. Melhora da resistência ao desgaste. Melhora das propriedades de corte. Melhora da resistência à corrosão. Melhora da resistência ao calor. Modificação das propriedades elétricas e magnéticas. Em geral a melhora de uma ou mais propriedades mediante um determinado tratamento térmico é conseguida com prejuízo de outras. Por exemplo, o aumento da ductilidade provoca simultaneamente queda nos valores de dureza e resistência à tração. E necessário, pois que o tratamento térmico seja escolhido e aplicado criteriosamente, m pra que os inconvenientes apontados sejam reduzidos ao mínimo. Não se verifica pela simples aplicação de um tratamento térmico, qualquer alteração da composição química do aço. FATORES DE INFLUÊNCIA NOS TRATAMENTOS TÉRMICOS Antes de serem definidos e descritos os vários tratamentos térmicos, será feita uma rápida recapitulação dos diversos fatores que devem ser levados em conta na sua realização. Representando o tratamento térmico um ciclo tempo-temperatura, os fatores a serem inicialmente considerados são: aquecimento, tempo de permanência à temperatura e resfriamento. Além desses, outro de grande importância é a atmosfera do recinto de aquecimento, visto que a sua qualidade tem grande influencia sobre os resultados finais dos tratamentos térmicos. Aquecimento o caso mais freqüente de tratamento térmico do aço é alterar uma ou diversas de suas propriedades mecânicas, através de uma determinada modificação que se processa na sua estrutura. Assim sendo, o aquecimento é geralmente realizado a uma temperatura acima da crítica, porque então se tem completa austenitização do aço, ou seja, total dissolução do carboneto de ferro (Fe 3 C) no ferro gama: essa austenitização é, como se viu o ponto de partida para as transformações posteriores desejadas, as quais se processarão em função da velocidade de esfriamento adotada. Na fase de aquecimento, dentro do processo de tratamento térmico, devem ser apropriadamente consideradas a velocidade de aquecimentos e a temperatura máxima de aquecimento. A velocidade de aquecimento embora na maioria dos casos seja fator secundário apresenta certa importância, principalmente quando os aços estão em estado de tensão interna ou possuem tensores residuais devidas ao encruamento prévio dos grãos. Resfriamento é o fator mais importante, pois é ele que determinará efetivamente a estrutura e, em conseqüência, as propriedades finais dos aços. Os meios de esfriamentos usuais são: ambiente do forno, ar e meios líquidos. O resfriamento mais brando é, evidentemente, o realizado no próprio interior do forno e ele se torna mais severo á medida que se passa para o ar ou para um meio liquido, onde a extrema agitação dá origem aos meios de resfriamento mais drásticos ou violentos. Por outro lado, outras vezes a forma da peça é tal que um resfriamento mais drástico, como em água, pode provocar conseqüências inesperadas e resultados indesejáveis tais como empenamento e mesmo ruptura da peça. Um meio de resfriamento menos drástico, como óleo, seria o indicado sob o ponto de vista de empenamento ou ruptura, porque reduz o gradiente de temperatura apreciavelmente durante o resfriamento, mas pode não satisfazer sob o ponto de vista de profundidade de endurecimento. E preciso então, conciliar as duas coisas: resfriar adequadamente para obtenção da estrutura e dados propriedades desejadas à profundidade prevista e, ao mesmo

2 tempo, evitar empenamento, distorção ou mesmo ruptura da peça quando submetida ao resfriamento. Tal condição se consegue com a escolha apropriada do aço. Os meios de resfriamento mais comumente utilizados são: soluções aquosas, água, óleo e ar. Os meios mais drásticos são as soluções aquosas de vários tipos. Há diferenças de comportamento entre vários tipos de óleo, devido, sobretudo à diferença de viscosidade e as características de formação de vapor dos mesmos. A água, à medida que se aquece, perde sua eficácia, fato esse que não deve ser esquecido ao usar-se esse líquido com meio de resfriamento, pois se o seu volume não for suficiente ela se aquecerá excessivamente, perdendo rapidamente a sua eficácia, evita-se esse inconveniente pelo uso de água corrente em vez de água em repouso, ou pelo seu resfriamento continuo. No caso dos óleos, o efeito da temperatura não é tão sensível, mas como medida de segurança, deve-se evitar que sua temperatura suba muito, para o que se utiliza frequentemente um sistema apropriado de circulação. Os tratamentos térmicos usuais dos aços são: recozimento, normalização, tempera, revenido, coalescimento e os tratamentos isotérmicos. Outro fator importante é o efeito da velocidade de resfriamento que atua sobre a transformação da austenita. Os constituintes resultantes da transformação da austenita ferrita, cementita e perlita, de acordo com sua quantidade relativa, permitem uma variação nas propriedades mecânicas dos aços. Esse efeito dos constituintes obtidos pela decomposição lenta da austenita sobre as propriedades mecânicas dos aços, se bem apreciável, está longe de comparar-se, entretanto, ao efeito que pode ser conseguido pelo rápido esfriamento da austenita. De fato, a formação da ferrita e da cementita e consequentemente da perlita exigem a mudança do reticulado cristalino do ferro, assim como o movimento de átomos, através da austenita sólida, tais modificações levam tempo. Em conseqüência, se for aumentada à velocidade de esfriamento da austenita, ou seja, se o aço é esfriado mais rapidamente, não se dá tempo suficiente para uma completa movimentação atômica e as reações de transformações da austenita se modificam, podendo mesmo deixar de formar os constituintes normais como a perlita e surgirem novos constituintes, de grande importância para a aplicação dos aços. Seja um aço eutetóide, esse aço apresenta uma única temperatura critica a 723ºC. Abaixo dessa temperatura tem-se só perlita, em condições de esfriamento extremamente lento. Com velocidades de esfriamento cada vez maiores, o produto que resulta da transformação, até certa velocidade de esfriamento, ainda é perlita. Ao se atingir certa velocidade, a uma temperatura mais baixa, aparece junto com a precedente, uma nova transformação, dando origem a uma constituinte completamente diferente, a martensita. Dentro de certa faixa de velocidade de esfriamento há, portanto, formação simultânea de constituintes, perlita e martensita. Finalmente, para certa velocidade de esfriamento, desaparece inteiramente a primeira transformação e cessa, portanto, a formação da perlita; permanece só a segunda transformação, tendo como produto resultante a martensita. A velocidade de resfriamento em que isso acontece dá-se o nome de velocidade crítica de esfriamento, de grande importância no estudo dos tratamentos térmicos dos aços. Constituintes resultantes da transformação da austenita e seus característicos. Logo abaixo da temperatura de 723ºC a velocidade de transformação é muito baixa, forma-se perlita lamelar, de granulação grosseira e de baixa dureza (Rockwell C de 5 a 20). À medida que a temperatura cai, em torno de 550 ºC, a perlita que se forma adquire textura cada vez mais fina e dureza cada vez mais elevada, Rockwell C de 30 a 40, ou cerca de 400 Brinell. Para diferenciá-lo da perlita lamelar normal, esse constituinte é chamado de perlita fina. É a forma mais dura da perlita e a que apresenta as lamelas mais finas. A espessura é tão pequena, que dificilmente elas são perceptíveis ao microscópio. Á temperatura entre 550 e 220 ºC, novamente há necessidade de um tempo mais longo para se iniciar a transformação da austenita. Nessa faixa de temperaturas o produto de transformação resultante varia de aspecto, desde um agregado de ferrita em forma de pena e carboneto de ferro muito fino, em torno de 450 ºC ate um constituinte em forma de agulha com coloração escura (em torno de 200 ºC) e sua dureza varia de 40 a 60 Rockwell C. Finalmente, na faixa de temperatura em torno de 200 ºC a 100 ºC forma-se um constituinte novo, totalmente diverso dos anteriores, cuja formação depende exclusivamente da temperatura a martensita. Apresenta-se em agulhas, mas com coloração

3 mais clara. A verdadeira natureza da martensita não foi convenientemente explicada durante muito tempo. Sabendo-se que a estrutura martensítica doa aços temperados é magnética, chega-se à conclusão que o reticulado da martensita assemelha-se ao do ferro alfa. Figura 1 Constituintes da transformação da austenita. Como se pode observar na Figura 1 a apresentação dos constituintes resultantes da transformação da austenita e seus característicos. Logo abaixo da linha de 723 ºC zona em que a velocidade de transformação é muito baixa, forma-se perlita lamelar, de granulação grosseira e de baixa dureza (Rockwell C de 5 a 20). À medida que a temperatura cai, nas proximidades do cotovelo da curva, em torno de 550 ºC, a perlita que se forma adquire textura cada vez mais fina e dureza cada vez mais elevada, Rocwell C de 30 a 40, ou cerca de 400 Brinell. Para diferenciá-la da perlita lamelar normal, esse constituinte é chamado de perlita fina (termo antigo usado para designá-lo é troostita). É a forma mais dura da perlita e a que apresenta as lamelas mais finas. A espessura das lamelas é tão pequena, que dificilmente elas são perceptíveis ao microscópio. A temperatura entre 550 ºC e 200 ºC, novamente há necessidade de um tempo mais longo para se iniciar a transformação da austenita. Nessa faixa de temperaturas o produto de transformação resultante varia de aspecto, desde um agregado de ferrita em forma de pena e carboneto de ferro muito fino, em torno de 450 ºC, até um constituinte em forma de agulhas com coloração escura (em torno de 200 ºC). Todas essas estruturas são hoje designadas com nome de bainita e sua dureza varia de 40 a 60 RC. Finalmente, na faixa de temperaturas de M i (em torno de 200 ºC) a M f (em torno de 100 ºC) forma-se um constituinte novo, totalmente diverso dos anteriores, Cuja formação depende exclusivamente da temperatura, a martensita. Sua aparência e forma são semelhantes as da bainita, isto é, apresenta-se em agulhas, mas com coloração mais clara. A verdadeira natureza da martensita não foi convenientemente explicada durante muito tempo. Sabendo-se que a estrutura martensítica dos aços temperados é magnética, chega-se a conclusão que o reticulado da martensita assemelha-se ao do ferro alfa. Por outro lado, ficou provado experimentalmente, desde há muito tempo, que a resistividade elétrica da martensita é consideravelmente mais alta que a dos aglomerados ferritacementita, qualquer que seja o seu grau de dispersão. Com os valores elevados de resistividade elétrica são característicos de soluções solidas perfeitas. Atualmente, entretanto, admite-se definitivamente a formação da martensita como uma reação por cisalhamento, através dos planos cristalográficos, de modo tão rápido que não pode ser evitada mesmo por resfriamento rápido. Este esfriamento rápido transforma em alfa a forma alotrópica do ferro, a qual retém as laminas estreitas, e alongadas de austenita provenientes do cisalhamento, as quais são realmente laminas de martensita que se apresentam, em microseçoes, como agulhas longas e finas. Desenvolvem-se como se deveria espera, tensões internas apreciáveis. A martensita apresenta um reticulado tetragonal e sua dureza é muito elevada, podendo atingir 65 a 67 RC. Em vista do exposto, essa alta dureza da martensita pode ser atribuída entre outros, aos seguintes fatores: - Precipitação de partículas submicroscopicas de carboneto de ferro da solução sólida gama e retenção destas partículas na forma de uma solução sólida supersaturada no reticulado do ferro alfa (formada no resfriamento) onde atuam como espécies de chavetas impedindo o escorregamento. - Distorção do reticulado. - Tensões internas. - Tamanho de grão muito pequeno. Como se pode observar na Figura 2 que representa as curvas de resfriamento no diagrama de transformação para resfriamento contínuo. Um aço esfriado muito lentamente, no forno, por exemplo, (curva A), começa a se transformar em perlita ao atingir o ponto A i e ao atingir o ponto A f é inteiramente constituído de perlita. Essa perlita é de granulação grosseira e mole; logo, aços esfriados muito lentamente apresentam, à temperatura ambiente, o constituinte perlita grosseira e são de baixa dureza.

4 Figura 2 - resfriamento no diagrama de transformação para resfriamento contínuo. Com o esfriamento mais rápido, ao ar, por exemplo, (curva B), o aço apresentará perlita mais fina, com dureza mais elevada. Com velocidade de esfriamento maior, ao óleo (curva C), a transformação iniciada em C i e terminada em C f dá como constituinte perlita mais fina ainda, com dureza maior. Com resfriamento ainda mais rápido (Curva D) verifica-se que o início de transformação se dá no ponto D i. A velocidade de esfriamento agora é tal a curva de esfriamento não toca na curva de fim de transformação, de modo que a transformação em perlita apenas se inicia, interrompendo-se em seguida e, ao atingir o ponto D mi, a austenita que não se transformou passa a martensita, cuja formação termina em D mf. A estrutura resultante dessa velocidade de esfriamento é simultaneamente perlita e martensita. Com esfriamento muito rápido (curva F), em água, verifica-se que a curva de esfriamento não toca a curva isométrica, de modo que não há transformação da austenita em produto lamelar, mas simplesmente passagem a martensita, quando, no esfriamento, são atingidas as temperaturas correspondentes a M i e M f. Logo, os aços esfriados mais rapidamente são os mais duros. Pode-se notar que há uma velocidade de esfriamento à qual corresponde uma curva de esfriamento que tangencia a curva C de inicio de transformação para esfriamento contínuo. A essa velocidade de esfriamento chama-se velocidade crítica de tempera e ela indica que é desnecessário esfriar-se o aço mais rapidamente para que se produza estrutura martensítica. Pode-se definir a velocidade crítica de esfriamento (ou de tempera) como a menor velocidade de esfriamento que produzirá estrutura inteiramente martensítica. A velocidade de esfriamento e, em última analise, o tipo de tratamento térmico será, portanto, escolhido de acordo com a estrutura e as propriedades que se desejam. Assim quando se visa obter a máxima dureza, deve-se procurar produzir a estrutura martensítica, isto é, escolher um tratamento térmico com esfriamento rápido. Quando se visa o mínimo de dureza, é necessária estrutura perlítica, ou seja, esfriamento lento. A consideração da velocidade de esfriamento muito baixa, para obtenção da estrutura perlítica ou muito alta, para obtenção da estrutura martensítica, é valida para todo aço que apresentar uma curva TTT vide Figura 2. Ver-se-á mais adiante que a posição dessas curvas pode ser grandemente modificada por inúmeros fatores, verificando-se então que a estrutura martensítica pode ser obtida com velocidades de esfriamento relativamente baixas. Por outro lado, velocidades muito rápidas de esfriamento podem ocasionar conseqüências sérias, como tensões internas excessivas, empenamento das peças e até mesmo o aparecimento de fissura. Isto significa que ou devem ser sacrificadas as propriedades finais do aço mediante um tratamento térmico com esfriamento menos drástico ou se deve procurar um aço que possibilite obtenção da máxima dureza com menor velocidade de esfriamento. Finalmente, resta notar que para aços com diagrama semelhante o da Figura 1 não há uma curva de esfriamento que permita a formação da estrutura bainita. De fato, como se verá mais adiante, a bainita só é obtida em tratamento isotérmico, isto é, tratamento em que o esfriamento é interrompido a temperatura correspondente a formação da bainita pra, depois que esta se formou prosseguir até a temperatura ambiente. A velocidade de esfriamento é afetada pela secção da peça, pois é obvio que o interior das peças se esfria mais lentamente que a sua superfície. A diferença é tanto maior quanto maior a velocidade de esfriamento e, evidentemente, quanto maior a secção da peça. Esse fato é mais bem evidenciado através das figuras 3, 4 e 5 onde está representado esquematicamente o esfriamento do centro e o da superfície de uma peça em três meios de esfriamentos diferentes. Em água ou salmoura (meios mais drásticos) vide Figura 3, a superfície esfriou com velocidade superior a velocidade critica de esfriamento, ou seja, a superfície adquiriu inteiramente a estrutura martensítica e, portanto, a máxima dureza. O centro da peça sofreu parcialmente a transformação da austenita em perlita, tendo a parte não transformada passado a martensita, ou seja, o centro adquiriu em parte dureza máxima.

5 Figura 3 Esfriamento em água. Em óleo, só a superfície passou parcialmente a martensita e no ar nem mesmo a superfície vide Figura 4. Figura 4 Esfriamento em óleo. Figura 5 Esfriamento ao ar Se a secção da peça for maior, a diferença é mais acentuada e o aspecto, com o resfriamento em água, poderá ser o da Figura 6 isto é, mesmo em água o centro não endureceu nem parcialmente. Figura 6 Representação esquemática do efeito de grande secção sobre a velocidade de esfriamento em água. Recozimento - é o tratamento térmico que é realizado com o fim de alcançar um ou vários dos seguintes objetivos: Remover tensões devidas aos tratamentos mecânicos a frio ou a quente. Diminuir a dureza para melhorar a usinabilidade do aço Alterar as propriedades mecânicas como resistência e ductilidade. Ajustar o tamanho de grão. Eliminar enfim os efeitos de quaisquer tratamentos térmicos ou mecânicos a que o aço tiver sido anteriormente submetido. Recozimento total ou pleno consiste no aquecimento do aço acima da zona crítica, durante o tempo necessário e suficiente para se ter solução do carbono ou dos elementos de liga no ferro gama, seguido de um resfriamento muito lento, realizado ou mediante controle da velocidade de resfriamento do forno, ou desligando-se o mesmo e deixando que o aço resfrie, ao mesmo tempo que o forno. Os constituintes estruturais que resultam do recozimento pleno são: perlita grossa e ferrita para os aços hipo-eutetóides, cementita e perlita grossa para os aços hiper-eutetóides e perlita grossa para os aços eutetóides. Como se pode observar na Figura 7 temos o recozimento pleno de um aço eutetoide onde se tem como constituinte, a perlita somente e esta é a perlita grosseira, que é a estrutura ideal para melhorar a usinabilidade dos aços.

6 Figura 7 recozimento pleno de um aço eutetoide. Recozimento para alívio de tensões - consiste no aquecimento do aço a temperaturas abaixo do limite inferior da zona crítica. O objetivo é aliviar as tensões originadas durante a solidificação ou produzidas em operações de transformação mecânica a frio, como estampagem profunda, e ou em operações de endireitamento, corte por chama, soldagem ou usinagem. Essas tensões começam a ser aliviadas a temperaturas logo acima da ambiente; entretanto, é aconselhável aquecimento lento até pelo menos 500 ºC para garantir os melhores resultados. De qualquer modo, a temperatura de aquecimento deve ser mínima compatível com o tipo e as condições da peça, para que não se modifique sua estrutura interna, assim como não se produzam alterações sensíveis de suas propriedades mecânicas. Normalização consiste no aquecimento do aço a uma temperatura acima da zona crítica, seguido de resfriamento ao ar vide Figura 8. tratamento melhora também a uniformidade da microestrutura. A normalização e ainda usada como tratamento preliminar a tempera e revenido justamente par reproduzir estrutura mais uniforme do que a obtida pro laminação, por exemplo. Além de reduzir a tendência ao empenamento e facilitar a solução de carbonetos e elementos de liga. Sobretudo nos aços-liga, quando os mesmo são esfriados lentamente após a laminação, os carbonetos tendem a ser, maciços e volumosos, difíceis de dissolver em tratamentos posteriores de austenitização. A normalização corrige esse inconveniente. Os constituintes que se obtém na normalização são ferrita e perlita fina, perlita fina ou cementita e perlita fina. Tempera - consiste no resfriamento rápido do aço de uma temperatura superior a sua temperatura crítica. O objetivo precípuo da tempera é a obtenção da estrutura martensítica. A velocidade de resfriamento, nessas condições, dependerá do tipo de aço, da forma e das dimensões das peças. Como na tempera o constituinte final desejado é a martensita, os objetivos desta operação, sob o ponto de vista de propriedades mecânicas, é o aumento do limite de resistência à tração do aço e da sua dureza, na realidade, o aumento da dureza deve verificar-se até uma determinada profundidade. Resultam da tempera também a redução de ductilidade (baixos valores de alongamento e estricção), da tenacidade e o aparecimento de apreciáveis tensões internas. Tais inconvenientes são atenuados ou eliminados pelo revenido, vide Figura 9. Figura 9 Diagrama esquemático para a tempera. Figura 8 Normalização. A normalização visa refinar a granulação grosseira de peças de aço fundido principalmente, frequentemente, e com o mesmo objetivo, a normalização é aplicada em peças depois de laminadas ou forjadas. O Para que a tempera seja bem sucedida vários fatores devem se levados em conta. Inicialmente, a velocidade de esfriamento deve ser tal que impeça transformação da austenita nas temperaturas mais elevadas, em qualquer parte da peça que se deseja endurecer. De fato as transformações da austenita nas altas temperaturas podem dar como resultado, estruturas mistas, as quais ocasionam o

7 aparecimento de pontos moles alem de conferirem ao aço, baixos valores para o limite de escoamento e para resistência ao choque. Portanto, a secção das peças constitui outro fator importante porque pode determinar diferenças de esfriamento entre a superfície e o centro. Em pequenas ou de pequena espessura, essa diferença é desprezível. O mesmo, contudo, não se dá com peças de grandes dimensões, no centro das quais, a velocidade de esfriamento é menor do que na superfície resultando estruturas de transformação mistas, a não ser que o teor de elementos de liga do aço seja suficiente para impedir essa transformação e produzir somente a estrutura martensítica. Às vezes, por outro lado, é conveniente um núcleo mais mole e, então, escolhe-se um aço e uma velocidade de esfriamento que produzam superfícies duras e núcleos naquelas condições. A razão da alta dureza da martensita já foi estudada, para manter clareza será repetida e ampliada a seguir: O carbono dissolve-se prontamente no fero gama, mas praticamente insolúvel no ferro alfa. Os átomos de carbono no ferro gama se distribuem nos espaços entre os átomos de ferro, isto é, no interior das unidades cúbicas de face centrada. Entretanto, os espaços entre os átomos de ferro no reticulado cúbico centrado do ferro alfa são incapazes de acomodar átomos de carbono sem que se produza considerável deformação do reticulado. Esse é o motivo da baixa solubilidade do carbono no ferro alfa. Quando a austenita é resfriada a uma temperatura em que não é mais estável, o ferro gama passa a alfa e o carbono é expulso da solução sólida, combinando-se com o ferro de modo a formar o carboneto Fe 3 C. Este Fe 3 C possui um reticulado complexo como poucos planos de escorregamentos e é extremamente duro. Com o ferro forma, como se sabe o constituinte perlita. Quando se aumenta a velocidade de esfriamento da austenita, ode-se chegar a uma velocidade tão alta que não permite a expulsão do carbono da solução sólida para formar o Fe 3 C, verificando-se somente passagem da forma alotrópica do ferro de gama a alfa. Tem-se, então, uma solução sólida supersaturada de carbono em ferro alfa, constituindo a martensita, cuja extrema dureza deve ser atribuída à distorção do reticulado cúbico centrado, causada pela supersaturação. Admite-se hoje que a martensita apresenta uma estrutura tetragonal centrada e não cúbica formada por um movimento de átomos em planos específicos da austenita. Essa estrutura está sujeita a micro-tensões elevadas e se apresenta também supersaturada de carbono ou contém partículas de carbonetos grandemente dispersas. Como já foi mencionado a martensita é constituinte mais duro e mais frágil dos aços. Um fator importante a considerar na operação de tempera, devido à ação que exerce na estrutura final do aço, é a temperatura de aquecimento. Em princípio, qualquer que seja o tipo de aço, hipoeutetóide ou hipereutetóide, a temperatura de aquecimento para a tempera deve ser superior a 723 ºC, quando a estrutura consistirá de grãos de austenita, em vez de perlita. O aço sendo hipoeutetóide, entretanto, além da austenita, estará presentes grãos de ferrita. Assim sendo, um aço com tal estrutura resfriado em água, por exemplo, apresentará martensita conjuntamente com ferrita, pois esta que estava presente acima da temperatura dita anteriormente, não sofreu qualquer alteração ao ser o aço temperado. Tem-se, portanto, tempera ou endurecimento incompleto do material, pois muitos enganam não elevam a temperatura acima de 723 ºC para realizar a tempera, o que geralmente deve ser evitado, pois na tempera visa obter a máxima dureza. Em conseqüência, ao aquecer-se um aço hipoeutetóide para tempera, deve-se elevar sua temperatura acima de 723 ºC para então a sua estrutura consistir exclusivamente de austenita. Que se transformará em martensita no resfriamento rápido. Enfim o que foi exposto sobre a natureza da estrutura martensítica, conclui-se que a mesma se caracteriza por excessiva dureza e por apresentar tensões internas consideráveis. Simultaneamente a essas tensões, por assim dizer estruturais, o aço temperado caracteriza-se por apresentar apreciáveis tensões térmicas. Estas são ocasionadas pelo fato de que materiais resfriados rapidamente esfriam de maneira não uniforme, visto que a sua superfície atinge a temperatura ambiente mais rapidamente do que as secções mais centrais, ocasionando mudanças volumétricas não uniformes, com as camadas superficiais contraindo mais rapidamente do que as secções internas. Como conseqüência, tem-se a parte central sob compressão e as camadas mais extremas sob tensão. Em ultima analise, pois, após temperado, o aço apresenta-se em estado de apreciáveis tensões internas, tanto de natureza estrutural como de natureza térmica. Quando estas tensões internas ultrapassarem o limite de

8 escoamento do aço, ocorre sua deformação plástica e as peças apresentar-se-ão empenadas, se, entretanto, as tensões internas excederem o limite de resistência a tração do material, então ocorrerão inevitáveis fissuras e as peças estarão perdidas. Essas tensões internas no podem ser totalmente evitada, podem, contudo, ser reduzidas, através de vários artifícios práticos e de vários tratamentos térmicos. Os inconvenientes apontados, excessiva dureza da martensita e estado de tensões internas são atenuados pela ré-aquecimento do aço temperado a temperaturas determinadas. É obvio que tal operação torna-se inócua se as tensões internas originadas tiverem sido de tal vulto de modo a provocar a inutilização das peças. Revenido é o tratamento térmico que sempre acompanha a tempera, pois elimina a maioria dos inconvenientes produzidos por ela, além de aliviar ou remover as tensões internas, corrige as excessivas dureza e fragilidade do material, aumentando sua ductilidade e resistência ao choque. Recomenda-se revenir logo após a tempera, para diminuir a perda de peças por ruptura, a qual pode ocorrer se aguardar muito tempo para realizar o revenido. O aquecimento da martensita permite a reversão do reticulado instável ao reticulado estável cúbico centrado, produz reajustamentos internos que aliviam as tensões e, além disso, uma precipitação de partículas de carbonetos que crescem e se aglomeram, conforme a temperatura e o tempo. Conforme a temperatura de revenido verifica-se as seguintes transformações: Entre 150 ºC e 230 ºC, o reticulado tetragonal torna-se cúbico, qualquer austenita residual se transforma, certa quantidade de carbonetos precipita-se, o que produz uma estrutura que, quanto atacada por reagente adequado, aparece escura, donde a denominação de martensita preta. Esta estrutura também chamada de martensita revenida com queda de dureza de 65 a 60 RC. Entre 230 ºC e 400 ºC prossegue precipitação de carbonetos e seu crescimento se dá em forma globular. Tais glóbulos são ainda imperceptíveis ao microscópio é uma massa escura chamada perlita fina (troostina nome antigo), com dureza cerca de 62 a 50 RC. Entre 400 ºC e 650 ºC prossegue o crescimento dos carbonetos em forma globular, tornando-se agora os glóbulos perceptíveis ao microscópio com grandes ampliações. As estruturas resultantes apresentam dureza variando de 20 a 45 RC. Entre 650 ºC e 723 ºC, os carbonetos continuam a crescer e aparecem na foram de partículas globulares perfeitamente perceptíveis, distribuídas num fundo ou matriz ferrítica continua. A estrutura resultante é de dureza muito baixa, variando de 5 a 20 RC, sendo também muito tenaz. Como se pode observar as afirmações acima a temperatura de revenido pode ser escolhida de acordo com a combinação de propriedades mecânicas que se deseja no aço temperado. Coalescimento qualquer tratamento capaz de produzir esferoidita é chamado de coalescimento. Esse tratamento é aplicado principalmente em aços hipereutetóides e pode consistir em qualquer um das seguintes operações: Aquecimento prolongado de aços laminado ou normalizado a uma temperatura logo abaixo da zona crítica. Aquecimento e resfriamento alternados entre temperaturas logo acima da zona crítica, ou seja, fazer a temperatura oscilar em torno da temperatura 723 ºC. O coalescimento, originando a esferoidita, da como resultado uma dureza muito baixa, normalmente inferior à da perlita grosseira, obtida no recozimento. Nessas condições objetiva-se com o coalescimento facilitar certas operações de deformação a frio e usinagem de aços de alto teor em carbono. Tratamentos Superficiais Tratamentos Superficiais o endurecimento superficial dos aços, em grande numero de aplicações de peças de máquinas, é, freqüentemente, mais conveniente que seu endurecimento total pela tempera normal, visto que, nessas aplicações, se objetiva apenas a criação de uma superfície dura e de grande resistência ao desgaste e à abrasão. O endurecimento superficial pode ser produzido por vários métodos, a saber: Tratamento mecânico da superfície, através do qual se obtém uma superfície encruada, com resistência e dureza crescentes, em função da sua intensidade. Tratamentos termoquímicos, tais como cementação e nitretação. Tempera superficial. Tempera superficial consiste em produzir uma tempera localizada apenas na superfície do aço,

9 que assim adquirirá as propriedades e característicos típicos da estrutura martensítica. Vários são os motivos que determinam a preferência da tempera superficial em relação a tempera total: Obtenção de superfícies duras e resistentes ao desgaste em peças de aço que face às suas dimensões ou às tolerâncias dimensionais exigidas seria impossível endurecer convenientemente através de toda a secção. Obtenção de propriedades superficiais que não seriam indicadas para a secção inteira das peças. Finalmente, obtenção de combinação de altas resistências ao desgaste e dureza na superfície com suficiente ductilidade e tenacidade no núcleo das peças. Alem dessas, a tempera superficial apresenta outras vantagens, tais como: não exige fornos de aquecimento, é mais rápida que a tempera comum, pode ser realizada praticamente em qualquer local da oficina, não produz apreciável oxidação ou descarbonetação do aço, permite emprego de aços de custo mais baixo. Os processos usuais de tempera superficial são tempera por chama vide Figura 10 e Figura 11 e tempera por indução. Figura 10 Tempera por chama formarem faixas mais moles com alguns milímetros de largura. Para evitar-se esse inconveniente, prefere-se aquecer a superfície com um a torcha de chama múltipla e forma anular, que se movimenta ao longo da peça girando rapidamente. O bocal de resfriamento apresenta também forma anular. A espessura da camada endurecida pode variar desde apenas uma casca superficial até cerca de 10 mm. Figura 12 Tempera por indução Na tempera por indução Figura 12 o calor para aquecer uma peça pode ser gerado na própria peça por indução eletromagnética. Assim se uma corrente alternada flui através de um indutor, ou bobina de trabalho, estabelecese nesta um campo magnético altamente concentrado, o qual induz um potencial elétrico na peça a ser aquecida e envolvida pela bobina e, como a peça representa um circuito fechado, a voltagem induzida provoca o fluxo de corrente. A resistência da peça ao fluxo da corrente induzida causa aquecimento por perda I 2 R. O modelo de aquecimento obtido por indução depende da forma da bobina de indução que produz o campo magnético, do número de voltas da bobina, da freqüência de operação e da força elétrica da corrente alternada, vide Figura 13 e Figura 14. Figura 11 Tempera por chama Existem inúmeros dispositivos utilizados na operação, no caso mais simples de formas cilíndricas, leva-se a efeito o tratamento através da utilização de um dispositivo semelhante ao torno, entre as pontas do qual é colocada a peça, sendo a torcha de oxi-acetileno e o bocal de água colocado no carro do torno. A peça gira a uma velocidade periférica determinada, ao mesmo tempo em que a torcha, dimensionada de modo a abranger a área que se deseja endurecer, aquece sucessivamente a superfície, seguindose imediatamente o resfriamento pela água. Com esta disposição, há probabilidade de se Figura 13 - Tempera por indução.

10 Tratamentos Termoquímicos Figura 14 Tempera por indução Nestas peças sujeitas a cargas leves a moderadas, uma camada endurecida varia entre 0,25 a 1,5 mm fornecendo uma boa resistência ao desgaste. Por outro lado, a tempera superficial por indução de barras e eixos até profundidades de 3,2 a 12,7 mm resulta em resistência à fadiga por torção ou dobramento grandemente melhorada. Figura 15 Tempera por indução de dentes. Figura 16 Tempera por indução de dente de uma engrenagem. Cementação é o tratamento, muito antigo, pois os romanos já o praticavam, consiste na introdução de carbono na superfície do aço, de modo a que este, depois de convenientemente temperado, apresente uma superfície muito mais dura. É necessário que o aço, em contato com a substância capaz de fornecer carbono, seja aquecido a uma temperatura em que a solução de carbono no ferro seja fácil. Para isso a temperatura deve ser superior a da zona crítica (900 ºC a 950 ºC), onde o ferro se encontrará na forma alotrópica gama. Por outro lado, a profundidade de penetração do carbono depende da temperatura e do tempo. Os processos usuais de cementaçao devem elevar o teor superficial de carbono ate 0,8 %ou 1,0 %. Fundamentalmente, a cementação é um fenômeno de difusão, isto é, relativo ao movimento de carbono no interior do aço, portanto, a velocidade de enriquecimento superficial de carbono nos aços depende, em primeiro lugar, do seu coeficiente de difusão. Entretanto, na cementação influem também a fonte de suprimento de carbono e a transferência deste para a superfície dos aços. Assim sendo, pode-se estabelecer que os fatores que influem sobre a velocidade de enriquecimento de carbono na superfície dos aços são os seguintes: Teor inicial de carbono no aço é obvio que, as outras variáveis permanecendo constantes, quanto menor o teor inicial de carbono no aço, tanto maior a velocidade de carbonetação. Coeficiente de difusão de carbono no aço - este é um fator de primordial importância, visto que o fenômeno de enriquecimento superficial de carbono do aço é fundamentalmente um fenômeno de difusão, isto é, de movimento relativo de carbono no interior do aço. De fato, o que se visa na cementação é a solução do carbono no ferro gama, fenômeno que é determinado pela velocidade do fluxo de carbono no ferro gama. Esse coeficiente de difusão é, por sua vez, uma função da temperatura e da concentração de carbono. Não é ele praticamente afetado pelo tamanho de grão do aço, nem pela presença das impurezas normais (fósforo, enxofre e nitrogênio), nem pelos elementos de liga nos teores em que são usualmente encontrados nos aços-liga para cementação. Temperatura é o fator mais importante, pois além de afetar a difusão, acelerando-a com a sua elevação, influi também na concentração de carbono na austenita e na velocidade de reação de carbonetação na superfície do aço. Velocidade do fluxo de gás esse fator influencia a velocidade de reação na superfície.

11 Dependendo da natureza do gás de carbonetação, pode ser decisiva, pois, com alguns gases de cementação pode-se ter uma deposição não desejada de carbono na superfície do material ou uma carbonetação insuficiente, a não ser que se tomem todas as precauções para um perfeito equilíbrio entre a velocidade de fluxo do gás e a composição. descontado convenientemente na usinagem previa da peça ou pode ser removido pela retificação do material depois de nitretado. Nitretação a nitretação é um tratamento de endurecimento superficial em que se introduz superficialmente no aço, até certa profundidade, nitrogênio, sob a ação de um ambiente nitrogenoso, a uma temperatura determinada. A nitretação é realizada com os seguintes objetivos: - Obtenção de elevada dureza superficial: - Aumento da resistência ao desgaste e da resistência à escoriação; - aumento da resistência à fadiga. - Melhora da resistência à corrosão. - Melhora da resistência superficial ao calor, até temperaturas correspondentes às de nitretação. Alguns característicos do processo são: - Temperatura de tratamento inferior à critica, compreendida na faixa de 500 ºC a 560 ºC. - Em conseqüência, as peças são menos suscetíveis a empenamento ou distorção; - Não há necessidade de qualquer tratamento térmico posterior à nitretação, o que também contribui para reduzir ao mínimo as probabilidades de empenamento ou distorção das peças. A nitretaçao é o processo clássico, consistindo em submeter às peças a serem nitretadas à ação de um meio gasoso contendo nitrogênio, geralmente amônia, à temperatura determinada. Nesse processo, a difusão de nitrogênio é muito lenta, de modo que a operação é muito demorada, durando as vezes cerca de 90 horas. Geralmente o tempo varia de 48 a 72 horas. Mesmo com os tempos mais longos, a espessura da camada nitretada é inferior a da camada cementada, dificilmente ultrapassando a 0,8 mm. A dureza superficial obtida é da ordem de 1000 a 1100 Vickers, muito superior à obtida na cementação. A amônia, no processo, decompõe-se parcialmente em nitrogênio e o nitrogênio ativo produzido combina-se parcialmente como os elementos de liga do aço formando nitretos complexos de elevada dureza. O processo clássico de nitretação apresenta, entretanto, alguns inconvenientes, entre os quais o mais importante é o crescimento do material que ela produz esse crescimento que depende principalmente do tempo, o qual constitui um dos outros inconvenientes, e da temperatura, é constante sob as mesmas condições. Assim sendo, depois de determinado para um da dada peça de um aço de composição conhecida, pode ser

Recozimento recuperação) Tratamento Térmico (Amolecimento, Normalização (Resfriamento ao ar) Tempera (Endurecimento) homogeneização, Revenido (alívio

Recozimento recuperação) Tratamento Térmico (Amolecimento, Normalização (Resfriamento ao ar) Tempera (Endurecimento) homogeneização, Revenido (alívio É o conjunto de operações de aquecimento e resfriamento que são submetidos os aços sob condições controladas de temperatura, tempo, atmosfera e velocidade de esfriamento. Objetivos dos tratamentos térmicos.

Leia mais

AÇO-CARBONO AÇO-LIGA ALOTROPIA DO FERRO

AÇO-CARBONO AÇO-LIGA ALOTROPIA DO FERRO AÇO-CARBONO Aço é a liga ferro-carbono contendo geralmente 0,008% ate aproximadamente 2,11% de carbono. AÇO-LIGA Aço que contem outros elementos de liga ou apresenta os teores residuais acima dos que são

Leia mais

Conteúdo Programático da Aula

Conteúdo Programático da Aula Conteúdo Programático da Aula 5. Tratamentos Térmicos e Termoquímicos 5.1 Fundamentos; 5.2 Taxas de resfriamento; 5.3 Têmpera e endurecimentos dos aços; 5.4 Temperabilidade; 5.5 Martensita versus martensita

Leia mais

CAPÍTULO 3 TRATAMENTOS TÉRMICOS EM LIGAS DE ALUMÍNIO. Os tratamentos térmicos têm como finalidade causar modificações nas

CAPÍTULO 3 TRATAMENTOS TÉRMICOS EM LIGAS DE ALUMÍNIO. Os tratamentos térmicos têm como finalidade causar modificações nas CAPÍTULO 3 TRATAMENTOS TÉRMICOS EM LIGAS DE ALUMÍNIO Os tratamentos térmicos têm como finalidade causar modificações nas propriedades dos materiais pela alteração do tipo e proporção das fases presentes,

Leia mais

Principais elementos de liga. Cr Ni V Mo W Co B Cu Mn, Si, P e S (residuais)

Principais elementos de liga. Cr Ni V Mo W Co B Cu Mn, Si, P e S (residuais) Aços Ligas Aços ligas A introdução de outros elementos de liga nos aços-carbono é feita quando se deseja um ou diversos dos seguintes efeitos: Aumentar a resistência mecânica e dureza. Conferir resistência

Leia mais

Sistema Ferro - Carbono

Sistema Ferro - Carbono Sistema Fe-C Sistema Ferro - Carbono Diagrama de equilíbrio Fe-C Ferro comercialmente puro - < 0,008% Ligas de aços 0 a 2,11 % de C Ligas de Ferros Fundidos acima de 2,11% a 6,7% de C Ferro alfa dissolve

Leia mais

TRATAMENTO TÉRMICO PARTE 1

TRATAMENTO TÉRMICO PARTE 1 TRATAMENTO TÉRMICO PARTE 1 Definição: Tratamento térmico é o conjunto de operações de aquecimento e resfriamento a que são submetidos os aços, sob condições controladas de temperatura, tempo, atmosfera

Leia mais

FORMAÇÃO DA MICROESTRUTURA DOS FERROS FUNDIDOS. diagrama de fases sequência de transformações

FORMAÇÃO DA MICROESTRUTURA DOS FERROS FUNDIDOS. diagrama de fases sequência de transformações FORMAÇÃO DA MICROESTRUTURA DOS FERROS FUNDIDOS diagrama de fases sequência de transformações Composições Químicas Básicas % carbono : 2,7 a 3,8% % silício : 1,5 a 2,6 % carbono equivalente: %Si=1/3 %C

Leia mais

TRATAMENTOS TÉRMICOS

TRATAMENTOS TÉRMICOS TRATAMENTOS TÉRMICOS Definição Submeter um material a um ciclo de variações de temperatura conhecido (idealmente seria controlado), com o objetivo de se obter no material uma determinada microestrutura,

Leia mais

PRINCÍPIOS DA ENGENHARIA E CIÊNCIAS DOS MATERIAIS. Cláudio Messias da Silva

PRINCÍPIOS DA ENGENHARIA E CIÊNCIAS DOS MATERIAIS. Cláudio Messias da Silva PRINCÍPIOS DA ENGENHARIA E CIÊNCIAS DOS MATERIAIS Cláudio Messias da Silva A produção siderúrgica brasileira vem se firmando nos últimos anos. A produção atual ultrapassa a milhões de toneladas e, face

Leia mais

EXERCÍCIOS SOBRE TRATAMENTOS TÉRMICOS DAS LIGAS FERROSAS

EXERCÍCIOS SOBRE TRATAMENTOS TÉRMICOS DAS LIGAS FERROSAS EXERCÍCIOS SOBRE TRATAMENTOS TÉRMICOS DAS LIGAS FERROSAS 1. Em que consiste, de uma maneira geral, o tratamento térmico? R: Alterar as microestruturas das ligas metálicas e como conseqüência as propriedades

Leia mais

ANÁLISE METALOGRÁFICA E TRATAMENTOS TÉRMICOS DE TÊMPERA E NORMALIZAÇÃO Joy Williams, Vitor Amaro

ANÁLISE METALOGRÁFICA E TRATAMENTOS TÉRMICOS DE TÊMPERA E NORMALIZAÇÃO Joy Williams, Vitor Amaro Universidade Santa Úrsula CCET - Centro de Ciências Exatas e Tecnologia Curso de Graduação em Engenharia Mecânica EME-013 Metalografia e Tratamentos Térmicos I Data: 29/11/2004 Professor Daniel Cypriano

Leia mais

Ciências dos materiais- 232

Ciências dos materiais- 232 1 Ciências dos materiais- 232 Aula 6 - Tratamentos Térmicos Quinta Quinzenal Semana par 26/05/2015 1 Professor: Luis Gustavo Sigward Ericsson Curso: Engenharia Mecânica Série: 5º/ 6º Semestre 2015-1_CM_Aula06_TratTermico.pdf

Leia mais

Processos Metalúrgicos AULA 7-8 DIAGRAMA TTT E TRATAMENTOS TÉRMICOS

Processos Metalúrgicos AULA 7-8 DIAGRAMA TTT E TRATAMENTOS TÉRMICOS Processos Metalúrgicos AULA 7-8 DIAGRAMA TTT E TRATAMENTOS TÉRMICOS PROF.: KAIO DUTRA Diagrama TTT (Transformação Tempo Temperatura) Um dos fatores mais importantes que influenciam a posição das linhas

Leia mais

Evolução microestrutural da cinética de austenitização do aço 1045

Evolução microestrutural da cinética de austenitização do aço 1045 Evolução microestrutural da cinética de austenitização do aço 1045 Claudio Cassio Lima 2, Íris Andrade Bezerra 2, Mário Cezar Alves da Silva 1, Rodrigo Estevam Coelho 1, Maria Doroteia Costa Sobral 1 1

Leia mais

DETERMINAÇÃO DA CURVA DE REVENIMENTO DO AÇO LIGA 52100

DETERMINAÇÃO DA CURVA DE REVENIMENTO DO AÇO LIGA 52100 Revista Ciências Exatas DETERMINAÇÃO DA CURVA DE REVENIMENTO DO AÇO LIGA 52100 ISSN: 1516-2893 Vol. 20 Nº. 2 Ano 2014 Jorge Bertoldo Junior Instituto Nacional de Pesquisas Espaciais - INPE jorgeengmecanico@yahoo.com.br

Leia mais

Resumo. QM - propriedades mecânicas 1

Resumo. QM - propriedades mecânicas 1 Resumo tensão e deformação em materiais sólidos ensaios de tracção e dureza deformação plástica de materiais metálicos recristalização de metais encruados fractura fadiga fluência QM - propriedades mecânicas

Leia mais

DIAGRAMA DE FASES Clique para editar o estilo do título mestre

DIAGRAMA DE FASES Clique para editar o estilo do título mestre Introdução São diagramas que mostram regiões de estabilidade das fases, através de gráficos que representam as relações entre temperatura, pressão e composição química. Para que serve: Investigar reações

Leia mais

TRATAMENTOS TÉRMICOS: AÇOS E SUAS LIGAS. Os tratamentos térmicos em metais ou ligas metálicas, são definidos como:

TRATAMENTOS TÉRMICOS: AÇOS E SUAS LIGAS. Os tratamentos térmicos em metais ou ligas metálicas, são definidos como: TRATAMENTOS TÉRMICOS: AÇOS E SUAS LIGAS Os tratamentos térmicos em metais ou ligas metálicas, são definidos como: - Conjunto de operações de aquecimento e resfriamento; - Condições controladas de temperatura,

Leia mais

EFEITO DOS ELEMENTOS DE LIGA NOS AÇOS

EFEITO DOS ELEMENTOS DE LIGA NOS AÇOS EFEITO DOS ELEMENTOS DE LIGA NOS AÇOS Seleção do processo de fundição Metal a ser fundido [C. Q.]; Qualidade requerida da superfície do fundido; Tolerância dimensional requerida para o fundido; Quantidade

Leia mais

Ar de combustão. Água condensada. Balanço da energia. Câmara de mistura. Convecção. Combustível. Curva de aquecimento

Ar de combustão. Água condensada. Balanço da energia. Câmara de mistura. Convecção. Combustível. Curva de aquecimento Ar de combustão O ar de combustão contém 21% de oxigênio, que é necessário para qualquer combustão. Além disso, 78% de nitrogênio está incorporado no ar. São requeridos aproximadamente 10 metros cúbicos

Leia mais

EXTRUSÃO E TREFILAÇÃO

EXTRUSÃO E TREFILAÇÃO EXTRUSÃO E TREFILAÇÃO 1 Se a necessidade é de perfis de formatos complicados ou, então, de tubos, o processo de fabricação será a extrusão. Se o que se quer fabricar, são rolos de arame, cabos ou fios

Leia mais

SUBSTÂNCIAS, MISTURAS E SEPARAÇÃO DE MISTURAS

SUBSTÂNCIAS, MISTURAS E SEPARAÇÃO DE MISTURAS NOTAS DE AULA (QUÍMICA) SUBSTÂNCIAS, MISTURAS E SEPARAÇÃO DE MISTURAS PROFESSOR: ITALLO CEZAR 1 INTRODUÇÃO A química é a ciência da matéria e suas transformações, isto é, estuda a matéria. O conceito da

Leia mais

Centro Universitário Padre Anchieta Faculdade de Tecnologia Ciência dos Materiais Prof Ailton. Aço inoxidável

Centro Universitário Padre Anchieta Faculdade de Tecnologia Ciência dos Materiais Prof Ailton. Aço inoxidável Aço inoxidável 6.1 - INTRODUÇÃO Os aços inoxidáveis são aços liga de ferro-cromo que contêm, tipicamente, um teor mínimo de 12% de cromo. A formação de uma fina camada de óxido de cromo em sua superfície,

Leia mais

TRANSFORMAÇÕES DE FASES EM METAIS E MICROESTRUTURAS

TRANSFORMAÇÕES DE FASES EM METAIS E MICROESTRUTURAS Universidade de São Paulo Escola de Engenharia de São Carlos Departamento de Engenharia de Materiais, Aeronáutica e Automobilística TRANSFORMAÇÕES DE FASES EM METAIS E MICROESTRUTURAS Engenharia e Ciência

Leia mais

TECNOLOGIA DOS MATERIAIS

TECNOLOGIA DOS MATERIAIS TECNOLOGIA DOS MATERIAIS Aula 6: Propriedades Mecânicas Ensaios Propriedades de Tração Dureza CEPEP - Escola Técnica Prof.: Propriedades Mecânicas dos Materiais Muitos materiais, quando em serviço, são

Leia mais

Tratamento Térmico. Profa. Dra. Daniela Becker

Tratamento Térmico. Profa. Dra. Daniela Becker Tratamento Térmico Profa. Dra. Daniela Becker Bibliografia Callister Jr., W. D. Ciência e engenharia de materiais: Uma introdução. LTC, 5ed., cap 11, 2002. Shackelford, J.F. Ciências dos Materiais, Pearson

Leia mais

Metalurgia da Soldadura

Metalurgia da Soldadura Fontes de calor Arco eléctrico Resistência Fricção Laser tc Potência Transferida nergia fornecida pela fonte às peças, por unidade de tempo (watt) Intensidade Potência transferido por unidade de área (watt/min)

Leia mais

Ciências dos materiais- 232

Ciências dos materiais- 232 1 Ciências dos materiais- 232 Transformações de Fase em Metais e Microestruturas Quinta Quinzenal Semana par 05/05/2015 1 Professor: Luis Gustavo Sigward Ericsson Curso: Engenharia Mecânica Série: 5º/

Leia mais

Capítulo 10 Ferro e aço

Capítulo 10 Ferro e aço Capítulo 10 Ferro e aço 1. Considere o diagrama de equilíbrio (metaestável) de fases Fe-Fe 3 C. (a) Qual a composição do aço que apresenta na sua microestrutura de equilíbrio, à temperatura ambiente, uma

Leia mais

Existem diversas técnicas e procedimentos empregados visando o aumento das propriedades

Existem diversas técnicas e procedimentos empregados visando o aumento das propriedades Universidade Federal do Paraná Curso de Engenharia Industrial Madeireira ELEMENTOS ORGÂNICOS DE MÁQUINAS I AT-096 Dr. Alan Sulato de Andrade alansulato@ufpr.br TRATAMENTOS EMPREGADOS EM INTRODUÇÃO: Existem

Leia mais

TRATAMENTOS EMPREGADOS EM MATERIAIS METÁLICOS

TRATAMENTOS EMPREGADOS EM MATERIAIS METÁLICOS Universidade Federal do Paraná Curso de Engenharia Industrial Madeireira ELEMENTOS ORGÂNICOS DE MÁQUINAS I AT-096 Dr. Alan Sulato de Andrade alansulato@ufpr.br TRATAMENTOS EMPREGADOS EM 1 INTRODUÇÃO: Existem

Leia mais

Curvas de resfriamento contínuo com diferentes taxas de resfriamento: Ensaio Jominy. Resultados: - Microestruturas diferentes; - Durezas diferentes.

Curvas de resfriamento contínuo com diferentes taxas de resfriamento: Ensaio Jominy. Resultados: - Microestruturas diferentes; - Durezas diferentes. Curvas de resfriamento contínuo com diferentes taxas de resfriamento: Ensaio Jominy Resultados: - Microestruturas diferentes; - Durezas diferentes. Efeito da seção da peça sobre a velocidade de resfriamento

Leia mais

TRANSFORMAÇÕES DE FASES EM METAIS E MICROESTRUTURAS

TRANSFORMAÇÕES DE FASES EM METAIS E MICROESTRUTURAS Universidade de São Paulo Escola de Engenharia de Lorena Departamento de Engenharia de Materiais TRANSFORMAÇÕES DE FASES EM METAIS E MICROESTRUTURAS Introdução à Ciência dos Materiais Prof. Dr. Cassius

Leia mais

TRANSFORMAÇÕES DE FASES EM METAIS E MICROESTRUTURAS. Engenharia e Ciência dos Materiais I Profa.Dra. Lauralice Canale

TRANSFORMAÇÕES DE FASES EM METAIS E MICROESTRUTURAS. Engenharia e Ciência dos Materiais I Profa.Dra. Lauralice Canale TRANSFORMAÇÕES DE FASES EM METAIS E MICROESTRUTURAS Engenharia e Ciência dos Materiais I Profa.Dra. Lauralice Canale Transformação de fase em metais Tratamento térmico (tempo/temperatura) Microestrutura

Leia mais

CURVAS TTT Cesar Edil da Costa e Eleani Maria da Costa

CURVAS TTT Cesar Edil da Costa e Eleani Maria da Costa CURVAS TTT Cesar Edil da Costa e Eleani Maria da Costa As curvas TTT estabelecem a temperatura e o tempo em que ocorre uma determinada transformação Só tem validade para transformações a temperatura constante

Leia mais

TRANSFORMAÇÕES DE FASES EM METAIS E MICROESTRUTURAS. Engenharia e Ciência dos Materiais I Profa.Dra. Lauralice Canale 1º.

TRANSFORMAÇÕES DE FASES EM METAIS E MICROESTRUTURAS. Engenharia e Ciência dos Materiais I Profa.Dra. Lauralice Canale 1º. TRANSFORMAÇÕES DE FASES EM METAIS E MICROESTRUTURAS Engenharia e Ciência dos Materiais I Profa.Dra. Lauralice Canale 1º. Semestre 2017 TRANSFORMAÇÕES MULTIFÁSICAS As condições de equilíbrio caracterizadas

Leia mais

GRAVIMETRIA. Profa. Lilian Silva

GRAVIMETRIA. Profa. Lilian Silva GRAVIMETRIA Profa. Lilian Silva Agente precipitante Gravimetria separação filtração secagem/ calcinação amostra pesagem precipitado cálculos Gravimetria É o processo de isolar e de pesar um elemento, ou

Leia mais

Tratamentos térmicos de Recozimento e Normalização para os aços

Tratamentos térmicos de Recozimento e Normalização para os aços Tratamentos térmicos de Recozimento e Normalização para os aços Figura 10.1. Indicação das temperaturas recomendadas em aços carbonos, para austenitização e efetivação dos tratamentos térmicos de Normalização

Leia mais

ESTRUTURA E PROPRIEDADES DOS MATERIAIS IMPERFEIÇÕES CRISTALINAS

ESTRUTURA E PROPRIEDADES DOS MATERIAIS IMPERFEIÇÕES CRISTALINAS ESTRUTURA E PROPRIEDADES DOS MATERIAIS IMPERFEIÇÕES CRISTALINAS Prof. Rubens Caram 1 IMPERFEIÇÕES CRISTALINAS TODO CRISTAL EXIBE DEFEITOS QUANTIDADE E TIPO DE IMPERFEIÇÕES DEPENDE DA FORMA QUE O CRISTAL

Leia mais

4/26/2016 DISCIPLINA: TECNOLOGIA METALÚRGICA PROF. JOSÉ LUÍS L. SILVEIRA 1º PERÍODO DE 2016 (SALA I-241) BIBLIOGRAFIA BIBLIOGRAFIA ESPECÍFICA

4/26/2016 DISCIPLINA: TECNOLOGIA METALÚRGICA PROF. JOSÉ LUÍS L. SILVEIRA 1º PERÍODO DE 2016 (SALA I-241) BIBLIOGRAFIA BIBLIOGRAFIA ESPECÍFICA DISCIPLINA: TECNOLOGIA METALÚRGICA PROF. JOSÉ LUÍS L. SILVEIRA 1º PERÍODO DE 2016 (SALA I-241) BIBLIOGRAFIA Bibliografia suplementar: Introdução aos Processos de Fabricação autor: Mikell P. Groover Curso

Leia mais

Resposta Questão 2. a) O N O b) Linear

Resposta Questão 2. a) O N O b) Linear GABARITO DA PROVA DO PROCESSO DE SELEÇÃO PARA O PROGRAMA DE PÓS-GRADUAÇÃO 1 SEMESTRE DE 2016 FÍSICA E QUÍMICA DE MATERIAIS UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL REI Resposta Questão 1. A amônia apresenta

Leia mais

Tratamentos Térmicos

Tratamentos Térmicos TRATAMENTOS TÉRMICOS DE METAIS DE BASE E JUNTAS SOLDADAS Prof. Valtair Antonio Ferraresi Universidade Federal de Uberlândia 1 Tratamentos Térmicos Operações de aquecimento e resfriamento controlados, que

Leia mais

Aula 6: Lista de Exercícios. Laminação Extrusão e Trefilação Forjamento e Estampagem Fundição

Aula 6: Lista de Exercícios. Laminação Extrusão e Trefilação Forjamento e Estampagem Fundição Aula 6: Lista de Exercícios Materiais Laminação Extrusão e Trefilação Forjamento e Estampagem Fundição Podemos definir como aço: a) LigadeFeeCcomteorentre0,1e6%deC. b) LigadeFeeMgcomteorentre0,1e6%deMg.

Leia mais

SUSCEPTILIDADE À FRAGILIZAÇÃO POR PRECIPITAÇÃO EM AÇO FUNDIDO DE CARCAÇA

SUSCEPTILIDADE À FRAGILIZAÇÃO POR PRECIPITAÇÃO EM AÇO FUNDIDO DE CARCAÇA SUSCEPTILIDADE À FRAGILIZAÇÃO POR PRECIPITAÇÃO EM AÇO FUNDIDO DE CARCAÇA Paulo Ricardo Ferreira de Carvalho 1 *, Carlos Danilo Euzebio 2, Omar Maluf 3 Maurício Angeloni 4, Mara ReginaMellini Jabur 5, Mirian

Leia mais

DIAGRAMAS TTT DIAGRAMAS TTT

DIAGRAMAS TTT DIAGRAMAS TTT DIAGRAMAS TTT Prof. Dr. Anael Krelling 1 MATERIAIS METÁLICOS Ampla gama de propriedades mecânicas Mecanismos de aumento de resistência Refino do tamanho de grão Formação de solução sólida Encruamento Outras

Leia mais

ESTRUTURA E PROPRIEDADES DOS MATERIAIS DIFUSÃO ATÔMICA

ESTRUTURA E PROPRIEDADES DOS MATERIAIS DIFUSÃO ATÔMICA ESTRUTURA E PROPRIEDADES DOS MATERIAIS DIFUSÃO ATÔMICA Prof. Rubens Caram 1 DIFUSÃO ATÔMICA DIFUSÃO ATÔMICA É O MOVIMENTO DE MATÉRIA ATRAVÉS DA MATÉRIA EM GASES, LÍQUIDOS E SÓLIDOS, OS ÁTOMOS ESTÃO EM

Leia mais

Acesse: http://fuvestibular.com.br/

Acesse: http://fuvestibular.com.br/ Casa de ferreiro, espeto de... aço Uma das profissões mais antigas do mundo é a do ferreiro. Quem não se lembra de já ter visto, em filmes históricos ou de faroeste, um homem bem forte, todo suado, retirando

Leia mais

Aplicação de Tensões ( ) Conformação por Torneamento Usinagem de Corte Fresagem ( > ruptura ) Plainamento Retificação. ( T > T fusão ) Soldagem

Aplicação de Tensões ( ) Conformação por Torneamento Usinagem de Corte Fresagem ( > ruptura ) Plainamento Retificação. ( T > T fusão ) Soldagem INTRODUÇÃO AOS ENSAIOS DOS MATERIAIS Todo projeto de um componente mecânico, ou mais amplamente, qualquer projeto de engenharia, requer um amplo conhecimento das características, propriedades e comportamento

Leia mais

Cobalto e as famosas ligas de Stellite LEADRO FERREIRA LUIZ GIMENES

Cobalto e as famosas ligas de Stellite LEADRO FERREIRA LUIZ GIMENES Cobalto e as famosas ligas de Stellite LEADRO FERREIRA LUIZ GIMENES E-mail: inspetor@infosolda.com.br E-mail: gimenes@infosolda.com.br Figura 1. Lascas de cobalto refinado eletroliticamente puro (99,9%)

Leia mais

DIAGRAMAS TTT DIAGRAMAS TTT

DIAGRAMAS TTT DIAGRAMAS TTT DIAGRAMAS TTT Prof. M.Sc.: Anael Krelling 1 DIAGRAMAS DE TRANSFORMAÇÕES ISOTÉRMICAS (CURVAS TTT) Servem para indicar quanto tempo se deve ficar a determinada temperatura para atingir o grau de transformação

Leia mais

Aula 20: Transformações Martensíticas. - Transformação Martensítica é uma reação de deslizamento que ocorre sem difusão de matéria.

Aula 20: Transformações Martensíticas. - Transformação Martensítica é uma reação de deslizamento que ocorre sem difusão de matéria. - Transformação Martensítica é uma reação de deslizamento que ocorre sem difusão de matéria. - Pode ocorrer em sistemas nos quais existe uma transformação invariante, controlada por difusão, a qual pode

Leia mais

TRANSFORMAÇÕES DE FASES EM METAIS

TRANSFORMAÇÕES DE FASES EM METAIS UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA MECÂNICA TRANSFORMAÇÕES DE FASES EM METAIS CMA CIÊNCIA DOS MATERIAIS 2º Semestre de 2014 Prof. Júlio

Leia mais

PREPARO DE GRÃOS DE SOJA PARA EXTRAÇÃO

PREPARO DE GRÃOS DE SOJA PARA EXTRAÇÃO PREPARO DE GRÃOS DE SOJA PARA EXTRAÇÃO Eng. Luiz Carlos Masiero L.C.Masiero Engenharia Industrial Jaú, SP Resumo: Se apresentam neste trabalho as considerações básicas do processo de preparação de grãos

Leia mais

Steel Cord. Introdução

Steel Cord. Introdução Steel Cord Introdução Cabo de aço é um tipo de corda feita de vários arames de aço enrolados em forma de hélice. Quando foi inventado, era comum a utilização de ferro forjado na fabricação destes arames,

Leia mais

CONFORMAÇÃO MECÂNICA. Aula 1

CONFORMAÇÃO MECÂNICA. Aula 1 CONFORMAÇÃO MECÂNICA Aula 1 Bibliografia Básica DIETER, G.E. Metalurgia Mecânica. Rio de Janeiro: Guanabara Dois, 1981. HELMAN, H. e CETLIN, P. R., R Fundamentos da Conformação Mecânica dos Metais,, Ed.

Leia mais

Têmpera. Lauralice Canale

Têmpera. Lauralice Canale Têmpera Lauralice Canale Transformação de fase em metais Fases metaestáveis podem ser formadas como um resultado de mudanças muitos rápidas de temperatura. A microestrutura é fortemente afetada pela taxa

Leia mais

Mecânica Geral. Aula 04 Carregamento, Vínculo e Momento de uma força

Mecânica Geral. Aula 04 Carregamento, Vínculo e Momento de uma força Aula 04 Carregamento, Vínculo e Momento de uma força 1 - INTRODUÇÃO A Mecânica é uma ciência física aplicada que trata dos estudos das forças e dos movimentos. A Mecânica descreve e prediz as condições

Leia mais

Profa. Dra. Lauralice Canale

Profa. Dra. Lauralice Canale Profa. Dra. Lauralice Canale A1: Temperatura de equilíbrio de início de austenitização A3: Temperatura de equilíbrio de fim de austenitização Estrutura da perlita Perlita (0.8% C em média) Cementita

Leia mais

Centro Universitário Padre Anchieta Ciência dos Materiais AÇOS-LIGA

Centro Universitário Padre Anchieta Ciência dos Materiais AÇOS-LIGA AÇOS-LIGA 5.1 INTRODUÇÃO Todos os aços-liga são mais caros do que os aços carbonos, sendo seu preço em geral tanto mais caro quanto maior a porcentagem de elementos de liga no aço. Por essa razão, só se

Leia mais

e a parcela não linear ser a resposta do sistema não linear com memória finita. Isto é, a

e a parcela não linear ser a resposta do sistema não linear com memória finita. Isto é, a 189 Comparando-se as figuras anteriores, Figura 5.15 a Figura 5.18, nota-se que existe uma correlação entre os valores das funções auto densidade espectrais lineares e não lineares. Esta correlação é devida

Leia mais

SOLDAGEM DE FERRO FUNDIDO

SOLDAGEM DE FERRO FUNDIDO SOLDAGEM DE FERRO FUNDIDO Os ferros fundidos são ligas Fe-C que apresentam grande quantidade de carbono em sua composição química (sempre superior a 2%). Existem diversos tipos de ferros fundidos, variadas

Leia mais

Unidade 10 Estudo dos Gases. Introdução Equação dos gases Transformação Isotérmica Transformação Isobárica Transformação Isocórica Diagrama de Fases

Unidade 10 Estudo dos Gases. Introdução Equação dos gases Transformação Isotérmica Transformação Isobárica Transformação Isocórica Diagrama de Fases Unidade 0 Estudo dos Gases Introdução Equação dos gases ransformação Isotérmica ransformação Isobárica ransformação Isocórica Diagrama de Fases Introdução Equação Geral dos Gases Na Química, aprendemos

Leia mais

EQUILÍBRIO QUÍMICO: é o estado de um sistema reacional no qual não ocorrem variações na composição do mesmo ao longo do tempo.

EQUILÍBRIO QUÍMICO: é o estado de um sistema reacional no qual não ocorrem variações na composição do mesmo ao longo do tempo. IV INTRODUÇÃO AO EQUILÍBRIO QUÍMICO IV.1 Definição EQUILÍBRIO QUÍMICO: é o estado de um sistema reacional no qual não ocorrem variações na composição do mesmo ao longo do tempo. Equilíbrio químico equilíbrio

Leia mais

Figura 49 Dispositivo utilizado no ensaio Jominy e detalhe do corpo-de-prova (adaptado de Reed-Hill, 1991).

Figura 49 Dispositivo utilizado no ensaio Jominy e detalhe do corpo-de-prova (adaptado de Reed-Hill, 1991). INTRODUÇÃO AO ESTUDO DOS AÇOS SILVIO FRANCISCO BRUNATTO 81 2.3.3 TEMPERABILIDADE A temperabilidade de um aço pode ser entendida como a capacidade de endurecimento ou a capacidade que o aço possui de obter

Leia mais

Física 2 - Termodinâmica

Física 2 - Termodinâmica Física 2 - Termodinâmica Calor e Temperatura Criostatos de He 3-272.85 C Termodinâmica Energia Térmica Temperatura, Calor, Entropia... Máquinas Térmicas : Refrigeradores, ar-condicionados,... Física Térmica

Leia mais

PGMEC EME774 Tratamentos Térmicos dos Aços. Prof. Scheid

PGMEC EME774 Tratamentos Térmicos dos Aços. Prof. Scheid PGMEC EME774 Tratamentos Térmicos dos Aços Prof. Scheid 1- Revisão Aços: Ligas contendo ferro e carbono entre 0 e 2.11% em peso, podendo conter elementos de ligas adicionados intencionalmente e ainda impurezas.

Leia mais

Módulo 08 - Mecanismos de Troca de Calor

Módulo 08 - Mecanismos de Troca de Calor Módulo 08 - Mecanismos de Troca de Calor CONCEITOS FUNDAMENTAIS Vamos iniciar este capítulo conceituando o que significa calor, que tecnicamente tem um significado muito diferente do que usamos no cotidiano.

Leia mais

Materiais para fabricação de ferramentas. Conseqüência dos esforços sobre a Ferramenta

Materiais para fabricação de ferramentas. Conseqüência dos esforços sobre a Ferramenta Conseqüência dos esforços sobre a Ferramenta 1 Requisitos desejados em uma ferramentas de corte Resistência à compressão Resistência à flexão e tenacidade Dureza Resistência a quente Resistência à oxidação

Leia mais

Propriedades térmicas em Materiais

Propriedades térmicas em Materiais FACULDADE SUDOESTE PAULISTA Ciência e Tecnologia de Materiais Prof. Msc. Patrícia Correa Propriedades térmicas em Materiais Noções importantes para entendermos os mecanismos de transporte através dos materiais

Leia mais

CONHECIMENTOS ESPECÍFICOS TÉCNICO DE LABORATÓRIO MECÂNICA

CONHECIMENTOS ESPECÍFICOS TÉCNICO DE LABORATÓRIO MECÂNICA CONHECIMENTOS ESPECÍFICOS TÉCNICO DE LABORATÓRIO MECÂNICA 26. Considere o desenho abaixo: Dentre as vista apresentadas a seguir, qual representa corretamente a elevação (vista frontal)? a) b) c) d) e)

Leia mais

1. INTRODUÇÃO ---------------------------------------------------------------------------------- 04 2. REVISÃO BIBLIOGRÁFICA

1. INTRODUÇÃO ---------------------------------------------------------------------------------- 04 2. REVISÃO BIBLIOGRÁFICA SUMÁRIO 1. INTRODUÇÃO ---------------------------------------------------------------------------------- 04 2. JUSTIFICATIVA --------------------------------------------------------------------------------

Leia mais

CONSERVAÇÃO DE ALIMENTOS PELO FRIO PRODUÇÃO ARTIFICIAL DO FRIO

CONSERVAÇÃO DE ALIMENTOS PELO FRIO PRODUÇÃO ARTIFICIAL DO FRIO 1 CONSERVAÇÃO DE ALIMENTOS PELO FRIO PRODUÇÃO ARTIFICIAL DO FRIO O frio industrial é produzido pela expansão de um gás, que tenha um baixo ponto de ebulição. Tabela 6.1. O gás escolhido é mantido sob pressão,

Leia mais

Dimensionamento de um sistema fotovoltaico. Fontes alternativas de energia - dimensionamento de um sistema fotovoltaico 1

Dimensionamento de um sistema fotovoltaico. Fontes alternativas de energia - dimensionamento de um sistema fotovoltaico 1 Dimensionamento de um sistema fotovoltaico Fontes alternativas de energia - dimensionamento de um sistema fotovoltaico 1 Sistemas fotovoltaicos Geralmente são utilizado em zonas afastadas da rede de distribuição

Leia mais

SOLDAGEM DOS METAIS 53 CAPÍTULO 8 SOLDAGEM MIG/MAG

SOLDAGEM DOS METAIS 53 CAPÍTULO 8 SOLDAGEM MIG/MAG SOLDAGEM DOS METAIS 53 CAPÍTULO 8 SOLDAGEM MIG/MAG SOLDAGEM DOS METAIS 54 PROCESSO MIG/MAG (METAL INERT GAS/METAL ACTIVE GAS) MIG é um processo por fusão a arco elétrico que utiliza um arame eletrodo consumível

Leia mais

Revestimento por soldagem - Processos de Soldagem para Revestimento

Revestimento por soldagem - Processos de Soldagem para Revestimento Revestimento por soldagem - Processos de Soldagem para Revestimento A seleção do processo de soldagem para revestimento é tão importante quanto a seleção da liga. Os requerimentos de desempenho em serviço

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Engenharia Mecânica. Elementos de Máquinas I Elementos de União

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Engenharia Mecânica. Elementos de Máquinas I Elementos de União Elementos de Máquinas I Elementos de União 1. INTRODUÇÃO Elementos de Máquinas I 1.1.DEFINIÇÕES USUAIS "Processo de união de metais por fusão". (não só metais e não apenas por fusão) "União de duas ou

Leia mais

TM343 Materiais de Engenharia

TM343 Materiais de Engenharia Universidade Federal do Paraná Setor de Tecnologia Departamento de Engenharia Mecânica TM343 Materiais de Engenharia Ferros fundidos Prof. Rodrigo Perito Cardoso Onde estamos? Introdução Revisão dos conceitos

Leia mais

Aula 16 A Regra das Fases

Aula 16 A Regra das Fases Aula 16 A Regra das Fases 1. Introdução Poderíamos especular se quatro fases de uma única substância poderiam estar em equilíbrio (como, por exemplo, as duas formas sólidas do estanho, o estanho líquido

Leia mais

Aço Inoxidável Ferrítico ACE P410D

Aço Inoxidável Ferrítico ACE P410D ArcelorMittal Inox Brasil Aço Inoxidável Ferrítico ACE P410D transformando o amanhã 2 3 ACE P410D O aço inoxidável ACE P410D é um material que apresenta, por sua resistência a problemas de corrosão e abrasão

Leia mais

Aula 01 QUÍMICA GERAL

Aula 01 QUÍMICA GERAL Aula 01 QUÍMICA GERAL 1 Natureza da matéria Tales de Mileto (624-548 a. C.) Tudo é água Anaxímenes de Mileto (585-528 a. C.) Tudo provém do ar e retorna ao ar Empédocle (484-424 a. C.) As quatro raízes,

Leia mais

? Como??????? Laminagem. mecânicos. mecânicos TRATAMENTOS DOS AÇOS. e Trefilagem. Estiragem. para Laminagem a frio Estiragem e trefilagem

? Como??????? Laminagem. mecânicos. mecânicos TRATAMENTOS DOS AÇOS. e Trefilagem. Estiragem. para Laminagem a frio Estiragem e trefilagem TRATAMENTOS DOS AÇOS mecânicos Laminagem Estiragem e Trefilagem MATÉRIA PRIMA aço o laminado a quente A quente A frio para Laminagem a frio Estiragem e trefilagem TRATAMENTOS DOS AÇOS Sem nunca atingir

Leia mais

PROCESSO DE TREFILAÇÃO

PROCESSO DE TREFILAÇÃO PROCESSO DE TREFILAÇÃO E EXTRUSÃO Com ambos os processos podem tanto ser produzidas tarugos como peças acabadas. Processos destinados à produção de barras de perfil constante, sendo esse perfil definido

Leia mais

MÁQUINAS HIDRÁULICAS AULA 15 TURBINAS A VAPOR PROF.: KAIO DUTRA

MÁQUINAS HIDRÁULICAS AULA 15 TURBINAS A VAPOR PROF.: KAIO DUTRA MÁQUINAS HIDRÁULICAS AULA 15 TURBINAS A VAPOR PROF.: KAIO DUTRA Usinas Termoelétricas As turbinas a vapor são máquinas que utilizam a elevada energia cinética da massa de vapor expandido em trabalho de

Leia mais

INSTITUTO FEDERAL SANTA CATARINA Câmpus Lages. Materiais I. Recozimento e Alívio de Tensões Prof. Eng. o Claudio Schaeffer

INSTITUTO FEDERAL SANTA CATARINA Câmpus Lages. Materiais I. Recozimento e Alívio de Tensões Prof. Eng. o Claudio Schaeffer Materiais I e Alívio de Tensões 18.10.15 Justificativa - O PROCESSOS DE RECOZIMENTO E ALÍVIO DE TENSÕES SERVEM PARA MELHORAR AS PROPRIEDADES MECÂNICAS DOS MATERIAIS, EM ESPECIAL A DUCTILIDADE QUE GERALMENTE

Leia mais

O teor de C (>2%) está acima do teor que pode ser retido em solução sólida na austenita. " Consequência

O teor de C (>2%) está acima do teor que pode ser retido em solução sólida na austenita.  Consequência 1 FERROS FUNDIDOS - FOFOS É uma liga de Fe-C-Si É considerada uma liga ternária devido a presença do Si Os teores de Si podem ser maiores que o do próprio C O Si influi muito nas propriedades dos fofos

Leia mais

Tratamentos Térmicos. Recozimento. Objetivos:

Tratamentos Térmicos. Recozimento. Objetivos: Recozimento Objetivos: Reduzir a dureza; Aumentar a usinabilidade; Facilitar o trabalho a frio; Atingir microestrutura e propriedades desejadas Recozimento pleno Conceitos: Tratamentos Térmicos - TEMPERATURAS

Leia mais

Exercícios Gases e Termodinâmica

Exercícios Gases e Termodinâmica Exercícios Gases e Termodinâmica 1-O gás carbônico produzido na reação de um comprimido efervescente com água foi seco e recolhido àpressão de 1 atm e temperatura de 300K, ocupando um volume de 4 L. Se

Leia mais

Dobra/Corte por cisalhamento

Dobra/Corte por cisalhamento Dobra/Corte por cisalhamento Esta publicação aborda o dobramento a frio, e também o corte da chapa antidesgaste Hardox e da chapa de aço estrutural Weldox. Nestes tipos de aços, combinamos elevada resistência

Leia mais

Tecnologia de produção:

Tecnologia de produção: Aços Rápido Tecnologia de produção: Aços convencionais Materiais elaborados por aciaria convencional para solicitações normais, apresentando: u Boas condições estruturais u Boa distribuição de carbonetos

Leia mais

PMR 3101 INTRODUÇÃO À MANUFATURA MECÂNICA

PMR 3101 INTRODUÇÃO À MANUFATURA MECÂNICA PMR 3101 INTRODUÇÃO À MANUFATURA MECÂNICA Aula-6 P1- dia 16/10 15:40-17:40 Tratamento Térmico e Superficial Processamento Relação Propriedades Slides retirados do texto complementar de autoria do Prof.

Leia mais

Metais. Grande número de entidades iguais mantidas coesas em um retículo cristalino.

Metais. Grande número de entidades iguais mantidas coesas em um retículo cristalino. Ligações Metálicas Grande número de entidades iguais mantidas coesas em um retículo cristalino. Metais Não pode ser explicado pela teoria das ligações covalentes o arranjo dos metais não segue o padrão

Leia mais

Transformação de fase em metais

Transformação de fase em metais Transformação de fase em metais Transformação de fase em metais Dependente da difusão, sem modificações na composição de fase ou números de fase presentes: solidificação de metal puro, transformações

Leia mais

Processos Metalúrgicos PROF.: KAIO DUTRA

Processos Metalúrgicos PROF.: KAIO DUTRA Processos Metalúrgicos AULA 6 LIGAS FERROAS E DIAGRAMA DE FASES PROF.: KAIO DUTRA Ligas Ferrosas As ligas ferrosas são, em princípio, divididas em dois grupos: Aços, com teores de carbono até 2,11%; Ferros

Leia mais

OXICORTE SENAI CETEMP OUTROS PROCESSOS TOBIAS ROBERTO MUGGE

OXICORTE SENAI CETEMP OUTROS PROCESSOS TOBIAS ROBERTO MUGGE OXICORTE SENAI CETEMP OUTROS PROCESSOS TOBIAS ROBERTO MUGGE TIPOS DE CORTE MECÂNICO: Cisalhamento ou remoção de cavacos (guilhotinas e tesouras, serra) FUSÃO: Fusão do material pela transferência de calor

Leia mais

TECNOLOGIA HIDRÁULICA. Fagner Ferraz

TECNOLOGIA HIDRÁULICA. Fagner Ferraz TECNOLOGIA HIDRÁULICA Fagner Ferraz Potência x Eficiência 2 Cavitação 3 Causas da cavitação Tecnologia Hidráulica Filtro da linha de sucção saturado Linha de sucção muito longa Muitas curvas na linha de

Leia mais

Materiais de Construção Aços

Materiais de Construção Aços Materiais de Construção José Carlos G. Mocito email:jmocito@ipcb.pt O que é o aço? O aço é uma liga Ferro Carbono (liga FE C), cujo teor em carbono varia entre 0.03 e 2,06%. Uma propriedade característica

Leia mais

Aços de alta resistência e baixa liga em oleodutos e gasodutos. High-strength low-alloy steel in oil and gas line pipe

Aços de alta resistência e baixa liga em oleodutos e gasodutos. High-strength low-alloy steel in oil and gas line pipe Aços de alta resistência e baixa liga em oleodutos e gasodutos Clovis Misseno da Cruz 1 e José Carlos Morilla 2 1 Aluno do Curso de Mestrado na Universidade Santa Cecília, Santos, BR, 2 Professor do Curso

Leia mais

ROTEIRO DE ORIENTAÇÃO DE ESTUDOS Ensino Médio

ROTEIRO DE ORIENTAÇÃO DE ESTUDOS Ensino Médio ROTEIRO DE ORIENTAÇÃO DE ESTUDOS Ensino Médio Professora: Renata Disciplina: Física Série: 1ª Aluno(a): Turma: 1ª Nº.: Caro(a) aluno(a), Os objetivos listados para esta atividade de recuperação são parte

Leia mais

LISTA DE EXERCÍCIOS Trabalho, Calor e Primeira Lei da Termodinâmica para Sistemas

LISTA DE EXERCÍCIOS Trabalho, Calor e Primeira Lei da Termodinâmica para Sistemas - 1 - LISTA DE EXERCÍCIOS Trabalho, Calor e Primeira Lei da Termodinâmica para Sistemas 1. Um aquecedor de ambientes a vapor, localizado em um quarto, é alimentado com vapor saturado de água a 115 kpa.

Leia mais