2.4 Resistência em um condutor
|
|
|
- Natan Canedo de Vieira
- 9 Há anos
- Visualizações:
Transcrição
1 s A unidade da resistividade é m = mm. m 1. Qual a potência dissipada em um resistor de 10 k, percorrido por uma corrente de 5 ma? Material ρ ( m) a 20 C Prata 1, Tabela 2.2 Valores aproximados da resistividade para diversos materiais P = I 2 = ( ) 2 = 250 mw Cobre 1, Determine a potência dissipada em um resistor de 2k2, submetido a uma ddp de 12 V. P U , 10 3 = 65, 5 mw Ouro 2, Alumínio 2, Tungstênio 4, Platina 10, esistência em um condutor Ferro Figura 2.14 Parâmetros que afetam o valor da resistência ôhmica. A resistência elétrica dos condutores depende dos seguintes parâmetros: comprimento do fio (l), área de sua seção transversal (A), temperatura e material de que é feito (figura 2.14). Ohm estudou a influência deles na resistência com experimentos em que variava um parâmetro de cada vez, mantendo os demais constantes. Nicromo Influência do comprimento Variando apenas o comprimento (l), conforme ilustrado na figura 2.15, Ohm concluiu: A resistência elétrica é diretamente proporcional ao comprimento do condutor. Figura 2.15 elação de com o comprimento l. l l Seção transversal 2l 3l Influência do material: resistividade O cientista alemão analisou vários materiais, medindo a resistência de um condutor de 1 m de comprimento, 1 mm 2 de seção transversal e temperatura ambiente fixa em torno de 20 C Influência da área da seção transversal do condutor O valor da resistência de um condutor nessas condições, medida para diversos materiais (tabela 2.2), é uma constante denominada resistividade elétrica (símbolo: ρ; leia-se rô ). A resistividade é uma propriedade de cada material. Utilizando fios de diâmetros distintos (figura 2.16), Ohm estabeleceu: A resistência elétrica é inversamente proporcional à área da seção transversal do condutor
2 Figura 2.16 Variação da resistência em função da área A da seção transversal do condutor. A partir da uação 2.7, obtém-se: a) b) a b 8 la (, )( 02, ) 3 = ρ = = 13610, = 136, m 6 A 251, 0 8 lb (, )( 100) = ρ = = 068, = 680 m 6 A 251, 0 l 8 3 c) lc (, )( 5 10 ) c = ρ = = 34 = m 6 A 251, Influência da temperatura sobre a resistência elétrica etomando a analogia com um sistema hidráulico: com a água sob a mesma pressão, quanto maior o diâmetro do tubo, menor a oposição à passagem do líquido. No caso elétrico, quanto maior a área do condutor, menor a oposição à passagem da corrente Cálculo da resistência De tudo isso se conclui: A resistência elétrica de um condutor é diretamente proporcional ao comprimento e à resistividade e inversamente proporcional à área da seção transversal. Portanto: em que: =ρ l (2.7) A é a resistência elétrica (em ); r a resistividade elétrica do material (em m); l o comprimento do condutor (em m); A a área da seção transversal do condutor (em m 2 ). Determine a resistência de um fio de cobre, na temperatura de 20 C, com 2,5 mm 2 de seção transversal, para os seguintes valores de comprimento: a) l a = 20 cm b) l b = 100 m c) l c = 5 km Dado: ρ cu = 1, m (a 20 C) Além do tipo de material e de suas dimensões, a resistência elétrica também depende da temperatura, ou seja, da mobilidade das partículas no interior do condutor. Para a maioria das substâncias, a elevação da temperatura resulta em maior resistência elétrica, pois amplia a mobilidade (agitação térmica) das partículas, gerando colisões entre estas e os elétrons livres em movimento no interior do condutor. Isso ocorre principalmente nos metais. Em substâncias como o grafite e nos condutores iônicos, ocorre o contrário. O aumento da temperatura implica maior mobilidade das partículas, porém maior número de elétrons livres provêm do rompimento (quebra) nas ligações químicas existentes. Tal efeito prevalece sobre o aumento da mobilidade e resulta em menor resistência com o aumento da temperatura. Nas soluções, temperaturas mais altas provocam redução na viscosidade e, portanto, maior mobilidade dos íons, favorecendo a condução elétrica, ou seja, aumento da temperatura significa diminuição da resistência elétrica, em uma relação que depende do tipo de solução. Os semicondutores, que serão estudados posteriormente, apresentam comportamento semelhante. Para condutores metálicos sólidos, o comportamento da resistência com a temperatura é ditado pela uação 2.8. em que: = 0 (1 + a Dq) (2.8) é a resistência elétrica nova na temperatura final q f (em ); 0 a resistência elétrica na temperatura inicial q 0 (em ); Dq = q f q 0 a variação de temperatura (em C); a o coeficiente de temperatura do material (em C 1), que representa a variação da resistência elétrica que um condutor com 1 sofre, quando a temperatura varia 1 C
3 Tabela 2.3 Valores de a para metais A tabela 2.3 apresenta valores de a para metais comumente empregados em uipamentos eletroeletrônicos. Material α ( C 1 ) Platina 3, Alumínio 3, Cobre 3, Prata 4, Tungstênio 4, Ferro 5, Nicromo 0, A variação da resistividade com a temperatura recebe uação análoga: r = r 0 (1 + a Dq) (2.9) a) a = 0 (1 + a D qa ) = 100 (1 + 3, (24 20)) = 102 W b) b = 0 (1 + a D qb ) = 100 (1 + 3, (12 20)) = 96,6 W c) c = 0 (1 + a D qc ) = 100 (1 + 3, (120 20)) = 139 W d) d = 0 (1 + a D qd ) = 100 (1 + 3, ( )) = 482 W Nota: no exemplo 2, podemos observar que a resistência elétrica de condutores metálicos sofre variação significativa somente quando a oscilação da temperatura for muito grande. Por isso, exceto em aplicações específicas, desprezaremos aqui a influência de variações puenas, considerando-a constante. 2.5 Isolante ideal e supercondutores Nem o melhor dos isolantes está livre de ser atravessado por corrente elétrica, ou seja, o isolante ideal só existe teoricamente. Por maior que seja a resistência ou resistividade elétrica de uma substância, alguns elétrons sempre podem atravessá-la. Ao se elevar a tensão aplicada no material isolante, aumenta-se o campo elétrico no interior dele, até o ponto em que ocorre uma avalanche de cargas elétricas, gerando calor e temperatura suficiente para destruir o material de maneira irreversível. em que: r é a resistividade do material na temperatura final (q f ); r 0 a resistividade do material na temperatura inicial (q 0 ). s 1. Determine a resistividade de um condutor de alumínio na temperatura de C, sabendo que na temperatura de 20 C sua resistividade vale 2, m e seu coeficiente de temperatura vale 3, ( C 1 ). r = r 0 (1 + a Dq) De outro lado, em temperaturas próximas ao zero absoluto (cerca de 273,15 C), a resistência dos metais é praticamente nula, fazendo com que eles se comportem como condutores ideais ou supercondutores. As tentativas de descoberta de materiais nos quais o fenômeno ocorre em temperaturas mais elevadas resultaram em um composto de ítrio, cobre, bário e oxigênio. Na temperatura de aproximadamente 38 C, ele possui características de um supercondutor, ou seja, apresenta resistência nula. Existem aplicações comerciais para supercondutores, incluindo os magnetos de aparelhos de ressonância magnética e os magnetos dos novos trens-bala levitados (figura 2.17). Estão sendo estudadas aplicações de supercondutores em transformadores e geradores, em linhas de transmissão de energia elétrica, em armazenadores de energia elétrica, em motores para barcos etc. Figura 2.17 Trem-bala japonês (Shinkansen) levitado (Japan ailway), que utiliza magnetos supercondutores. r = 2, (1 + (3, ) ( 20 )) = 2, Wm 2. Um condutor de cobre na temperatura ambiente de 20 C possui resistência elétrica de 100. Qual sua resistência quando a temperatura mudar para: a) θ a = 24 C b) θ b = 12 C Dado: α cu = 3, ( C 1 ) c) θ c = 120 C d) θ d = C John Leung/Shutterstock.com david south/alamy/other images 52 53
4 Supercondutividade A descoberta do fenômeno da supercondutividade é atribuída ao físico holandês Heike Kamerlingh-Onnes. Ele percebeu, durante experimentos realizados no começo do século XX, que a resistência elétrica do mercúrio desaparecia quando o elemento era resfriado à temperatura de 4,2 K. O mesmo fenômeno acontecia com a resistência de outros metais, mas a temperaturas diferentes. Heike não conseguiu, no entanto, avançar muito nas pesquisas: os custos para resfriar determinados materiais eram tão altos que se tornaram impeditivos na época. Mesmo nos supercondutores de alta temperatura (temperatura crítica acima de 77 K), que utilizam nitrogênio líquido como refrigerante, os custos de refrigeração e isolação térmica são elevados Associação em série Figura 2.18 Circuito com dois resistores e b) resistor uivalente. 2.6 Condutância (G) e condutividade elétricas (σ) Condutância é a facilidade que um condutor oferece ao fluxo das cargas elétricas (corrente elétrica). É definida pelo inverso da resistência elétrica (uação 2.10). G = 1 (2.10) Na associação em série, a mesma corrente passa por todos os resistores de 1 a n. A figura 2.19 ilustra esse tipo de associação e o resistor uivalente. Figura 2.19 Associação em série e resistor uivalente. Sua unidade é o mho (igual a 1/; símbolo: ) ou o siemens (S). De modo análogo, a condutividade é o inverso da resistividade elétrica (uação 2.11) ou, ainda, a condutância elétrica determinada em condições particulares de um condutor, com 1 m de comprimento, 1 mm 2 de seção transversal, na temperatura de 20 C. Na associação em série, a resistência uivalente é a soma das várias resistências da ligação. A expressão vista de será aqui empregada para facilitar a visualização do circuito que se quer destacar. Funciona como se olhássemos para o circuito a partir dos pontos considerados. Nó elétrico é um ponto de ligação no circuito elétrico onde existem três ou mais ramos, ou seja, onde saem/chegam três ou mais correntes. Sua unidade é o siemens por metro ( S m σ = 1 (2.11) ρ = 1 m ). 2.7 Associação de resistores Na análise de circuitos elétricos, muitas vezes é conveniente representar um trecho complexo, com muitos resistores, por um único resistor cuja resistência uivale à do conjunto. A resistência final dessa associação é comumente denominada resistência total ( T ) ou resistência uivalente ( ), vista de dois pontos do circuito. A figura 2.18a mostra um circuito com duas resistências 1 e 2 entre os nós A e B, e a figura 2.18b, uma única resistência T (ou ), uivalente a 1 e 2. Se for aplicado um ohmímetro nos terminais A e B desses circuitos, ambos apresentarão a mesma resistência. Se for aplicada uma tensão U entre os pontos A e B, ambos apresentarão a mesma corrente I. = T = AB = n (2.12) Calcule a resistência uivalente entre os pontos A e B da figura Figura 2.20 Circuito com três resistores em série
5 Pela uação 2.12, obtém-se: = AB = = =,0 W Figura 2.22 Associação em paralelo de dois resistores e resistor uivalente. Nota: nos próximos exemplos de associação de resistores, serão usados os mesmos valores para 1, 2 e 3, a fim de comparar as várias possibilidades de ligações entre elas Associação em paralelo Na associação em paralelo, todos os resistores estão submetidos à mesma tensão, como mostra a figura 2.21, que também apresenta o resistor uivalente. T Figura 2.21 Associação em paralelo e resistor uivalente. Pela uação 2.13, obtém-se: = AB = 11 Assim: = AB , Comparação entre associações elacionemos o resultado dos exemplos da seção 2.7. Na associação em série, tudo acontece como se aumentássemos o comprimento da resistência. Portanto, a resistência total aumenta. A ligação em paralelo funciona como se aumentássemos a área do condutor. Logo, a resistência dependerá do inverso da área e seu valor diminui. Na associação em paralelo, o inverso da resistência uivalente é igual à soma dos inversos das várias resistências da ligação AB N (2.13) Na associação em série, T é sempre maior do que a maior resistência: T = W > 3 = 30 W Na associação em paralelo, T é sempre menor do que a menor resistência: T = 5,45 W < 1 = 10 W Determine a resistência uivalente entre os pontos A e B do circuito da figura 2.22a. Casos particulares de associação em paralelo Duas resistências diferentes em paralelo (figura 2.23)
6 Figura 2.23 Associação em paralelo de dois resistores e resistor uivalente. Associam-se x e 1, obtendo-se: T = ,, Pela uação 2.13, obtém-se: T que é idêntico ao calculado utilizando a uação Essa é uma estratégia de solução bastante utilizada. Associação em paralelo de n resistores de mesmo valor. Na figura 2.25a, todos os resistores têm o mesmo valor = AB 2 1 = + (2.14) O exemplo a seguir mostra que essa fórmula para dois resistores pode ser empregada para associações com mais de dois resistores. Nesse caso, associam-se inicialmente dois resistores quaisquer. O resistor uivalente é associado com o terceiro resistor, e assim por diante até o último resistor. Figura 2.25 Associação em paralelo de n resistores iguais e resistor uivalente. Calcule a resistência uivalente do circuito da figura 2.22a utilizando a estratégia proposta. Figura 2.24 Associação de três resistores em paralelo, circuito reduzido e (c) resistência total. A figura 2.24a mostra o circuito original. Definindo x como a associação em paralelo de 2 e 3, obtém-se o subcircuito da figura 2.24b, em que: x A resistência uivalente pode ser obtida pela uação 2.13, obtendo-se: 1x n = = = T = T n 0 (2.15) O resistor uivalente da associação de n resistores de valor 0 é T = n 0. (c) Calcule a resistência uivalente do circuito da figura 2.26a
7 Figura 2.26 Associação em paralelo de três resistores iguais e resistor uivalente. x Figura 2.28 Subcircuito parcial: x é a resistência uivalente de 1 e 2. No subcircuito da figura 2.28, nota-se que x e 3 formam uma associação em paralelo de dois resistores, em que x = = 30 W. Daí resulta a resistência uivalente: Pela uação 2.15, obtém-se: Associação mista T 20 3 Como o próprio nome diz, é a combinação de duas associações. Não há uma fórmula específica para resolvê-la, mas diversas estratégias empregando as uações anteriores. Os exemplos a seguir mostram possíveis soluções. s 1. Calcule a resistência uivalente entre os pontos A e B da figura T Calcule a resistência uivalente entre os pontos A e B da figura Figura 2.29 Associação mista de resistores. Figura 2.27 Associação mista de resistores. 1 e 2 estão associados em paralelo, resultando em: = x , Os resistores 1 e 2 estão em série, resultando em x = = 30 W, ilustrado no subcircuito da figura A figura 2.30 mostra a versão simplificada do circuito da figura 2.29, na qual se obtém a resistência uivalente T = 6, = 36,6 W. Figura 2.30 Subcircuito parcial: x é a resistência uivalente de 1 e 2. 61
As constantes a e b, que aparecem nas duas questões anteriores, estão ligadas à constante ρ, pelas equações: A) a = ρs e b = ρl.
9.3. Representando a constante de proporcionalidade por ρ, podemos reunir as equações R = a L e R = b S 1 (vistas nas duas questões anteriores) da seguinte maneira: L R = ρ (segunda lei de Ohm). S As constantes
V = R. I R = L / A. CLASSIFICACAO MATERIAL [.m] Metais
LEI DE OHM A Lei de Ohm diz que a corrente elétrica que passa por um material é diretamente proporcional a tensão V nele aplicado, e esta constante de proporcionalidade chama-se resistência elétrica. De
Apostila de Física 26 Resistores
Apostila de Física 26 Resistores 1.0 Definições Efeito térmico ou efeito joule: Transformação de energia elétrica em energia térmica. Choque dos elétrons livres contra os átomos dos condutores. Causa elevação
Circuito Elétrico - I
1 1. Um resistor de 32 ohms é ligado em paralelo a outro resistor de 20 ohms e o conjunto é ligado a uma fonte de tensão de 12VDC. a) Qual é a resistência da ligação em paralelo? b) Qual é a corrente total
A partir do gráfico, e usando a definição de resistência elétrica, tem-se:
Física Unidade V Eletricidade Série 3 - Lei de Ohm 01 A partir do gráfico, e usando a definição de resistência elétrica, tem-se: U 10 = = = 50 Ω i 0, esposta: E 1 Física Unidade V Eletricidade Série 3
Capítulo 2. Resistência elétrica Energia elétrica (e)
ELETôNICA 1 James Watt (1736-1819), matemático e engenheiro escocês, destacou-se pela construção de máquinas térmicas a vapor e pesquisas sobre o rendimento de motores, que deram grande impulso à mecanização
Está CORRETO apenas o contido em: a) I e II. b) I e III. c) III e IV. d) I, II e IV. e) II, III e IV.
3. (Uern 013) Na figura, estão representadas duas associações de resistores. Lista de Exercícios Resolvida Associação de resistores Prof. Paulo Roberto 1. (Espcex (Aman) 01) Um circuito elétrico é constituído
Capítulo II. Elementos de Circuitos
Capítulo II Elementos de Circuitos.1 Introdução O objetivo da engenharia é projetar e produzir dispositivos que atendam às necessidades humanas. Para tanto, é necessário que se conheçam os componentes
3º ANO 27 FÍSICA 1º Trimestral
Nome do aluno Turma Nº Questões Disciplina Trimestre Trabalho Data 3º ANO 27 FÍSICA 1º Trimestral 1. (Unicamp-1997) A figura a seguir mostra como se pode dar um banho de prata em objetos, como por exemplo
COLÉGIO PEDRO II CAMPUS TIJUCA II DEPARTAMENTO DE FÍSICA COORDENADOR: PROFESSOR JOSÉ FERNANDO
COLÉGIO PEDRO II CAMPUS TIJUCA II DEPARTAMENTO DE FÍSICA COORDENADOR: PROFESSOR JOSÉ FERNANDO 3 a SÉRIE PROFESSORES: ROBSON / JULIEN / JOSÉ FERNANDO / EDUARDO / BRUNO Questão 1 Um condutor metálico é percorrido
Corrente elétrica, potência, resistores e leis de Ohm
Capítulo 33 Corrente elétrica, potência, resistores e leis de Ohm Material adaptado pelo Prof. Márcio Marinho ANTES DE TUDO TEMPERATURA EQUILÍBRIO VASOS COMUNICANTES EQUILÍBRIO ELETROSTÁTICO ELETRODINÂMICA
Através de suas realizações experimentais, mantendo constante a temperatura do condutor, Ohm pôde chegar às seguintes afirmações e conclusões:
5000 - Leis de Ohm: Primeira de Ohm George Simon Ohm foi um físico alemão que viveu entre os anos de 1789 e 1854 e verificou experimentalmente que existem resistores nos quais a variação da corrente elétrica
CORRENTE E RESITÊNCIA
CORRENTE E RESITÊNCIA Até o momento estudamos cargas em repouso - a eletrostática. A partir de agora concentramos nossa atenção nas cargas em movmento, isto é, na corrente elétrica. Corrente elétrica :
Resistência Elétrica. Introdução Primeira Lei de Ohm Representação Características físicas Segunda Lei de Ohm Potência dissipada por um resistor
Resistência Elétrica Introdução Primeira Lei de Ohm Representação Características físicas Segunda Lei de Ohm Potência dissipada por um resistor Introdução Nas lâmpadas incandescente, os seus filamentos
Conceitos Básicos de Teoria dos Circuitos
Teoria dos Circuitos e Fundamentos de Electrónica 1 Conceitos Básicos de Teoria dos Circuitos Teresa Mendes de Almeida [email protected] DEEC Área Científica de Electrónica T.M.Almeida IST-DEEC-
Circuitos Elétricos. Questão 01 - (PUC RJ/2015)
Questão 01 - (PUC RJ/2015) Um circuito é formado por fios condutores perfeitos; duas baterias de V = 1,20 V; e duas resistências de R = 2,00 k Ω, como na figura. Calcule a potência total dissipada pelas
Comprovar na prática, através das experiências, a veracidade das duas leis de Ohm.
Disciplina: Experiência: Eletricidade e Magnetismo Leis de Ohm Objetivo Comprovar na prática, através das experiências, a veracidade das duas leis de Ohm. Introdução Teórica Georg Simon Ohm (1857 1854)
Física 2 - Termodinâmica
Física 2 - Termodinâmica Calor e Temperatura Criostatos de He 3-272.85 C Termodinâmica Energia Térmica Temperatura, Calor, Entropia... Máquinas Térmicas : Refrigeradores, ar-condicionados,... Física Térmica
4. (Mackenzie 2010) Uma placa de alumínio (coeficiente de dilatação linear do alumínio = 2.10-5
1. (Pucrs 214) O piso de concreto de um corredor de ônibus é constituído de secções de 2m separadas por juntas de dilatação. Sabe-se que o coeficiente de dilatação linear do concreto é 6 1 121 C, e que
RESPOSTA: C. a) só a I. b) só a II. c) só a III. d) mais de uma. e) N.d.a. RESPOSTA: C
1. (ITA - 1969) Usando L para comprimento, T para tempo e M para massa, as dimensões de energia e quantidade de movimento linear correspondem a: Energia Quantidade de Movimento a) M L T -1... M 2 L T -2
Eletrônica: conceitos básicos
Eletrônica: conceitos básicos A UU L AL A Você já sabe que sem eletricidade não há automação. Ela está presente no acionamento (motores elétricos), no sensoriamento e mesmo nas bombas hidráulicas e nos
UMC CURSO BÁSICO DE ENGENHARIA EXERCÍCIOS DE ELETRICIDADE BÁSICA. a 25º C e o coeficiente de temperatura α = 0,004Ω
rof. José oberto Marques UMC CUSO BÁSCO DE ENGENHAA EXECÍCOS DE ELETCDADE BÁSCA 1) Um condutor de eletricidade de cobre tem formato circular 6mm de diâmetro e 50m de comprimento. Se esse condutor conduz
Propriedades Elétricas (cap. 42 Fundamentos de Física Halliday, Resnick, Walker, vol. 4 6ª. Ed.)
Unidade stado Sólido Propriedades létricas (cap. 4 Fundamentos de Física Halliday, Resnick, Walker, vol. 4 6ª. d.) Metais Semicondutores Classificar os sólidos, do ponto de vista elétrico, de acordo com
Corrente Elétrica. Eletricidade e magnetismo - corrente elétrica 1
Corrente Elétrica Eletricidade e magnetismo - corrente elétrica 1 Corrente elétrica A corrente elétrica é definida como um fluxo de elétrons por unidade de tempo: = Q t [C/ segundo]ou[ A] Ampere Material
Tensão, Corrente e Resistência. Prof. Ernesto F. F. Ramírez
Tensão, Corrente e Resistência Prof. Ernesto F. F. Ramírez Sumário 1. Introdução 2. Tensão elétrica 3. Corrente elétrica 4. Resistência elétrica 5. Exemplo de circuito elétrico 6. Exercícios cios propostos
Faculdades Pitágoras - Unidade Divinópolis. Disciplina - Materiais Elétricos e Semicondutores. Professor: Alexandre Dezem Bertozzi
Faculdades Pitágoras - Unidade Divinópolis Disciplina - Materiais Elétricos e Semicondutores Professor: Alexandre Dezem Bertozzi Alexandre Dezem Bertozzi Técnico em Telecomunicações; Engenheiro Eletricista
INF01 118 Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 2
INF01 118 Técnicas Digitais para Computação Conceitos Básicos de Circuitos Elétricos Aula 2 1. Grandezas Elétricas 1.1 Carga A grandeza fundamental em circuitos elétricos é a carga elétrica Q. As cargas
Propriedades térmicas em Materiais
FACULDADE SUDOESTE PAULISTA Ciência e Tecnologia de Materiais Prof. Msc. Patrícia Correa Propriedades térmicas em Materiais Noções importantes para entendermos os mecanismos de transporte através dos materiais
Propriedades Elétricas do Materiais
Propriedades Elétricas do Materiais Por que estudar propriedades elétricas dos materiais? Apreciação das propriedades elétricas de materiais é muitas vezes importante, quando na seleção de materiais e
Capítulo 3. Resistência e Lei de Ohm. "Falando de uma maneira geral, os efeitos da corrente no corpo humano são os seguintes:
Capítulo 3 Resistência e Lei de Ohm "Falando de uma maneira geral, os efeitos da corrente no corpo humano são os seguintes: com menos do que 0.01 A: sensação de formigueiro ou nada se sente; 0.02 A: sensação
LINHAS DE TRANSMISSÃO DE ENERGIA LTE
LINHAS DE TRANSMISSÃO DE ENERGIA LTE Cálculo de Parâmetros Elétricos: Resistência, Indutância e Capacitância. Aula 3: Cálculo de Parâmetros Elétricos Prof. Fabiano F. Andrade 2010 Tópicos da Aula (Parte
Modelos atômicos. Modelo de Bohr
Modelos atômicos Modelo de Bohr O modelo de Bohr apresenta limitações significativas, não servindo para explicar vários dos fenômenos nos quais estão envolvidos elétrons. As deficiências do modelo de Bohr
Se a força de tração de cálculo for 110 kn, a área do tirante, em cm 2 é A) 5,0. B) 4,5. C) 3,0. D) 2,5. E) 7,5.
25.(TRT-18/FCC/2013) Uma barra de aço especial, de seção circular com extremidades rosqueadas é utilizada como tirante em uma estrutura metálica. O aço apresenta f y = 242 MPa e f u = 396 MPa. Dados: Coeficientes
2º) Um fio condutor possui 1,0 mm de diâmetro, um comprimento de 2,0 m e uma resistência de 50 mω. Qual a resistividade do material?
Exercícios 2º Lei de Ohm e Potência elétrica 1º) Um trilho de aço de bonde elétrico possuí uma área de seção transversal de 56 cm². Qual a resistência de 10 km de trilho? A resistividade do aço é 3x10-7
Módulo 08 - Mecanismos de Troca de Calor
Módulo 08 - Mecanismos de Troca de Calor CONCEITOS FUNDAMENTAIS Vamos iniciar este capítulo conceituando o que significa calor, que tecnicamente tem um significado muito diferente do que usamos no cotidiano.
Carga elétrica, condutores e isolantes, unidades de medida, v, i, potência e energia
Carga elétrica, condutores e isolantes, unidades de medida, v, i, potência e energia 1) Uma minúscula esfera de metal que contém 1,075.10²² átomos está com uma falta de elétrons de 3,12.10 18 elétrons.
1) Cálculo do tempo de subida do objeto: V y. = V 0y. + γt s 0 = 4 10t s. t s. = 0,4s. 2) Cálculo do tempo total de vôo : t total.
46 e FÍSICA No interior de um ônibus que trafega em uma estrada retilínea e horizontal, com velocidade constante de 90 km/h, um passageiro sentado lança verticalmente para cima um pequeno objeto com velocidade
A forma geral de uma equação de estado é: p = f ( T,
Aula: 01 Temática: O Gás Ideal Em nossa primeira aula, estudaremos o estado mais simples da matéria, o gás, que é capaz de encher qualquer recipiente que o contenha. Iniciaremos por uma descrição idealizada
Gráfico da tensão em função da intensidade da corrente elétrica.
. Introdução A corrente elétrica consiste no movimento ordenado de elétrons e é formada quando há uma diferença de potencial (V) em um fio condutor elétrico. Esse movimento, por sua vez, fica sujeito a
+++++++ - - - - - - -
www.pascal.com.br Prof. Edson Osni Ramos 3. (UEPG - 99) ε = 2 - - - - - - - d = 0,2 cm = 0,002 m Entre as placas do capacitor não há corrente elétrico (existe um dielétrico). Nesse caso, o capacitor está
Reostatos de grafite (um experimento simples e de baixo custo)
ENSINO Reostatos de grafite (um experimento simples e de baixo custo) Carlos Eduardo Laburú 1 e Osmar Henrique Moura Silva Departamento de Física Universidade Estadual de Londrina 86051-970 Londrina, PR
II Correto. Quanto maior a distância entre as cargas, mais fraca é a ligação e menos energia é empregada na sua quebra.
01. Item B I Correto. A energia para quebrar a ligação H (568 kj/mol) é a maior da tabela. Isto torna mais difícil a sua quebra, portanto ionizando menos o ácido que passa a ser o mais fraco entre os listados.
Eletricidade Aplicada
Eletricidade Aplicada Profa. Grace S. Deaecto Instituto de Ciência e Tecnologia / UNIFESP 12231-280, São J. dos Campos, SP, Brasil. [email protected] Novembro, 2012 Profa. Grace S. Deaecto Eletricidade
2. (Puccamp 2016) O mostrador digital de um amperímetro fornece indicação de
1. (Imed 2016) O circuito elétrico representado abaixo é composto por fios e bateria ideais: Com base nas informações, qual o valor da resistência R indicada? a) 5 Ω. b) 6 Ω. c) 7 Ω. d) 8 Ω. e) 9 Ω. 2.
EXPERIÊNCIA 9 DIODOS SEMICONDUTORES E CURVAS CARACTERÍSTICAS
EXPERIÊNCIA 9 DIODOS SEMICONDUTORES E CURVAS CARACTERÍSTICAS 1. INTRODUÇÃO Existem diversos tipos de diodos, muitos deles projetados e construídos com finalidades específicas. Os diodos semicondutores
Capítulo VI. Teoremas de Circuitos Elétricos
apítulo VI Teoremas de ircuitos Elétricos 6.1 Introdução No presente texto serão abordados alguns teoremas de circuitos elétricos empregados freqüentemente em análises de circuitos. Esses teoremas têm
Ensino: Médio Professor: Renato Data:, de 2010. Trabalho de Recuperação de Física (1 e 2º Bimestres) Instruções:
Uma Escola ensando em Você luno(a): nº Série: 3 ano Disciplina: Física Ensino: Médio rofessor: Renato Data:, de 010 Trabalho de Recuperação de Física (1 e º imestres) Instruções: 1. O trabalho deverá ser
Evolução dos Modelos Atômicos A DESCOBERTA DO ÁTOMO
Evolução dos Modelos Atômicos A DESCOBERTA DO ÁTOMO A DESCOBERTA DAS PARTÍCULAS SUBATÔMICAS Após Dalton ter apresentado sua teoria atômica, em 1808, na qual sugeria que os átomos eram indivisíveis, maciços
EFEITO FISIOLÓGICO DA CORRENTE ELÉTRICA PROTEÇÃO DE INSTALAÇÕES ELÉTRICAS
EFEITO FISIOLÓGICO DA CORRENTE ELÉTRICA PROTEÇÃO DE INSTALAÇÕES ELÉTRICAS Os cabos elétricos da rede pública de energia que "transportam" a corrente elétrica até nossas casas são constituídos por três
Física Térmica Exercícios. Dilatação.
Física Térmica Exercícios. Dilatação. Dilatação linear 1- Uma bobina contendo 2000 m de fio de cobre medido num dia em que a temperatura era de 35 C. Se o fio for medido de novo em um dia que a temperatura
Pilha é qualquer dispositivo no qual uma reação de oxirredução espontânea produz corrente elétrica.
PILHAS Pilha é qualquer dispositivo no qual uma reação de oxirredução espontânea produz corrente elétrica. Bateria são várias pilhas ligadas em série. Como funciona uma pilha? Considerando a reação espontânea
ANALOGIA NO ENSINO DA FÍSICA
ANALOGIA NO ENSINO DA FÍSICA Wilton Jorge Depto. de Ciências Físicas UFU Uberlândia MG Analogia é um processo comparativo de fenômenos diferentes através de suas semelhanças. Assim, pela simples mudança
Sensores de Temperatura
Sensores de Temperatura Principais tipos: RTD (altas temperaturas) Termopar (altas temperaturas) NTC / PTC (alta sensibilidade) Junções semicondutoras (facilidade de uso) Temperatura - RTD RTD Resistance
ELETROQUÍMICA: PILHAS ELETRÓLISE
ELETROQUÍMICA: PILHAS ELETRÓLISE Profa. Adélia Química Aplicada HISTÓRICO 1800 ALESSANDRO VOLTA Ele empilhou pequenos discos de zinco e cobre, separando-os com pedaços de um material poroso (feltro) embebidos
EXERCÍCIOS PARA ESTUDOS DILATAÇÃO TÉRMICA
1. (Unesp 89) O coeficiente de dilatação linear médio de um certo material é = 5,0.10 ( C) e a sua massa específica a 0 C é ³. Calcule de quantos por cento varia (cresce ou decresce) a massa específica
PROBLEMAS DE TERMOLOGIA
PROBLEMAS DE TERMOLOGIA 1 - Numa estação meteorológica, foi registrada uma temperatura máxima de 25ºC. Qual é a indicação da máxima na escala Fahrenheit? 2 - Numa escala termométrica X, marca-se -10ºX
MASSA ATÔMICA, MOLECULAR, MOLAR, NÚMERO DE AVOGADRO E VOLUME MOLAR.
MASSA ATÔMICA, MOLECULAR, MOLAR, NÚMERO DE AVOGADRO E VOLUME MOLAR. UNIDADE DE MASSA ATÔMICA Em 1961, na Conferência da União Internacional de Química Pura e Aplicada estabeleceu-se: DEFINIÇÃO DE MASSA
SOLDAGEM DOS METAIS CAPÍTULO 4 FÍSICA DO ARCO ARCO ELÉTRICO
22 CAPÍTULO 4 FÍSICA DO ARCO ARCO ELÉTRICO 23 FÍSICA DO ARCO ELÉTRICO DEFINIÇÃO Um arco elétrico pode ser definido como um feixe de descargas elétricas formadas entre dois eletrodos e mantidas pela formação
Resposta Questão 2. a) O N O b) Linear
GABARITO DA PROVA DO PROCESSO DE SELEÇÃO PARA O PROGRAMA DE PÓS-GRADUAÇÃO 1 SEMESTRE DE 2016 FÍSICA E QUÍMICA DE MATERIAIS UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL REI Resposta Questão 1. A amônia apresenta
O que é um circuito eléctrico?
SISTEMAS ELÉCTRICOS E ELECTRÓNICOS A produção em larga escala é recente e revolucionou por completo o nosso dia-a-dia A electricidade é tão antiga como o Universo! O que é um circuito eléctrico? Éum conjunto
ELETROQUÍMICA PILHAS
ELETROQUÍMICA PILHAS A eletroquímica estuda o aproveitamento da transferência de elétrons entre diferentes substâncias para converter energia química em energia elétrica e viceversa. Pilhas: conversão
Termologia. Ramo da física que estuda o. relacionados.
Termologia Termologia Ramo da física que estuda o calor e os fenômenos relacionados. TEMPERATURA ATemperatura é uma grandeza física que mede o nível de agitaçãodas partículas (átomos ou moléculas) que
MODELAGEM MATEMÁTICA DE UM SISTEMA DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA EM MÉDIA TENSÃO 1. Gabriel Attuati 2, Paulo Sausen 3.
MODELAGEM MATEMÁTICA DE UM SISTEMA DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA EM MÉDIA TENSÃO 1 Gabriel Attuati 2, Paulo Sausen 3. 1 Parte integrante do Projeto de pesquisa Análise, Modelagem e Desenvolvimento
PRÁTICA 3-DISTRIBUIÇÃO DE ENERGIA NOS CIRCUITOS: APSPECTOS EXPERIMENTAIS
PRÁTICA 3-DISTRIBUIÇÃO DE ENERGIA NOS CIRCUITOS: APSPECTOS EXPERIMENTAIS Objetivos Desenvolver sua capacidade de entender qualitativamente a energia em circuitos elétricos. Esta prática tem como objetivo
EQUILÍBRIO QUÍMICO: é o estado de um sistema reacional no qual não ocorrem variações na composição do mesmo ao longo do tempo.
IV INTRODUÇÃO AO EQUILÍBRIO QUÍMICO IV.1 Definição EQUILÍBRIO QUÍMICO: é o estado de um sistema reacional no qual não ocorrem variações na composição do mesmo ao longo do tempo. Equilíbrio químico equilíbrio
MEDIDAS DE VAZÃO ATRAVÉS DE VERTEDORES
MEDIDAS DE VAZÃO ATRAVÉS DE VERTEDORES 1. OBJETIVO Familiarização com o uso de vertedores como medidores de vazão. Medir a vazão de canais com vertedores de soleira delgada triangulares e retangulares,
Dimensionamento de um sistema fotovoltaico. Fontes alternativas de energia - dimensionamento de um sistema fotovoltaico 1
Dimensionamento de um sistema fotovoltaico Fontes alternativas de energia - dimensionamento de um sistema fotovoltaico 1 Sistemas fotovoltaicos Geralmente são utilizado em zonas afastadas da rede de distribuição
A transferência de calor ocorre até o instante em que os corpos atingem a mesma temperatura (equilíbrio térmico).
REVISÃO ENEM Calorimetria CONCEITO FÍSICO DE CALOR Calor é a energia transferida de um corpo a outro, devido à desigualdade de temperaturas existente entre eles. Essa transferência sempre ocorre do corpo
Erros e Incertezas. Rafael Alves Batista Instituto de Física Gleb Wataghin Universidade Estadual de Campinas (Dated: 10 de Julho de 2011.
Rafael Alves Batista Instituto de Física Gleb Wataghin Universidade Estadual de Campinas (Dated: 10 de Julho de 2011.) I. INTRODUÇÃO Quando se faz um experimento, deseja-se comparar o resultado obtido
Aula 01 TEOREMAS DA ANÁLISE DE CIRCUITOS. Aula 1_Teoremas da Análise de Circuitos.doc. Página 1 de 8
ESCOLA TÉCNICA ESTADUAL ZONA SUL CURSO TÉCNICO EM ELETRÔNICA II. CIRCUITOS ELÉTRICOS Aula 0 TEOREMAS DA ANÁLISE DE CIRCUITOS Prof. Marcio Leite Página de 8 0 TEOREMA DA ANÁLISE DE CIRCUITOS.0 Introdução
Série de exercícios para estudo
1. (Cesgranrio 90) No circuito, cada resistência é igual a 1,0 k ², e o gerador é uma pilha de 1,5 V. A corrente total estabelecida pelo gerador é: a) 1,0 ma; b) 2,0 ma; c) 3,0 ma; d) 4,0 ma; e) 5,0 ma.
2. MEDIDORES DE TEMPERATURA POR DILATAÇÃO/EXPANSÃO
2. MEDIDORES DE TEMPERATURA POR DILATAÇÃO/EXPANSÃO 2.1 TERMÔMETRO A DILATAÇÃO DE LÍQUIDO 2.1.1 Características Os termômetros de dilatação de líquidos, baseiam-se na lei de expansão volumétrica de um líquido
defi departamento Lei de Ohm de física
defi departamento de física Laboratórios de Física www.defi.isep.ipp.pt Instituto Superior de Engenharia do Porto- Departamento de Física Rua Dr. António Bernardino de Almeida, 572 4200-072 Porto. Telm.
PROCESSO DE PRODUÇÃO DA PLACA DE CIRCUITO IMPRESSO
PROCESSO DE PRODUÇÃO DA PLACA DE CIRCUITO IMPRESSO SANTOS, Keize Daiane (Eng. Produção, UNIBRASIL) MARCELOS, Wevyllyn Rafaela (Eng. Produção, UNIBRASIL) Resumo: O objetivo deste resumo é relatar o processo
ENERGIA TÉRMICA: A Energia Térmica de um corpo é a energia cinética de suas moléculas e corresponde à sua temperatura.
CALOR 1 ENERGIA: É a capacidade de se realizar um trabalho. Ela se apresenta sob várias formas: cinética (de movimento), gravitacional, elástica (de molas), elétrica, térmica, radiante e outras. Mede-se
CIRCUITOS DE CORRENTE ALTERNADA
CRCUTOS DE CORRENTE ALTERNADA NTRODUÇÃO As correntes e tensões na maioria dos circuitos não são estacionárias, possuindo uma variação com o tempo. A forma mais simples da variação temporal de tensão (corrente)
Colégio Saint Exupéry
Colégio Saint Exupéry Apostila QUÍMICA No nosso dia-a-dia o ato de classificar as coisas é algo corriqueiro. Em um faqueiro colocamos em um mesmo espaço as facas, em outro os garfos, etc. Agrupar coisas
Divisão da instalação em circuitos
Divisão da instalação em circuitos 285 Tipo de proteção a ser empregada Vamos optar pela instalação do DR nos circuitos terminais e DTM na entrada + demais terminais. 286 Página 143 Tipo de proteção a
1 = Pontuação: Os itens A e B valem três pontos cada; o item C vale quatro pontos.
Física 0. Duas pessoas pegam simultaneamente escadas rolantes, paralelas, de mesmo comprimento l, em uma loja, sendo que uma delas desce e a outra sobe. escada que desce tem velocidade V = m/s e a que
Colégio FAAT Ensino Fundamental e Médio
Nome: Colégio FAAT Ensino Fundamental e Médio Exercícios de Física-Recuperação N.: 3ª série - Ensino Médio / / Recomendações: *Resolver os exercícios para se preparar para a atividade presencial e a avaliação.
ATIVIDADE DE ÁGUA (Aw) E REAÇÕES DE DETERIORAÇÃO
ATIVIDADE DE ÁGUA (Aw) E REAÇÕES DE DETERIORAÇÃO Água A molécula de água é triatômica e possui estrutura tetraédrica. Tem baixo peso molecular, pequeno volume e é diamagnética. Apresentaria um ângulo de
Exercícios de Física Análise Dimensional
Exercícios de Física Análise Dimensional 1. A unidade de uma grandeza física pode ser escrita 2 kg m como. Considerando que essa unidade foi escrita 3 s A em termos das unidades fundamentais do SI, assinale
TEOREMAS DE THÉVENIN E NORTON http://www.ezuim.com/downloads.html
TEOREMAS DE THÉVENIN E NORTON http://www.ezuim.com/downloads.html THÉVENIN O teorema de Thévenin estabelece que qualquer circuito linear visto de um ponto, pode ser representado por uma fonte de tensão
Transferência de energia sob a forma de calor
Transferência de energia sob a forma de calor As diferentes formas de transferência de energia sob a forma de calor têm em comum ocorrerem sómente quando existe uma diferença de temperatura entre os sistemas
Pelo que foi exposto no teorema de Carnot, obteve-se a seguinte relação:
16. Escala Absoluta Termodinâmica Kelvin propôs uma escala de temperatura que foi baseada na máquina de Carnot. Segundo o resultado (II) na seção do ciclo de Carnot, temos que: O ponto triplo da água foi
Física 2 - Termodinâmica
Física 2 - Termodinâmica Calor e Temperatura Criostatos de He 3-272.85 C Física II 1º. Lei da Termodinâmica Calor: Energia em trânsito T c >T ambiente T c
ROTEIRO DE ESTUDOS 2015 Disciplina: Ciências Ano: 9º ano Ensino: FII Nome: Atividade Regulação do 3º Bimestre Ciências
ROTEIRO DE ESTUDOS 2015 Disciplina: Ciências Ano: 9º ano Ensino: FII Nome: Refazer as avaliações; Refazer as listas de exercícios; Refazer exercícios do caderno. Entregar a atividade abaixo no dia da avaliação
AULA A 1 INTRODUÇÃ INTR O ODUÇÃ E PERDA D A DE CARGA Profa Pr. C e C cília cília de de Castr o Castr o Bolina.
AULA 1 INTRODUÇÃO E PERDA DE CARGA Profa. Cecília de Castro Bolina. Introdução Hidráulica É uma palavra que vem do grego e é a união de hydra = água, e aulos = condução/tubo é, portanto, uma parte da física
Unidade 2 Substâncias e átomos
Unidade 2 Substâncias e átomos Substâncias Puras pág. 51 A matéria é composta por uma ou mais substâncias químicas. Porém, é difícil saber se um corpo é composto por uma única substância ou por uma mistura
Eletrodinâmica: Leis de Faraday e Lenz
Secretaria de Educação Profissional e Tecnológica Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações ELM20704 Eletromagnetismo Professor: Bruno Fontana da Silva 2014-1 Eletrodinâmica:
Objetivos da segunda aula da unidade 6. Introduzir a classificação da perda de carga em uma instalação hidráulica.
370 Unidade 6 - Cálculo de Perda de Carga Objetivos da segunda aula da unidade 6 Introduzir a classificação da perda de carga em uma instalação hidráulica. Caracterizar as condições para ocorrer à perda
TEOREMAS DE THÉVENIN E NORTON
TEOREMAS DE THÉVENIN E NORTON THÉVENIN O teorema de Thévenin estabelece que qualquer circuito linear visto de um ponto, pode ser representado por uma fonte de tensão (igual à tensão do ponto em circuito
ALUNO: Nº SÉRIE: DATA: / / PROF.: VICTOR GERMINIO EXERCÍCIO DE REVISÃO I UNIDADE FÍSICA 2º ANO B ENSINO MÉDIO
ALUNO: Nº SÉRIE: DATA: / / PROF.: VICTOR GERMINIO EXERCÍCIO DE REVISÃO I UNIDADE FÍSICA 2º ANO B ENSINO MÉDIO 1 ) Considere que o calor específico de um material presente nas cinzas seja c = 0,8 J/g C.
Prof. Daniel Oliveira
A camada física Prof. Daniel Oliveira Base teórica da comunicação de dados As informações podem ser transmitidas por fios, fazendo-se variar alguma propriedade física: voltagem (tensão elétrica) ou corrente
física caderno de prova instruções informações gerais 13/12/2009 boa prova! 2ª fase exame discursivo
2ª fase exame discursivo 13/12/2009 física caderno de prova Este caderno, com dezesseis páginas numeradas sequencialmente, contém dez questões de Física. Não abra o caderno antes de receber autorização.
SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2.
Solução da prova da 1 a fase OBMEP 2015 Nível 1 1 SOLUÇÕES N2 2015 N2Q1 Solução O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Com um
Pontifícia Universidade Católica do RS Faculdade de Engenharia
Pontifícia Universidade Católica do RS Faculdade de Engenharia LABORATÓRIO DE ELETRÔNICA DE POTÊNCIA Experiência nº 9 Retificador Trifásico de Três pulsos a Tiristor OBJETIVO: Verificar o comportamento
Reações de Oxidação e Redução
Eletroquímica é a área da química que estuda a tendência que os elétrons possuem em se transferirem em uma determinada reação química através de sua concentração e das espécies envolvidas. Reações de Oxidação
9º ANO ENSINO FUNDAMENTAL -2015
COLÉGIO NOSSA SENHORA DE LOURDES trimestral Disciplina: Professor (a): QUÍMICA LUIS FERNANDO Roteiro de estudos para recuperação 9º ANO ENSINO FUNDAMENTAL -2015 Conteúdo: Referência para estudo: Sites
