FET (FIELD EFFECT TRANSISTOR)
|
|
|
- Maria de Fátima Maranhão Chaplin
- 9 Há anos
- Visualizações:
Transcrição
1 FET (FIELD EFFECT TRANSISTOR) OBJETIVOS: a) entender o funcionamento de um transistor unipolar; b) analisar e entender as curvas características de um transistor unipolar; c) analisar o funcionamento de um transistor unipolar, através de circuitos de polarização básicos. INTRODUÇÃO TEÓRICA O FET (Field Effect Transistor) que traduzindo para o português significa Transistor de Efeito de Campo (TEC) é um transistor unipolar. Nos transistores bipolares, para que haja controle de corrente, torna-se necessário envolver correntes de elétrons e lacunas. Nos transistores unipolares para que haja controle de corrente estão envolvidas correntes de elétrons quando o mesmo é do tipo canal n ou estão envolvidas correntes de lacunas quando o mesmo é do tipo canal p. Os FETs possuem algumas vantagens com relação aos transistores bipolares como: impedância de entrada elevadíssima; relativamente imune à radiação; produz menos ruído e possui melhor estabilidade térmica. No entanto, apresentam algumas desvantagens como: banda de ganho relativamente pequena e maior risco de dano quando manuseado. A exemplo do transistor bipolar, o FET é um dispositivo de três terminais, contendo uma junção p-n básica, podendo ser do tipo de junção (JFET) ou do tipo metal-óxido-semicondutor (MOSFET). A figura abaixo mostra a estrutura física de em FET canal n com seus respectivos terminais: D - (drain) ou dreno: de onde os portadores majoritários saem; Eletrônica Analógica FET Transistor de Efeito de Campo Prof. Edgar Zuim Página 1
2 S - (source) ou fonte: é o terminal no qual os portadores majoritários entram; G - (gate) ou porta: são regiões fortemente dopadas em ambos os lados do canal. Quando o canal é n o gate é p. V DD é a tensão aplicada entre o dreno e a fonte; V GG é a tensão aplicada entre o gate (porta) e a fonte; V DS é a tensão medida entre o dreno e a fonte; V GS é a tensão medida entre o gate (porta) e a fonte. Comparativamente a um transistor bipolar, podemos então estabelecer as equivalências entre os terminais: D - (drain) = coletor S - (source) = emissor G - (gate) = base Através do canal, portanto, circulam os portadores majoritários, da fonte (S) para o dreno (D). A figura a seguir mostra a simbologia para os FETs de canal n e canal p: CONFIGURAÇÕES: A exemplo dos transistores bipolares, são três as configurações básicas para os transistores unipolares, como mostra a figura abaixo: As equivalências são as seguintes: Fonte comum = emissor comum Porta comum = base comum Dreno comum = coletor comum A configuração dreno comum também é denominada seguidor de fonte. Eletrônica Analógica FET Transistor de Efeito de Campo Prof. Edgar Zuim Página 2
3 POLARIZAÇÃO CONVENCIONAL: A figura abaixo mostra um FET de canal n polarizado de forma convencional. É importante verificar a polaridade das baterias V GG e V DD. Quando o FET é de canal n a tensão de dreno é positiva. O FET também pode ser usado como amplificador de sinal, desde que adequadamente polarizado. A grande vantagem na utilização do mesmo está na sua impedância muito elevada de entrada e sua quase total imunidade à ruídos. O FET possui uma impedância de entrada extremamente alta, da ordem de 100MΩ ou mais. Por ser praticamente imune a ruídos é muito utilizado para estágios de entrada de amplificadores de baixo nível, mais especificamente em estágios de entrada de receptores FM de alta fidelidade. A figura abaixo mostra um amplificador convencional: Trata-se de um amplificador com auto polarização, pois possui uma única fonte de alimentação e um resistor R S para se obter a tensão de polarização gate-source. A presença do resistor R S resulta em uma tensão devido a queda de tensão I D R S, provocando uma queda de tensão em R S. Como a tensão no gate é zero, pois não há corrente DC no gate ou no resistor R G, a tensão entre gate e source é uma tensão negativa, que constitui a tensão de polarização V GS. Assim teremos: V GS = 0 - I D R S = - I D R S FUNCIONAMENTO: Consideremos o FET canal n conforme mostra a figura abaixo, para V GS = 0. Eletrônica Analógica FET Transistor de Efeito de Campo Prof. Edgar Zuim Página 3
4 a) V DD normal b) Aumento de V DD A medida que a tensão V DD aumenta, aumenta a polarização inversa e a corrente de dreno circula através do canal, produzindo uma queda de tensão ao longo do canal, que é mais positiva no terminal drain (dreno), produzindo a região de depleção. Conforme a tensão V DD aumenta, a corrente I D também aumenta, resultando em uma região de depleção maior. O aumento da região de depleção provoca um aumento da resistência entre drain e source. O aumento da região de depleção pode ser feito até que todo o canal seja abrangido (veja fig. b). A partir daí, qualquer aumento de V DD resultará apenas em aumento da tensão nos terminais da região de depleção e a corrente I D permanece constante. A curva a seguir mostra que o aumento de I D ocorre até que toda a região de depleção esteja totalmente formada, após o que, a corrente de dreno satura e permanece constante para qualquer aumento de V DD. I DSS é um parâmetro importante usado para especificar a operação de um FET, que significa corrente de drain para source com gate-source em curto (V GS = 0). CARACTERÍSTICA DRAIN-SOURCE (DRENO-FONTE): A curva abaixo mostra que aumentando V GS (mais negativa para um FET de canal n), a corrente de saturação será menor, e desta forma, o gate atua como controle. Eletrônica Analógica FET Transistor de Efeito de Campo Prof. Edgar Zuim Página 4
5 Nestas condições, I D diminui a medida que V GS fica mais negativa (observe o ponto de saturação com -2V). Tornando V GS mais negativa, haverá um momento em que não haverá mais I D, independentemente do valor de V DS. V p. Essa tensão denomina-se tensão de estrangulamento gate-source representada por V GS(OFF) ou A figura abaixo mostra a curva para um FET de canal p. A única diferença é a polaridade de V GS que neste caso é positiva. CARACTERÍSTICA DE TRANSFERÊNCIA: A figura a seguir mostra o gráfico de transferência da corrente de dreno I D em função da tensão gate-source (V GS ), para um valor constante de V DS. V p. No gráfico acima, observa-se a característica de transferência quando V GS = 0, I D = 0, V GS = A figura abaixo nos mostra que quando ocorre o estrangulamento, este estrangulamento se verifica com valores menores de V DS e quando mais negativa for a tensão V GS. Esta curva recebe o nome de curva de dreno. Eletrônica Analógica FET Transistor de Efeito de Campo Prof. Edgar Zuim Página 5
6 Normalmente o FET é polarizado para operar após o estrangulamento na região de saturação da corrente, onde nesta região o dispositivo tem sua operação definida mais facilmente pela equação de Schockley. Vejamos um exemplo: Determinar a corrente de dreno de em FET canal n com tensão de estrangulamento = - 3V e corrente de saturação drain-source (I DSS ) de 10mA para as seguintes tensões V GS : a) 0V b) - 1,4V c) - 1,8V Solução: pela equação de Schockley, I D = I DSS (1 - V GS / V p ) 2, temos: a) I D = 10mA[1 - (0/-3)] 2 = 10mA b) I D = 10mA[1 - (-1,4/-3)] 2 = 2,84mA c) I D = 10mA[1 - (-1,8/-3)] 2 = 1,6mA PARÂMETROS IMPORTANTES: I DSS : corrente de saturação dreno-fonte (drain-source). É a corrente na qual o canal é estrangulado quando os terminais gate e source estão em curto (V GS = 0). É um parâmetro importantíssimo do dispositivo. V GS(OFF) = V p : tensão de corte (estrangulamento) gate-source. Tensão entre gate e source para a qual o canal drain-source é estrangulado, resultando em praticamente nenhuma corrente de dreno. Os circuitos a seguir são usados para medir I DSS e V GS(OFF) : Eletrônica Analógica FET Transistor de Efeito de Campo Prof. Edgar Zuim Página 6
7 BV GSS : tensão de ruptura source-gate. A tensão de ruptura de uma junção source-gate é medida em uma corrente especificada com os terminais drain-source em curto. O valor da tensão de ruptura indica um valor limite de tensão nos terminais gate-source, acima do qual a corrente do dispositivo deve ser limitada pelo circuito externo para evitar danos ao FET. A tensão de ruptura é um valor limite de tensão e deve ser usado na escolha da fonte de tensão de dreno. g fs = g m : transcondutância de transferência direta em fonte-comum. Ela é medida com os terminais drain-source em curto, sendo uma indicação da amplificação do FET em termos de sinal alternado. A unidade de medida de g m é em Siemens com valores típicos da ordem de 1mS a 10mS. g fs = I P / V GS, com V DS = 0 g m = g mo [1 - (V GS / V GS(OFF) )] g mo é parâmetro ganho de ac máximo do FET e ocorre para a polarização V GS = 0. Exemplo: calcular a transcondutância (g m ) de um FET com as especificações: I DSS = 15mA e V GS(OFF) = -3V, nos seguintes pontos de polarização: a) V GS = 0 b) V GS = -1,2V c) V GS = -1,7V Solução: pela equação g mo = 2I DSS / V GS(OFF), temos: g mo = 2(15mA) / -3V = 30 x 10-3 / 3 = 10mS ou µS Eletrônica Analógica FET Transistor de Efeito de Campo Prof. Edgar Zuim Página 7
8 a) g m = g mo (1- V GS / V p ) = 10mS[1- (0 / -3)] = 10mS ou µS b) g m = g mo (1- V GS / V p ) = 10mS[1 - (-1,2 / -3)] = 6mS ou 6.000µS c) g m = g mo (1- V GS / V p ) = 10mS[1 - (-1,7 / -3)] = 4,33mS ou 4.330µS r ds(on) : resistência drain-source para o dispositivo ligado. A resistência dreno-fonte para o dispositivo ligado é importante quando se utiliza o mesmo como chave eletrônica. Quando o FET está polarizado em sua região de saturação, ou ôhmica, de operação, apresenta uma resistência entre dreno e fonte de dezenas e algumas vezes centenas de ohms. PARTE PRÁTICA MATERIAIS NECESSÁRIOS 1 - Gerador de áudio 1 - Fonte de alimentação 0-20V 1 - Osciloscópio 1 - Multímetro analógico ou digital 1 - Módulo de ensaios ELO-1 CIRCUITO AMPLIFICADOR FONTE COMUM: Como sabemos, a curva de transcondutância do FET é parabólica, e por isso a operação do amplificador fonte comum produz uma distorção quadrática. Em virtude disso, é um amplificador muito utilizado para operar somente com sinais de pequena amplitude. Devido ao fato de g m ser relativamente baixo, o amplificador fonte comum tem como conseqüência um ganho de tensão relativamente baixo. Desta forma, os amplificadores com FET não podem competir com amplificadores com transistores bipolares, quando o ganho de tensão é fator preponderante. 1 - Monte o circuito da figura a seguir: Eletrônica Analógica FET Transistor de Efeito de Campo Prof. Edgar Zuim Página 8
9 2 - Suponha que o FET usado no circuito tenha um ganho típico da ordem de 2.000µS. Calcule o ganho de tensão sem carga (A), a tensão de saída (V out ) e a impedância de saída (r out ). Anote esses valores na tabela Para o amplificador com carga infinita (sem o resistor de carga R L ), ajuste o gerador de áudio na entrada para 0,1Vpp a uma freqüência de 1kHz. 4 - Observe o sinal na saída, o qual deve ser uma senóide amplificada. Meça e anote a tensão de saída de pico a pico. Depois calcule o ganho de tensão. Anote suas respostas na tabela Ligue o potenciômetro de 4,7kΩ como carga variável e ajuste a carga até que a tensão na saída seja a metade da tensão sem carga. (procedendo desta forma, você estará encontrando a impedância Thèvenin pelo método de casamento de impedâncias). 6 - Desligue o potenciômetro e meça sua resistência, anotando esse valor na tabela Repita os passos 2 a 6 usando outro FET. TABELA 1 VALOR CALCULADO VALOR MEDIDO FET V OUT A r out V OUT A r out 1(T7) 2(T8) SEGUIDOR DE FONTE (DRENO COMUM): O amplificador dreno comum ou seguidor de fonte é análogo ao amplificador seguidor de emissor ou coletor comum. O ganho de tensão aproxima-se da unidade enquanto que a impedância de entrada aproxima-se do infinito, limitada apenas pelos resistores externos conectados ao terminal gate. Eletrônica Analógica FET Transistor de Efeito de Campo Prof. Edgar Zuim Página 9
10 É um circuito muito utilizado na entrada dos instrumentos de medida. 1 - Monte o circuito da figura abaixo: 2 - Suponha que o FET usado no circuito tenha um ganho típico da ordem de 2.000µS. Calcule o ganho de tensão sem carga (A), a tensão de saída (V out ) e a impedância de saída (r out ). Anote esses valores na tabela Para o amplificador com carga infinita (sem o resistor de carga R L ), ajuste o gerador de áudio na entrada para 1Vpp a uma freqüência de 1kHz. 4 - Meça e anote a tensão de saída de pico a pico. Depois calcule o ganho de tensão. Anote suas respostas na tabela Meça a impedância de saída pelo método de casamento de impedâncias, usado anteriormente. 6 - Desligue o potenciômetro e meça sua resistência, anotando esse valor na tabela Repita os passos 2 a 6 usando outros FETs. TABELA 2 VALOR CALCULADO VALOR MEDIDO FET V OUT A r out V OUT A r out 1(T7) 2(T8) Ganho de tensão (amplificador fonte comum): FORMULÁRIO: onde: A = ganho de tensão sem carga A = - g m R D Eletrônica Analógica FET Transistor de Efeito de Campo Prof. Edgar Zuim Página 10
11 g m = transcondutância R D = resistência de dreno Resistência de saída (amplificador fonte comum): Resistência de saída (amplificador dreno comum): r s = 1/g m r s = R S // 1/g m QUESTÕES: 1 - A principal vantagem de um amplificador com FET é: a) seu alto ganho de tensão; b) sua baixa corrente de dreno; c) sua alta impedância de entrada; d) seu alto valor de transcondutância. 2 - Em relação a um amplificador convencional com transistor bipolar, podemos afirma que um amplificador com FET apresenta maior ganho de tensão: a) certo b) errado 3 - Em um FET de canal n em que condições ocorre a saturação? 4 - O que é tensão de estrangulamento? 5 - Determine a corrente de dreno de um FET canal n com tensão de estrangulamento (V p ) = -3,75V; I DSS = 9mA, para as seguintes tensões gate-source (V GS ): 0V; -1,15V; -1,5V; -1,75V e -2,3V (apresentar cálculos). Cálculos: Eletrônica Analógica FET Transistor de Efeito de Campo Prof. Edgar Zuim Página 11
Eletrônica Analógica
UNIVERSIDADE FEDERAL DO PARÁ FACULDADE DE ENGENHARIA DE COMPUTAÇÃO E TELECOMUNICAÇÕES Eletrônica Analógica Transistores de Efeito de Campo Professor Dr. Lamartine Vilar de Souza [email protected] www.lvsouza.ufpa.br
TRANSISTORES DE EFEITO DE CAMPO
Engenharia Elétrica Eletrônica Professor: Alvaro Cesar Otoni Lombardi Os Transistores Bipolares de Junção (TBJ ou BJT) São controlados pela variação da corrente de base (na maioria das aplicações) 1 Os
Humberto Hickel de Carvalho - IFSP Cubatão 2015 1 TRANSÍSTOR DE EFEITO DE CAMPO DE JUNÇÃO JFET
Humberto Hickel de Carvalho - IFSP Cubatão 2015 1 TRANSÍSTOR DE EFEITO DE CAMPO DE JUNÇÃO JFET O JFET pode ter seu funcionamento comparado ao do transístor bipolar de junção, TBJ. Enquanto no TBJ a corrente
AMPLIFICADOR CLASSE A
AMPLIFICADOR CLASSE A OBJETIVOS: Verificar experimentalmente o comportamento de um amplificador classe A transistorizado e analisar as formas de onda obtidas na saída em função de um sinal aplicado na
EE531 - Turma S. Diodos. Laboratório de Eletrônica Básica I - Segundo Semestre de 2010
EE531 - Turma S Diodos Laboratório de Eletrônica Básica I - Segundo Semestre de 2010 Professor: José Cândido Silveira Santos Filho Daniel Lins Mattos RA: 059915 Raquel Mayumi Kawamoto RA: 086003 Tiago
Instituto Educacional São João da Escócia Colégio Pelicano Curso Técnico de Eletrônica. FET - Transistor de Efeito de Campo
1 FET - Transistor de Efeito de Campo Introdução Uma importante classe de transistor são os dispositivos FET (Field Effect Transistor). Transistor de Efeito de Campo. Como nos Transistores de Junção Bipolar
MOSFET. Fábio Makihara 710921. Gustavo de Carvalho Bertoli 610992. Luís Gustavo Fazzio Barbin 712418. Luiza Pio Costa da Silva 712001
MOSFET MOSFET tipo depleção (MOSFET-D) Curvas do MOSFET-D Amplificadores com MOSFET-D MOSFET tipo intensificação (MOSFET-E) Curvas de Dreno Tensão Porta-Fonte máxima Fábio Makihara 710921 Gustavo de Carvalho
LABORATÓRIO DE DISPOSITIVOS ELETRÔNICOS Guia de Experimentos
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE DISPOSITIVOS ELETRÔNICOS Experimento 5 Transistor MOSFET LABORATÓRIO
Obs.: No FET de canal P invertem-se camadas semicondutores N e P
FET - TRANSISTORES DE EFEITO DE CAMPO Os transistores de Efeito de Campo, JFET e MOSFET's, tem como características básicas e controle de uma corrente por um campo elétrico aplicado. A corrente flui entre
Escola de Educação Profissional Senai Plínio Gilberto Kroeff CETEMP TRANSISTOR DE EFEITO DE CAMPO DE PORTA ISOLADA - MOSFET
Escola de Educação Profissional Senai Plínio Gilberto Kroeff CETEMP TRANSISTOR DE EFEITO DE CAMPO DE PORTA ISOLADA - MOSFET Os transistores de efeito de campo do tipo porta isolada (IGFET Isolated Gate
GERADORES ELÉTRICOS INTRODUÇÃO TEÓRICA
GERADORES ELÉTRICOS OBJETIVOS: a) verificar o funcionamento de um gerador real; b) medir a resistência interna e a corrente de curto-circuito; c) levantar a curva característica de um gerador real. INTRODUÇÃO
Faculdade de Engenharia Elétrica e de Computação FEEC Universidade Estadual de Campinas Unicamp EE531 LABORATÓRIO DE ELETRÔNICA BÁSICA I EXPERIÊNCIA 2
Faculdade de ngenharia létrica e de Computação FC Universidade stadual de Campinas Unicamp 531 LABORATÓRIO D LTRÔNICA BÁSICA I XPRIÊNCIA 2 TRANSISTOR BIPOLAR Prof. Lee Luan Ling 1 o SMSTR D 2010 1 Objetivo:
Como funciona o MOSFET (ART977)
Como funciona o MOSFET (ART977) Os transistores de efeito de campo não são componentes novos. Na verdade, em teoria foram criados antes mesmo dos transistores comuns bipolares. No entanto, com a possibilidade
Circuitos Eletrónicos Básicos
Circuitos Eletrónicos Básicos Licenciatura em Engenharia Eletrónica Transparências de apoio às aulas Cap. 3: Fontes de corrente 1º semestre 2013/2014 João Costa Freire Instituto Superior Técnico Setembro
EXPERÊNCIA 4 - MODULAÇÃO EM FREQUÊNCIA
EXPERÊNCIA 4 - MODULAÇÃO EM FREQUÊNCIA Modulação em freqüência ocorre quando uma informação em banda básica modula a freqüência ou alta freqüência de uma portadora com sua amplitude permanecendo constante.
Transistor de Efeito de Campo
UNIVERSIDADE FEDERAL DE SÃO JOAO DEL REI Transistor de Efeito de Campo Trabalho de Eletrônica I Taumar Morais Lara Engenharia Elétrica Eletrônica I Matrícula: 0809048-3 U N I V E R S I D A D E F E D E
ATENÇÃO: A partir da amostra da aula, terá uma idéia de onde o treinamento de eletroeletrônica poderá lhe levar.
ATENÇÃO: O material a seguir é parte de uma das aulas da apostila de MÓDULO 3 que por sua vez, faz parte do CURSO de ELETRO ANALÓGICA -DIGITAL que vai do MÓDULO 1 ao 4. A partir da amostra da aula, terá
EXPERIÊNCIA 2: CIRCUITOS DE POLARIZAÇÃO DE JFET s.
EXPERIÊNCIA : CIRCUITOS DE POLARIZAÇÃO DE JFET s. PROCEDIMENTO: Polarização da porta:. Com o módulo e a fonte variável desligadas, instalar a placa CEB-0 no Slot E ou F do Módulo Universal 000. + V (Var)
Eletrônica de Potência II Capítulo 1. Prof. Cassiano Rech [email protected]
Eletrônica de Potência II Capítulo 1 [email protected] 1 Componentes semicondutores em Eletrônica de Potência Diodo MOSFET IGBT GTO 2 Introdução Eletrônica de Potência é uma ciência aplicada que aborda
UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7051 Materiais Elétricos - Laboratório
UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7051 Materiais Elétricos - Laboratório EXPERIÊNCIA 06 CURVAS CARACTERÍSTICAS DE TRANSISTORES E PORTAS LÓGICAS 1 INTRODUÇÃO
Introdução 5. Amplificação com FET 6. Polarização do FET 6 Polarização do terminal dreno 7 Polarização do terminal porta 7
Sumário Introdução 5 Amplificação com FET 6 Polarização do FET 6 Polarização do terminal dreno 7 Polarização do terminal porta 7 Estágio amplificador com FET 8 Princípio de funcionamento 9 Características
LABORATÓRIO 11. Diodos e LEDs. Objetivos: Identificar o comportamento de um diodo e de um LED em um circuito simples; calcular a resistência. do LED.
LABORATÓRIO 11 Diodos e LEDs Objetivos: do LED. Identificar o comportamento de um diodo e de um LED em um circuito simples; calcular a resistência Materiais utilizados Diodo, LED, multímetro, resistores,
TRANSFORMADORES. P = enrolamento do primário S = enrolamento do secundário
TRANSFORMADORES Podemos definir o transformador como sendo um dispositivo que transfere energia de um circuito para outro, sem alterar a frequência e sem a necessidade de uma conexão física. Quando existe
ENCONTRO 3 AMPLIFICADORES EM CASCATA (ESTUDO DOS PRÉ-AMPLIFICADORES)
CURSO DE ENGENHARIA ELÉTRICA DISCIPLINA: ELETRÔNICA I PROFESSOR: VLADEMIR DE J. S. OLIVEIRA ENCONTRO 3 AMPLIFICADORES EM CASCATA (ESTUDO DOS PRÉ-AMPLIFICADORES) 1. COMPONENTES DA EQUIPE Alunos Nota: Data:
IFBA MOSFET. CELET Coordenação do Curso Técnico em Eletrônica Professor: Edvaldo Moraes Ruas, EE. Vitória da Conquista - 2009
IFBA MOSFET CELET Coordenação do Curso Técnico em Eletrônica Professor: Edvaldo Moraes Ruas, EE Vitória da Conquista - 2009 MOSFET s - introdução Semicondutor FET de óxido metálico, ou Mosfet (Metal Oxide
ELETROTÉCNICA ELM ROTEIRO DA AULA PRÁTICA 01 A LEI DE OHM e AS LEIS DE KIRCHHOFF
ELETROTÉCNICA ELM ROTEIRO DA AULA PRÁTICA 01 A LEI DE OHM e AS LEIS DE KIRCHHOFF NOME: TURMA: DATA: / / OBJETIVOS: Ler o valor nominal de cada resistor através do código de cores. Conhecer os tipos de
Antes de estudar a tecnologia de implementação do transistor um estudo rápido de uma junção;
Transistor O transistor é um elemento ativo e principal da eletrônica. Sendo um elemento ativo o transistor é utilizado ativamente na construção dos circuitos lineares e digitais. Os transistores podem
Laboratório 7 Circuito RC *
Laboratório 7 Circuito RC * Objetivo Observar o comportamento de um capacitor associado em série com um resistor e determinar a constante de tempo do circuito. Material utilizado Gerador de função Osciloscópio
MATERIAIS NECESSÁRIOS: - Fonte de alimentação - Multímetro - Proto-board - Cabos de conexão - Resistor (1k ) - Diodo (1N4007)
TÍTULO: CURVA DO DIODO OBJETIVOS: Conhecer as características de operação de um diodo, mais especificamente, o que ocorre em sua junção quando diretamente e inversamente polarizado; calcular a resistência
UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III INDUTORES E CIRCUITOS RL COM ONDA QUADRADA
UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III INDUTORES E CIRCUITOS RL COM ONDA QUADRADA 1. OBJETIVO O objetivo desta aula é estudar o comportamento
FET AMPLIFIERS Amplificadores FET
FET AMPLIFIERS Amplificadores FET M-1106A *Only illustrative image./imagen meramente ilustrativa./imagem meramente ilustrativa. EXPERIMENTS MANUAL Manual de Experimentos Manual de Experimentos 1 Conteúdo
Amplificadores de potência classe B
Amplificadores de potência classe B Introdução O amplificador de potência classe A, apresenta a melhor linearidade, mas tem o pior rendimento. Isso se deve ao fato de que o transistor de saída esta sempre
INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS MEDIÇÃO DE TEMPERATURA TERMÔMETROS DE RESISTÊNCIA
INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS MEDIÇÃO DE TEMPERATURA TERMÔMETROS DE RESISTÊNCIA Introdução O uso de termômetros de resistência esta se difundindo rapidamente devido a sua precisão e simplicidade
ASSOCIAÇÃO EDUCACIONAL DOM BOSCO CAPÍTULO 1 DIODOS RETIFICADORES
INTRODUÇÃO CPÍTULO DIODOS RETIFICDORES O diodo é um dispositivo semi-condutor muito simples e é utilizado nas mais variadas aplicações. O uso mais freqüente do diodo é como retificador, convertendo uma
ELECTRÓNICA DE POTÊNCIA
ELECTRÓNICA DE POTÊNCIA CONVERSORES CC/CC Redutor, Ampliador e Redutor-Ampliador GRUPO: TURNO: DIA: HORAS: ALUNO: ALUNO: ALUNO: ALUNO: Nº: Nº: Nº: Nº: IST DEEC 2003 Profª Beatriz Vieira Borges 1 CONVERSORES
PORTAS LÓGICAS MARGEM DE RUÍDO FAN-OUT FAN-IN TEMPO DE PROPAGAÇÃO DISSIPAÇÃO DE POTÊNCIA
PORTAS LÓGICAS MARGEM DE RUÍDO FAN-OUT FAN-IN TEMPO DE PROPAGAÇÃO DISSIPAÇÃO DE POTÊNCIA OBJETIVOS: a) Conhecer o significado de fan-out e fan-in; b) Analisar na prática a relação entre as variações dos
CONHECIMENTOS ESPECÍFICOS TÉCNICO EM ELETRÔNICA
CONHECIMENTOS ESPECÍFICOS TÉCNICO EM ELETRÔNICA 26. Com relação aos materiais semicondutores, utilizados na fabricação de componentes eletrônicos, analise as afirmativas abaixo. I. Os materiais semicondutores
TRANSISTORES DE EFEITO DE CAMPO DE JUNÇÃO JFET
TRANSISTORES DE EFEITO DE CAMPO DE JUNÇÃO JFET Transistores bipolares dispositivos controlados por corrente (corrente do coletor é controlada pela corrente da base). Transistores de efeito de campo (FET
CHAVEAMENTO COM SCR S
ELE-59 Circuitos de Chaveamento Prof.: Alexis Fabrício Tinoco S. INSTITUTO TECNOLÓGICO DE AERONÁUTICA DIVISÃO DE ENGENHARIA ELETRÔNICA DEPARTAMENTO DE ELETRÔNICA APLICADA 1. INTRODUÇAO CHAVEAMENTO COM
Componentes Eletrônicos. Resistores, Capacitores e Indutores J.R.Kaschny (2013)
Componentes Eletrônicos Resistores, Capacitores e Indutores J.R.Kaschny (2013) Resistores Símbolos comuns: Fixos Variáveis Potenciômetros Tipos usuais: Parâmetros relevantes: Modelo realístico: Fixos fio,
1) Entendendo a eletricidade
1) Entendendo a eletricidade 1 2) Circuitos Modelix 2 3) Utilizando o Sistema Esquemático Modelix-G (Modelix-Grafix) 6 4) Fazendo montagens com os Circuitos Modelix 7 5) Exercícios para treinar 8 Objetivo:
I D I DSS. Figura 3.1 Curva de transcondutância do MOSFET e definição do ponto Q em polarização zero.
59 EXPERIÊNCIA 3: O MOFET PROCEDIMENTO: MOFET DO TIPO DEPLEÇÃO O MOFET do tipo Depleção basicamente pode operar em ambos os modos: Depleção ou Intensificação. Portanto, todos os métodos de polarização
4. Estudo da Curva de Carga
4 4. Estudo da Curva de Carga 4..Introdução No capítulo anterior foi introduzido o conceito de casamento de potencia de um gerador genérico que tem uma resistência interna e está conectado a uma carga
Fontes de Alimentação
Fontes de Alimentação As fontes de alimentação servem para fornecer energia eléctrica, transformando a corrente alternada da rede pública em corrente contínua. Estabilizam a tensão, ou seja, mesmo que
AULA #4 Laboratório de Medidas Elétricas
AULA #4 Laboratório de Medidas Elétricas 1. Experimento 1 Geradores Elétricos 1.1. Objetivos Determinar, experimentalmente, a resistência interna, a força eletromotriz e a corrente de curto-circuito de
DEPARTAMENTO DE ENGENHARIA ELÉTRICA E CIÊNCIA DA COMPUTAÇÃO MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139
DEPARTAMENTO DE ENGENHARIA ELÉTRICA E CIÊNCIA DA COMPUTAÇÃO MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 6.101 Laboratório de Introdução de Eletrônica Analógica Laboratório No.
CORRENTE CONTÍNUA E CORRENTE ALTERNADA
CORRENTE CONTÍNUA E CORRENTE ALTERNADA Existem dois tipos de corrente elétrica: Corrente Contínua (CC) e Corrente Alternada (CA). A corrente contínua tem a característica de ser constante no tempo, com
CONSIDERAÇÕES SOBRE OS RECEPTORES DE CONVERSÃO DIRETA
CONSIDERAÇÕES SOBRE OS RECEPTORES DE CONVERSÃO DIRETA Muito se tem falado sobre os receptores de conversão direta, mas muita coisa ainda é desconhecida da maioria dos radioamadores sobre tais receptores.
Sistemas e Circuitos Eléctricos
Sistemas e Circuitos Eléctricos 1º Ano/1º Semestre EACI 1º Laboratório: Introdução ao Material de Laboratório Pretende-se nesta aula de laboratório que o aluno se familiarize com o material/equipamento
3 Metodologia de calibração proposta
Metodologia de calibração proposta 49 3 Metodologia de calibração proposta A metodologia tradicional de calibração direta, novamente ilustrada na Figura 22, apresenta uma série de dificuldades e limitações,
Comunicações Digitais Manual do Aluno Capítulo 7 Workboard PCM e Análise de Link
Comunicações Digitais Manual do Aluno Capítulo 7 Workboard PCM e Análise de Link Laboratório de Telecomunicações - Aula Prática 4 Sub-turma: 3 Nomes dos alunos: Tarefa 17 Ruído em um Link Digital Objetivo:
Experimento 8 Circuitos RC e filtros de freqüência
Experimento 8 Circuitos RC e filtros de freqüência 1. OBJETIVO O objetivo desta aula é ver como filtros de freqüência utilizados em eletrônica podem ser construídos a partir de um circuito RC. 2. MATERIAL
DIAGRAMA DE BLOCOS DE UMA FONTE DE TENSÃO
DIAGRAMA DE BLOCOS DE UMA FONTE DE TENSÃO Essa deficiência presente nos retificadores é resolvida pelo emprego de um filtro Essa deficiência presente nos retificadores é resolvida pelo emprego de um filtro
Transistores de Efeito de Campo (npn)
Slide 1 FET porta dispositivo de 3 terminais corrente e - de canal da fonte para dreno controlada pelo campo elétrico gerado pelo porta impedância de entrada extremamente alta para base Transistores de
Aula prática Como utilizar um multímetro
Aula prática Como utilizar um multímetro Definição Como o próprio nome sugere, é um equipamento que pode ser utilizado para a realização de diversas medidas, dentre as principais temos: Tensão (alternada
CONHECIMENTOS ESPECÍFICOS
CONHECIMENTOS ESPECÍFICOS» CONTROLES E PROCESSOS INDUSTRIAIS (PERFIL 5) «21. Um transistor NMOS, para operar na região de saturação, deve obedecer às seguintes condições: I. A diferença entre a tensão
EXPERIMENTS MANUAL Manual de Experimentos Manual de Experimentos 1
SEMICONDUCTOR III Semiconductor III Semicondutor III M-1105A *Only illustrative image./imagen meramente ilustrativa./imagem meramente ilustrativa. EXPERIMENTS MANUAL Manual de Experimentos Manual de Experimentos
Elétricos. Prof. Josemar dos Santos [email protected]
Controle de Motores Elétricos Diodo Retificador Prof. Josemar dos Santos [email protected] Constituição Um diodo retificador é constituído por uma junção PN de material semicondutor (silício ou germânio)
Tecnologias de Circuitos Integrados
Tecnologias de Circuitos Integrados Tecnologias de Circuitos Integrados MOS-CMOS MOSFET (Metal Oxide Silicon Field Effect Field) nmos (N-type MOS) pmos (P-type MOS) CMOS (Complementary - type MOS) Manoel
CENTRO TECNOLÓGICO ESTADUAL PAROBÉ CURSO DE ELETRÔNICA
CENTRO TECNOLÓGO ESTADUAL PAROBÉ CURSO DE ELETRÔNA LABORATÓRIO DE ELETRÔNA ANALÓGA I Prática: 6 Assunto: Transistor Bipolar 1 Objetivos: Testar as junções e identificar o tipo de um transistor com o multímetro.
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL DEPARTAMENTO DE ENGENHARIA ELÉTRICA CURSO DE GRADUAÇÃO EM ENGENHARIA ELÉTRICA
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL DEPARTAMENTO DE ENGENHARIA ELÉTRICA CURSO DE GRADUAÇÃO EM ENGENHARIA ELÉTRICA USO DE TECNOLOGIA BIPOLAR NOS CI S ATUAIS CIRCUITOS ELETRÔNICOS INTEGRADOS PROFESSOR
Eletrônica Industrial Apostila sobre Modulação PWM página 1 de 6 INTRODUÇÃO
Eletrônica Industrial Apostila sobre Modulação PWM página 1 de 6 Curso Técnico em Eletrônica Eletrônica Industrial Apostila sobre Modulação PWM Prof. Ariovaldo Ghirardello INTRODUÇÃO Os controles de potência,
Autor: Luís Fernando Patsko Nível: Intermediário Criação: 22/02/2006 Última versão: 18/12/2006. PdP. Pesquisa e Desenvolvimento de Produtos
TUTORIAL Montagem da Ponte H Autor: Luís Fernando Patsko Nível: Intermediário Criação: 22/02/2006 Última versão: 18/12/2006 PdP Pesquisa e Desenvolvimento de Produtos http://www.maxwellbohr.com.br [email protected]
INSTITUTO DE FÍSICA UNIVERSIDADE DE SÃO PAULO. Grupo:... (nomes completos) Prof(a).:... Diurno ( ) Noturno ( ) Experiência 8 LINHA DE TRANSMISSÃO
INSTITUTO DE FÍSICA UNIVERSIDADE DE SÃO PAULO Laboratório de Eletromagnetismo (4300373) Grupo:......... (nomes completos) Prof(a).:... Diurno ( ) Noturno ( ) Data : / / Experiência 8 LINHA DE TRANSMISSÃO
Hamtronix CONTROLE REMOTO DTMF. CRD200 - Manual de Instalação e Operação. Software V 2.0 Hardware Revisão B
Hamtronix CRD200 - Manual de Instalação e Operação Software V 2.0 Hardware Revisão B INTRODUÇÃO Índice...01 Suporte On-line...01 Termo de Garantia...01 Em Caso de Problemas (RESET)...01 Descrição do Produto...02
Manual de instalação e configuração do módulo de saídas NSR-08
Manual de instalação e configuração do módulo de saídas NSR-08 Sumário DESCRIÇÃO GERAL...4 VANTAGENS...4 CARACTERÍSTICAS...4 LED DE STATUS DO MODULO...4 ESQUEMA DE LIGAÇÕES...5 LIGAÇÃO DO CABO DE COMUNICAÇÃO...6
Exemplos de condutores: cobre, alumínio, ferro, grafite, etc. Exemplos de isolantes: vidro, mica, fenolite, borracha, porcelana, água pura, etc.
Condutores e Isolantes Condutores: São materiais caracterizados por possuírem no seu interior, portadores livres de cargas elétricas (elétrons livres), desta forma, permitindo a passagem de uma corrente
UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7051 Materiais Elétricos - Laboratório
UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7051 Materiais Elétricos - Laboratório EXPERIÊNCIA 01 ENSAIO DO DISJUNTOR DE BAIXA TENSÃO 1 INTRODUÇÃO Esta aula no laboratório
Circuitos Retificadores
Circuitos Retificadores 1- INTRODUÇÃO Os circuito retificadores, são circuitos elétricos utilizados em sua maioria para a conversão de tensões alternadas em contínuas, utilizando para isto no processo
Memórias. O que são Memórias de Semicondutores? São componentes capazes de armazenar informações Binárias (0s e 1s)
Memórias O que são Memórias de Semicondutores? São componentes capazes de armazenar informações Binárias (0s e 1s) Essas informações são guardadas eletricamente em células individuais. Chamamos cada elemento
Prof. Antonio Carlos Santos. Aula 7: Polarização de Transistores
IF-UFRJ Elementos de Eletrônica Analógica Prof. Antonio Carlos Santos Mestrado Profissional em Ensino de Física Aula 7: Polarização de Transistores Este material foi baseado em livros e manuais existentes
Circuitos com Diodos. Eletrônica I Alexandre Almeida Eletrônica dos Semicondutores.
Circuitos com Diodos Eletrônica I Alexandre Almeida Eletrônica dos Semicondutores. O TRANSFORMADOR DE ENTRADA As companhias de energia elétrica no Brasil fornecem.umatensão senoidal monofásica de 127V
REPRESENTAÇÃO DE DADOS EM SISTEMAS DE COMPUTAÇÃO AULA 03 Arquitetura de Computadores Gil Eduardo de Andrade
REPRESENTAÇÃO DE DADOS EM SISTEMAS DE COMPUTAÇÃO AULA 03 Arquitetura de Computadores Gil Eduardo de Andrade O conteúdo deste documento é baseado no livro Princípios Básicos de Arquitetura e Organização
LEIS DE KIRCHHOFF ANÁLISE DE REDES DC
LEIS DE KIRCHHOFF ANÁLISE DE REDES DC 1. Análise de correntes nas malhas 2. Análise de tensão nodal 3. Superposição As Leis de Kirchhoff são assim denominadas em homenagem ao físico alemão Gustav Kirchhoff
4 PARÂMETROS DINÂMICOS
4 PARÂMETROS DINÂMICOS Nesta experiência iremos medir os parâmetros do amp op que podem prejudicar o desempenho dos circuitos em alta freqüência. Os dois parâmetros Produto Ganho-Largura de Banda GBP (também
Transistor de Efeito de Campo FET
Transistor de Efeito de Campo FET FET - Aspectos gerais O FET (Field Effect Transistor) ou transistor de efeito de campo é um dispositivo unipolar (um tipo de portador - elétron ou lacuna), constituído
Reta de Carga de Horwitz & Hill, p. 1059 Qual é a corrente através do diodo?
Slide 1 Reta de Carga de Horwitz & Hill, p. 1059 Qual é a corrente através do diodo? Uma forma tradicional de encontrar o ponto de operação de um circuito não-linear é através de retas de carga. O objetivo
Prof. Manoel Eusebio de Lima
Eletrônica (Amplificador Push-Pull) Prof. Manoel Eusebio de Lima Operação classe B Estes amplificadores, denominados classe B permite que a corrente do coletor flua apenas por 180 o do ciclo ca em cada
Transistores II. Prof. Marcelo Wendling 2009 Versão 1.0
UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" CAMPUS DE GUARATINGUETÁ Colégio Técnico Industrial de Guaratinguetá Prof. Carlos Augusto Patrício Amorim Transistores II Prof. Marcelo Wendling
Introdução. GRECO-CIN-UFPE Prof. Manoel Eusebio de Lima
Introdução GRECO-CIN-UFPE Prof. Manoel Eusebio de Lima Programa do curso Introdução (conceitos) Fonte de tensão Fonte de Corrente Teorema de Thevenin Teorema de Norton Resistores/capacitores (revisão)
DISPOSITIVOS ESPECIAIS
DISPOSITIVOS ESPECIAIS 1 DISPOSITIVOS ESPECIAIS BUFFERS/DRIVERS TRI-STATE PORTAS EXPANSÍVEIS/EXPANSORAS SCHMITT - TRIGGER OBJETIVOS: a) Entender o funcionamento de dispositivos lógicos especiais como:
defi departamento de física www.defi.isep.ipp.pt
defi departamento de física Laboratórios de Física www.defi.isep.ipp.pt Condensador de Placas Paralelas Instituto Superior de Engenharia do Porto- Departamento de Física Rua Dr. António Bernardino de Almeida,
AULA #4 Laboratório de Medidas Elétricas
AULA #4 Laboratório de Medidas Elétricas 1. Experimento 1 Geradores Elétricos 1.1. Objetivos Determinar, experimentalmente, a resistência interna, a força eletromotriz e a corrente de curto-circuito de
Título da Experiência
Título da Experiência 1. Objetivo Copiar o(s) objetivo(s) definido(s) pelo professor no roteiro da experiência. 2. Teoria Apresentar os conceitos teóricos relativos à experiência em questão. O conteúdo
Manual de instalação e configuração do módulo de entradas WEBER-REP
Manual de instalação e configuração do módulo de entradas WEBER-REP Sumário CONVENÇÕES UTILIZADAS...3 DESCRIÇÃO GERAL...4 VANTAGENS...4 CARACTERÍSTICAS ELÉTRICAS...4 ESPECIFICAÇÕES GERAIS...5 LED DE STATUS
Experimento 2 Gerador de funções e osciloscópio
Experimento 2 Gerador de funções e osciloscópio 1. OBJETIVO O objetivo desta aula é introduzir e preparar o estudante para o uso de dois instrumentos muito importantes no curso: o gerador de funções e
Circuitos de Comando para MOSFETs e IGBTs de Potência
Universidade Federal do Ceará PET Engenharia Elétrica Fortaleza CE, Brasil, Abril, 2013 Universidade Federal do Ceará Departamento de Engenharia Elétrica PET Engenharia Elétrica UFC Circuitos de Comando
EXPERIMENTS MANUAL Manual de Experimentos Manual de Experimentos
SEMICONDUCTOR I Semiconductor I Semicondutor I M-1104A *Only illustrative image./imagen meramente ilustrativa./ Imagem meramente ilustrativa. EXPERIMENTS MANUAL Manual de Experimentos Manual de Experimentos
SEMICONDUTORES. Concentração de portadores de carga:
Unidade 3 SEMICONDUTORES E g ~ 1 ev E F E = 0 Elétron pode saltar da banda de valência para a banda de condução por simples agitação térmica Concentração de portadores de carga: Para metais: elétrons de
Aula 2 TRANSFORMADORES I. Prof. Dr. Maurício Salles [email protected] USP/POLI/PEA
Aula 2 TRANSFORMADORES I Prof. Dr. Maurício Salles [email protected] USP/POLI/PEA Aula 2 TRANSFORMADORES Utilização do transformador Princípio de funcionamento do transformador (ideal e real) Transformador
Concurso Público para Cargos Técnico-Administrativos em Educação UNIFEI 13/06/2010
Questão 21 Conhecimentos Específicos - Técnico em Eletrônica Calcule a tensão Vo no circuito ilustrado na figura ao lado. A. 1 V. B. 10 V. C. 5 V. D. 15 V. Questão 22 Conhecimentos Específicos - Técnico
EXPERIMENTS MANUAL Manual de Experimentos Manual de Experimentos
SEMICONDUCTOR II Semiconductor II Semicondutor II M-1104B *Only illustrative image./imagen meramente ilustrativa./ Imagem meramente ilustrativa. EXPERIMENTS MANUAL Manual de Experimentos Manual de Experimentos
AMPLIFICADOR BASE COMUM
AMPLIFICADOR BASE COMUM OBJETIVOS: Analisar as características e o funcionamento de um amplificador na configuração base comum. INTRODUÇÃO TEÓRICA O amplificador base comum (B.C.) caracteriza-se por possuir
CVMDDC - CONTROLE DE VELOCIDADE DO MOTOR DC
UFLA Universidade Federal de Lavras DEX Departamento de Ciências Exatas Bacharelado em CVMDDC - CONTROLE DE VELOCIDADE DO MOTOR DC Autor: Edna Mie Kanazawa Orientador: Wilian Soares Lacerda Lavras, novembro
Capítulo IV. Medição de Grandezas Elétricas
Capítulo V Medição de Grandezas Elétricas 4.1 ntrodução Quando você puder medir aquilo de que está falando e exprimir isso em números, saberá algo sobre tal coisa. Enquanto você não puder exprimilo em
Eletrônica II. Amplificadores de Potência. Notas de Aula José Maria P. de Menezes Jr.
Eletrônica II Amplificadores de Potência Notas de Aula José Maria P. de Menezes Jr. Amplificadores Amplificador é um equipamento que utiliza uma pequena quantidade de energia para controlar uma quantidade
PROJETO DE REDES www.projetoderedes.com.br
PRJET DE REDES www.projetoderedes.com.br urso de Tecnologia em Redes de omputadores Disciplina: Redes I Fundamentos - 1º Período Professor: José Maurício S. Pinheiro AULA 1: onceitos de Redes de Dados
Do neurônio biológico ao neurônio das redes neurais artificiais
Do neurônio biológico ao neurônio das redes neurais artificiais O objetivo desta aula é procurar justificar o modelo de neurônio usado pelas redes neurais artificiais em termos das propriedades essenciais
Eletricista Instalador Predial de Baixa Tensão Eletricidade Básica Jones Clécio Otaviano Dias Júnior Curso FIC Aluna:
Ministério da Educação - MEC Secretaria de Educação Profissional e Tecnológica (SETEC) Instituto Federal de Educação, Ciência e Tecnologia do Ceará Eletricista Instalador Predial de Baixa Tensão Eletricidade
4. Tarefa 16 Introdução ao Ruído. Objetivo: Método: Capacitações: Módulo Necessário: Análise de PCM e de links 53-170
4. Tarefa 16 Introdução ao Ruído Objetivo: Método: Ao final desta Tarefa você: Estará familiarizado com o conceito de ruído. Será capaz de descrever o efeito do Ruído em um sistema de comunicações digitais.
