EFEITOS DA COMPOSIÇÃO QUÍMICA NA PRODUÇÃO DE FERRO FUNDIDO NODULARES.

Tamanho: px
Começar a partir da página:

Download "EFEITOS DA COMPOSIÇÃO QUÍMICA NA PRODUÇÃO DE FERRO FUNDIDO NODULARES."

Transcrição

1 Adalberto Bierrenbach de Souza Santos Membro da ABM, Engenheiro Metalúrgico, Mestre em Engenharia Metalúrgica e Doutor em engenharia. Diretor da Metal Consult Ltda., Joinville (SC). EFEITOS DA COMPOSIÇÃO QUÍMICA NA PRODUÇÃO DE FERRO FUNDIDO NODULARES. Trabalho a ser apresentado no 55º Congresso anual da Associação Brasileira de Metalurgia e Materiais ABM, 16 a 20 de Julho de 2000, Rio de Janeiro (RJ). RESUMO. São apresentadas as influências da composição química para a fabricação de componentes em ferros fundidos nodulares. Mencionam-se os intervalos de concentração de elementos nodulizantes (magnésio, cério e cálcio) geralmente recomendados para a obtenção de grafita de forma exclusivamente esferoidal na microestrutura. Examinam-se os efeitos do carbono equivalente, teores de carbono, silício, manganês, fósforo, oxigênio e enxofre. Descrevem-se também as influências de elementos deletérios (Pb, Bi, As, Te e Ti), citando-se os teores a partir dos quais seu efeito prejudicial tem sido constatado. 1. INTRODUÇÃO. Os ferros fundidos nodulares constituem-se em materiais de engenharia empregados em muitas aplicações diferentes, nos vários segmentos da indústria. A produção dessas ligas corresponde ao segundo maior volume de peças fundidas em todo o mundo (cerca de t / ano), sendo apenas superado pelos ferros fundidos cinzentos (1). A modificação do mecanismo de crescimento lamelar para a forma esferoidal da grafita durante a solidificação de ferros fundidos é obtida industrialmente com o tratamento de nodularização. As variáveis que se referem a esse tratamento, e que correspondem à temperatura, tipo, quantidade e granulometria do agente e aos diferentes processos de tratamento do metal líquido que podem ser utilizados em escala industrial foram examinadas em trabalhos anteriores (2 6). O objetivo deste trabalho é o de apresentar os efeitos da composição química para a fabricação de ferros fundidos nodulares. 2. OBTENÇÃO DE GRAFITA ESFEROIDAL EM FERROS FUNDIDOS. O crescimento esferoidal da grafita no estado bruto de fusão em ferros fundidos pode se obtido por várias maneiras diferentes, sendo a mais utilizada em escala industrial a de adição controlada de magnésio, na forma metálica de ligas ou ainda produtos nodulizantes. Uma parcela muito pequena de produção mundial de ferros fundidos nodulares é fabricada empregando-se ligas que contém cério e outros metais do grupo das terras raras, ou ainda cálcio, que também atuam como elementos nodulizantes.

2 Os teores residuais de elementos nodulizantes necessários para a obtenção de ferros fundidos nodulares devem se situar em intervalos mais ou menos bem definidos, embora outras variáveis de processo com a velocidade de esfriamento, o carbono equivalente, a porcentagem de enxofre do metal base, o grau de nucleação do metal líquido e os próprios teores residuais de outros elementos nodulizantes (notadamente terras raras e cálcio) possam também exercer efeito importante, principalmente no sentido de diminuir a concentração mínima necessária de magnésio (7). As concentrações residuais de magnésio devem se situar entre 0,030 e 0,050% (7). Para percentagens superiores a essa faixa aumenta a tendência a formação de carbono eutético na estrutura e de grafita spiky, que é um tipo de grafita degenerada em relação à esferoidal. Se o teor residual de magnésio for insuficiente para a obtenção de grafita nodular, ocorrerá a formação de grafita degenerada na estrutura, por exemplo, nódulos irregulares, grafita compacta ou lamelar. Utilzando-se ligas a base de terras raras, o intervalo de porcentagens residuais de cério para a fabricação de ferros fundidos nodulares seria de 0,02 a 0,04% (8). Concentrações mais elevadas podem causar a ocorrência de carbonetos eutéticos e de grafita explodida, enquanto teores insuficientes podem resultar na formação de grafita degenerada. No caso de se empregar agentes a base de cálcio, os teores finais devem estar no intervalo 0,02 0,04%. A tendência à formação de carbonetos eutéticos com a utilização desse elemento nodulizante é muito menor que a verificada com magnésio ou terras raras, enquanto concentrações inferiores ao intervalo citado podem causar ocorrência de formas degeneradas de grafita na microestrutura (9). Além, desses, outros elementos como lítio, bismuto, selênio, bário, estrôncio, zinco, escândio, enxofre, alumínio, silício e telúrio (10) podem também promover o crescimento esferoidal da grafita em ferros fundidos. A adição desses demais elementos geralmente só promove a formação de grafita nodular na microestrutura sob condições especificas, não sendo, portanto eficiente no largo espectro de situações que são observadas na produção industrial. Deve-se destacar ainda que também é possível obter grafita esferoidal em ligas Fe C Si sem que se efetue a adição de elementos nodulizantes, por exemplo, realizando fusão sob vácuo, tanto de ligas Fe-C-Si, como de ferros fundidos comerciais (10), ou ainda empregando-se elevada velocidade de esfriamento em materiais com até 0,008% S (11). Outra constatação refere-se à formação de nódulos de grafita em regiões de elevada concentração de silício que se formam em ligas hipoeutéticas ou hipereutéticos, sendo esse efeito favorecido por elevadas velocidades de esfriamento (12). Empregando-se matérias-primas de alta pureza e altas velocidades de esfriamento obteve-se também grafita esferoidal sem se efetuar a adição de nodulizantes (13). A grafita nodular pode ainda ser obtida no estado bruto de fusão sem que seja necessário efetuar adição de elementos nodulizantes em aços grafíticos, que são ligas com até cerca de 1,8% de carbono (14 16). 3. EFEITO DO CARBONO EQUIVALENTE. Para a fabricação de peças em ferro fundido nodular geralmente se recomenda o emprego de ligas de composição eutética ou hipereutética, com carbono equivalente situado entre 4,3 e 4,7% (17 18). Os teores de carbono mais freqüentemente empregados situam-se entre 3,5 e 3,8% e os de silício entre 2,1 e 2,8%. Nessas condições obtêm-se geralmente nódulos de grafita mais perfeitos

3 (tipo VI classificação ABNT NBR 6593), com menor tendência à formação de carbonetos eutéticos na estrutura. A especificação do material e a velocidade de esfriamento da peça em cada aplicação específica são os principais fatores considerados para se definir o carbono equivalente e os teores de carbono e silício. Em peças de seção fina (espessura de até cerca de 10 mm) a principal dificuldade consiste em se evitar a ocorrência de carbonetos eutéticos na microestrutura, como mostra a figura 1.. Figura 1 Ocorrência de carbonetos eutéticos em peças de seção fina em ferro fundido nodular. Nital, 100 X (7). Para a produção desses componentes devem-se empregar ligas hipereutéticas (CE de 4,4 a 4,7%), com teores de silício maiores que 2,4%, geralmente sendo o carbono equivalente tanto mais elevado quando maior for à tendência à formação de carbonetos eutéticos. Portanto, como recomendação geral, o carbono equivalente deve ser tanto mais elevado, quanto maior a velocidade de esfriamento, isto é, para peças em que a mínima espessura de seção é da ordem de 3 a 7 mm, devem ser utilizados ferros fundidos nodulares com carbono equivalente maior ou igual a 4,6%, enquanto no caso de componentes entre cerca de 7 e 10 mm é possível empregar menores carbono equivalente, por exemplo de 4,4 a 4,6%. Para peças com seção espessas, que poderiam ser caracterizados como as que possuem máxima espessura superior a cerca de 50 mm, os problemas mais críticos são (19) : Flutuação de grafita (20 22) ; Degenerescência da grafita esferoidal (19, 23, 24) ; Segregação de elementos da composição base e de liga (P, Mn, Cr, Sn, Cr, V, W) e ainda de elementos deletérios (Ti, As, Pb, Bi, Sb, Te) (19, 22). Ocorrência de carbonetos eutéticos devido à segregação de elementos que promovem sua formação (19, 22 25). A figura 2 mostra problema de origem metalúrgica que pode ocorrer na microestrutura de seções espessas em ferro fundido nodular.

4 Figura 2 Ocorrência de grafita degenerada (nódulos irregulares) em peça de seção espessa em ferro fundido nodular. Nital, 100 X (26). As composições empregadas para a fabricação dessas peças devem ser próximas ao eutético (4,2< CE < 4,4) com porcentagens mais elevadas de silício (2,5 < % Si < 2,8) e menores teores de carbono, para se evitar a flutuação de grafita (7, 22, 25). Também nesse caso geralmente são utilizadas composições com carbono equivalentes tanto menores quanto menor a velocidade de esfriamento, por exemplo, 4,3 < CE < 4,4, para componentes com 50 a 120 mm de espessura máxima de seção enquanto para peças em que a velocidade de solidificação é ainda menor devem-se utilizar ligas hipoeutéticas. É preciso considerar ainda que a utilização de ligas com carbono equivalente maior ou igual a 4,6% pode causar a ocorrência de flotação de grafita (23, 27, 29), as vezes constatada mesmo em seções não muito espessa, por exemplo da ordem de 25 a 30 mm. Outro aspecto a ser observado refere-se à tendência à formação de drosses, que é maior em ligas hipereutéticas (26 31), destacando-se que os drosses do tipo II, que se apresentam na forma de estrias, geralmente estão associados a nódulos de grafitas explodidas, decorrentes de flotação (29, 31, 32 34). No que se refere às especificações das peças a serem produzidas, devem-se utilizar menores carbono equivalentes, por exemplo, 4,3 a 4,5%, para materiais de mais elevadas resistência (classe e ), enquanto os componentes que devem atender as classes de maior ductilidade ( ou ) geralmente são fabricados com carbono equivalente entre 4,4 e 4,7%. É preciso destacar mais uma vez que devem se sempre consideradas em conjunto as características referentes a especificação do componentes e a espessura da seção para estabelecer o carbono equivalente a ser utilizado. Além disso, há materiais com requisitos especiais de resistência à fadiga ou ao impacto, que limitam as opções quando a definição da composição final a serem empregada, e conseqüentemente as matérias-primas a serem utilizadas. CARBONO. O carbono é o elemento que determina a quantidade de grafita presente na microestrutura, enquanto sua concentração na austenita pro-eutética e do eutético não apresenta variação importante no intervalo de concentração que é utilizado industrialmente para os ferros fundidos nodulares. Da mesma maneira, a variação da porcentagem de carbono praticamente não altera a solubilidade desse elemento na austenita nas temperaturas em que podem se iniciar as reações

5 eutéticas estável (At início de formação de ferrita) e metaestável (A1 início de formação de perlita). Considerando-se uma dada composição química, o efeito do acréscimo do teor de carbono, em ferros nodulares é de diminuir as propriedades mecânicas de resistência, o alongamento e a dureza. A resistência ao impacto também diminui com o aumento da concentração de carbono, embora seu efeito na temperatura de transição dúctil frágil seja pequeno. A influência desse elemento nessas propriedades mecânicas deve-se ao acréscimo da fração de grafita presente na microestrutura e ao aumento na porcentagem de ferrita na matriz. Nas aplicações em que se requer elevada resistência ai impacto devem-se utilizar menores teores de carbono, inclusive inferiores à faixa normalmente recomendada para a produção de ferros fundidos nodulares. SILÍCIO. O silício diminui o teor de carbono do eutético, sendo sua contribuição correspondente à cerca de 1/3 do carbono. Teores crescentes de silício aumentam a temperatura do eutético estável e diminuem a do metaestável (35, 36), promovendo a solidificação do eutético austenita + grafita, sendo, portanto um elemento de efeito grafitizante. Os elementos químicos apresentam diferentes coeficientes de partição entre o sólido e o líquido na solidificação de ferros fundidos. Os elementos grafitizantes geralmente se concentram na austenita, enquanto os que promovem a formação de carbonetos segregam-se para o líquido. O coeficiente de partição K é definido pela relação entre as concentrações do elemento na fase sólida (C S ) e na fase líquida (C L ) junto a interface que está em avanço durante a solidificação, em condições de equilíbrio ( K = C S / C L ). O silício apresenta maior concentração na austenita que no líquido, tendo, portanto k > 1. O silício é ferritizante na transformação de faze no estado sólido, amplia a faixa de coexistência, ferrita e grafita no diagrama Fe-C-Si (35 38), eleva as temperaturas dos eutéticos estável (38) e aumenta o intervalo entre essas duas temperaturas (35). O silício aumenta o coeficiente de difusão do carbono na austenita e diminui sua solubilidade nessa fase (37, 39, 40), aumentando assim a velocidade de crescimento da ferrita livre, uma vez que diminui a quantidade de carbono que deve sofrer difusão na austenita para permitir o crescimento da ferrita. Nos ferros fundidos nodulares com matriz essencialmente ferrítica, para uma dada velocidade de esfriamento a elevação da porcentagem de silício, mantendo-se as concentrações dos demais elementos, resulta em aumento da dureza, do limite de resistência à tração, do limite de escoamento e diminuição do alongamento (41). Teores crescentes de silício causam a elevação da temperatura de transição frágil-dúctil (29, 42 44) e, de modo geral, diminuem o valor máximo de energia absorvida em ensaio de impacto na região dúctil. É por essa razão que nas aplicações em que se especifica resistência ao impacto a temperatura abaixo o 0 C é necessário utilizar composições químicas finais com os menores teores possíveis de silício. O aumento da concentração desse elemento em ferros fundidos nodulares ferríticos é o de promover o endurecimento por solução sólida e a fragilização da ferrita, causando aumento das propriedades mecânicas de resistência e diminuição do alongamento e da resistência ao impacto. Em ferros fundidos nodulares de matriz ferrítica-perlítica, o acréscimo da concentração de silício causa formação de maiores percentagens de ferrita na matriz metálica, diminuindo a dureza, os limites de resistência à tração e de escoamento e elevando o alongamento (45).

6 4. MANGANÊS. Nos ferros fundidos nodulares a concentração de manganês geralmente se situa entre 0,15 e cerca de 1,2%, dependendo principalmente da especificação da peça a ser produzida e da espessura de seção. O manganês, em concentrações crescentes, desloca a porcentagem de carbono correspondente ao eutético para mais elevados. O acréscimo do teor de manganês causa diminuição do intervalo entre as temperaturas dos eutéticos estável e metaestável, tendo-se diminuição das temperaturas desses dois eutéticos (35,36). Na reação eutética dos ferros fundidos nodulares o manganês é rejeitado para o líquido residual, apresentando, portanto maior concentração nessa fase do que nas células eutéticas (K< 1) (27, 46 48). Dessa forma, a medida que a reação eutética está se processando, maiores são os teores de manganês no líquido e, em decorrência da maior concentração desse elemento, diminui o intervalo entre as temperaturas do eutético estável e metaestável. Assim, no resfriamento, a temperatura do eutético austenita + carbonetos pode ser ultrapassada, tendo-se condições termodinâmicas para a formação de carbonetos. Em peças de seção espessa em ferro fundido nodulares, para se evitar a formação de carbonetos em virtude da segregação de manganês para o líquido residual, devem-se utilizar concentrações máximas desse elemento da ordem de 0,3% (40). Na transformação eutetóide em ferros fundidos nodulares, aumentando-se o teor de manganês constata-se a diminuição das temperaturas dos eutetóide estável e metaestável (38, 49). Aumentando-se a concentração de manganês, obtêm-se quantidades crescentes de perlita na microestrutura (45,50). O manganês é um forte perlitizante (50) porque estabiliza a austenita, diminui o coeficiente de difusão do carbono (51) e aumenta a solubilidade do carbono nesta fase (50). O manganês promove o refino da perlita, sendo neste aspecto mais eficiente que outros elementos de liga, como cobre e estanho (35). Em ferros fundidos nodulares ferríticos geralmente o teor de manganês é limitado a 0,2%, tendo-se de 0,3 a 1,2% de, concentração final desse elemento nos materiais com matriz ferríticaperlítica e predominantemente perlítico (45, 49). O aumento da porcentagem de manganês em ferros fundidos nodulares ferríticos-perlíticos é de aumentar a dureza, o limite de resistência à tração e o limite de escoamento e diminuir o alongamento (45, 50). Adições de manganês superiores as necessárias para se obter matriz totalmente perlítica em ferros fundidos nodulares no estado bruto de fusão causam fragilização do material, tendo-se diminuição do limite de resistência à tração e do alongamento, enquanto o limite de escoamento aumenta. Em ensaios de impacto constata-se que o aumento da concentração de manganês causa acréscimo da temperatura de transição dúctil frágil e diminuição no valor máximo de resistência ao impacto para temperaturas em que a fratura é dúctil (45). 5. FÓSFORO. O fósforo é um elemento importante em ferros fundidos nodulares, sendo considerada contaminação. Na maioria das aplicações deve-se limitar sua concentração a 0,06%, tendo-se situações em que níveis de até 0,08% P são tolerados, desde que não se verifique formação de steadita na microestrutura (18, 40).

7 Em ferros fundidos, teores crescentes de fósforo diminuem o teor de carbono referente ao eutético, sendo sua contribuição igual a do silício, correspondendo a cerca de 1/3 do carbono. Na solidificação de ferros fundidos nodulares, o fósforo é fortemente rejeitado para o líquido durante o crescimento das células eutéticas, possuindo, portanto coeficiente de partição menor do que 1,0. A segregação desse elemento é muito mais intensa que a correspondente aos elementos que promovem a formação de carbonetos, como manganês, cromo e titânio. A concentração de fósforo na austenita, durante a solidificação, é cerca de 1/5 da porcentagem contida no líquido residual. A segregação de fósforo, que sempre se verifica em ferros fundidos nodulares, é mais crítica em peças que apresentam seções com maior espessura. Para teores mais elevadas de fósforo após ter-se completado a reação eutética, com a formação de austenita e grafita nos ferros fundidos nodulares, resta ainda uma fase líquida em que a concentração desse elemento é ainda, podendo assim ocorrer a formação do eutético ternário Fe-C-P, que se verifica a cerca de 955 C, com a formação de austenita, fosfeto de ferro e grafita ou carbonetos (40). Na transformação eutetóide, o acréscimo do teor de fósforo causa elevação das temperaturas AT e A1, promovendo a formação de perlita na microestrutura (45). A influência do aumento da concentração desse elemento nas propriedades mecânicas em ferros fundidos nodulares é a elevação do limite de resistência à tração, do limite de escoamento e da dureza e diminuição do alongamento. O fósforo é ainda considerado como contaminação em ferros fundidos nodulares porque teores mais elevados desse elemento causam aumento da temperatura de transição dúctil frágil (41 44), razão pela qual em aplicações em que se necessitam maiores resistências ao impacto a baixas temperaturas devem-se utilizar porcentagens de fósforo menores que 0,02 a 0,03%. A concentração de fósforo no ferro base para a produção de nodular é também crítica quando os componentes a serem fabricados serão posteriormente galvanizados ou submetidos a tratamento térmico de têmpera e revestimento. Nessas situações, quando o material é resfriado após ter sido mantido em temperaturas da ordem de 450 C, na galvanização, ou entre 350 e 550 C, no caso do revenimento, verifica-se fragilização, com diminuição das propriedades mecânicas à tração e da resistência ao impacto. A fragilifazação pode ser constatada examinandose a fratura dos corpos-de-prova, que se apresenta clara e brilhante, evidenciando esse tipo de ruptura. 6. OXIGÊNIO. A porcentagem de oxigênio dissolvido no banho para a fabricação de ferro fundido nodular depende das matérias-primas empregadas, da composição química base, dos equipamentos de fusão e das características de desgaste dos refratários utilizados, tanto nos fornos de fusão e de vazamento, quanto nas panelas de transferência, tratamento e vazamento. Para a fabricação de ferros fundidos nodulares deve-se utilizar o menor teor possível de oxigênio, uma vez que os elementos nodulizantes são excelentes desoxidantes e, dessa forma, se a concentração desse elemento for elevada haverá um aumento no consumo do agente utilizado no tratamento (7). O oxigênio tem também importante influência na inoculação. Embora as concentrações totais desse elemento, que corresponde à soma dos teores de oxigênio dissolvido (2 a 20 ppm para temperaturas de até cerca de 1520 C) e combinado seja pequena (geralmente entre 60 a 150 ppm) (52), sua influência é atribuída à formação de óxidos e / ou silicatos que podem atuar como centros efetivos para a nucleação da grafita na solidificação.

8 7. ENXOFRE. Os elementos que promovem o crescimento esferoidal da grafita em ferros fundidos são excelentes dessulfurante, razão pela qual o teor de enxofre do ferro base para a produção de ferro fundido nodular deve ser o menor possível, para se diminuir as perdas do elemento nodulizantes por esse mecanismo. Para teores mais elevados de enxofre do metal base é necessário efetuar maiores adições de liga nodulizante, tendo-se, portanto elevação de custo, além da maior tendência à formação de drosses (28 34). Por outro lado, para concentração inicial de enxofre muito baixa seria constatada maior tendência à formação de carbonetos, embora os resultados obtidos em algumas fundições que operam com até 0,003% S evidenciem a possibilidade de se obter com estrutura isenta desse microconstituinte. Na produção de ferros fundidos nodulares pode-se utilizar forno cubilô como equipamento de fusão. Para fornos cubilô com revestimento ácido, resultam, dependendo de carga metálica e, principalmente, do coque empregado, teores de enxofre situados entre 0,12 a 0,20%, enquanto para revestimento básico a concentração desse elemento é muito menor, da ordem de 0,050 a 0,080%. Em alguns processos de fabricação de ferro fundido nodular em que se utiliza magnésio puro, ou ainda composto ou ligas com elevados teores desse elemento, como o conversor, Pont - a-mouson, panela dotada de grelha, panela rotativa, imersão por sino ou injeção de arame (2), pode-se efetuar, simultaneamente a dessulfuração e a nodulização, sendo, portanto, nesses casos, possível utilizar composições base com teores de enxofre de até cerca de 0,20%. Empregando-se outros processos de nodulização em que os agentes de tratamento contêm menores teores de magnésio (até cerca de 10%), ou cério ou outras terras raras, e o ferro base para a produção de fero fundido nodular contém teores de enxofre elevados (por exemplo, 5 S > 0,050) efetua-se o tratamento de dessulfuração antes da adição do agente nodulizante (2). Essa situação é verificada com a utilização de processo como simples transferência sanduíche, panela com tampa ( tundish cover ), nodulização no molde ( in mold ), Flotret, Vortex, TIP, T- Knock, ou ainda injeção de arame. A dessulfuração, dependendo de sua eficiência pode resultar em teores de enxofre no metal base inferiores a 0,010% permitindo assim uma acentuada redução no consumo do agente nodulizante, coma a vantagem adicional de permitir que se empreguem menores porcentagens residuais de magnésio para se obter estruturas em que a grafita se apresente exclusivamente na forma esferoidal e diminuindo a tendência de que ocorra a formação de partículas de escória e drosse (31, 33, 34). Os agentes dessulfurantes utilizados para ferro fundido são compostos de sódio (Na 2 CO 3 e NaOH) (54-56), de cálcio (CaCO 3, CaO, CaC 2, Ca-Si) (53-65), de magnésio (Mg puro, ligas Fe-Si- Mg e coque impregnado de magnésio) (54, 66, 67) e de terras-raras (liga mischmetal e silicieto de terras-raras) (54), que basicamente operam de um mesmo modo, através da transferência do enxofre do metal líquido para a escória que se forma no tratamento. Esse processo pode ser descrito, de acordo com as teorias iônicas das escórias, segundo as equações químicas (53) : [S] + (O 2- ) (S 2- ) + [0] [1] [S] + [C] + (O 2- ) (S 2- ) + {CO} [2] [S] + (CO 2- ) (S 2- ) + ½ {O 2 } [3]

9 Em que: [X] elemento X dissolvido no metal líquido (Y v ) ânion Y dissolvido na escorai v valência {Z 2 } gás Z Os compostos de sódio foram por muitos tempos utilizados para a dessulfuração, notadamente para a produção de tubos de ferro fundido cinzento em que o teor máximo especificado de enxofre era de 0,10% (54). Empregando-se compostos de sódio, a dessulfuração se processa através do Na 2 O, que pode ser obtido pela decomposição do carboneto ou do hidróxido (soda caustica), ocorrendo a formação de gases (CO 2 no caso do NaCO 3 e H 2 e H 2 O no caso do Na OH) que promovem a agitação do banho, contribuindo para aumentar a velocidade do tratamento. O agente dessulfurante mais usado nesses casos era o carbonato de sódio (55). Os agentes dessulfurantes contendo cálcio (notadamente CaO e CaC 2 ) são os mais utilizados industrialmente para o tratamento de ferros fundidos. A reação de dessulfuração utilizando compostos de cálcio pode ser representada por (53, 57) : (CaO) + [S] (Ca S) + ½ {O 2 } [4] A constante de equilíbrio para essa reação é dada pela seguinte expressão: Portanto, tem-se: Onde: ½ K [4] = a CaS x P O2. a CaO x f S x %S ½ %S = a CaS x p O2. [A]. K [4] x a CaO x f S %S teor de enxofre em equilíbrio no metal líquido; a Cas atividade raoultiana de CaS na escória; p O2 pressão parcial de oxigênio na atmosfera; a CaO atividade raoultina de CaO na escória; f S coeficiente de atividade henriano do enxofre no metal líquido. Portanto, o teor de enxofre no banho metálico obtido na dessulfuração será tanto menor quanto menores os valores de a CaS e p O2 e quanto maiores forem K [4], a CaO e f S. Utilizando dados da literatura Cavallante (57) calculou o teor de enxofre em equilíbrio com uma escória de CaC 2, a 1527 C (1800 K) para um banho 2,5% C e 1% Si, obtendo, como resultado, 0,0003% (3 ppm). Mencionou ser obtido teoricamente, destacando que na prática, em decorrência da cinética de reação, o teor final resultante é mais elevado, o que evidencia a importância de velocidade de reação.

10 Desta forma, considerando-se a equação [A], os fatores que contribuem para se obter uma máxima eficiência de dessulfuração em ferros fundidos são (3) : Alta temperatura por razões da cinética da reação, embora sob o aspecto termodinâmico a elevação da temperatura cause a diminuição do valor da constante de equilíbrio K [4]. Portanto, o efeito cinético é mais importante para a dessulfuração que o termodinâmico. Elevado teor de carbono no ferro fundido por causar aumento de f S. Elevado teor de silício no ferro fundido por elevar f S. Baixa concentração de FeO na escória por aumentar a CaO. Baixo teor de SiO 2 na escória (alta basicidade) por elevado a CaO. Baixo índice de oxidação na atmosfera do forno por diminuir p O2. A cal (CaO) apresenta menor custo, mas com seu uso é mais difícil obter, para pequenos intervalos de tempo, baixos teores finais de enxofre e elevada reprodutibilidade de resultado em comparação com o carbeto de cálcio (CaC 2 ) (56). Vários processos foram utilizados para dessulfuração de ferro gusa e ferros fundidos empregando cal e carbeto de cálcio. O método de injeção de finos de carbeto de cálcio foi um dos primeiros usados para ferro fundido, empregando-se uma corrente de nitrogênio, por meio de uma lança de carbono, ou de aço revestido com refratário, dotada de abertura na sua extremidade que fica posicionada junto ao fundo das panelas de tratamento (54). O processo Gazal é um dos mais usados para dessulfuração de ferros fundidos, empregando uma panela dotada, em seu fundo, de um plug poroso (sendo por isso também conhecido por essa denominação) através da qual se efetua a injeção de um gás para promover a agitação do banho metálico, proporcionando assim melhor contato entre o metal líquido e o agente dessulfurante (CaC 2 ou mistura cal fluorita) (53 58, 59). O gás para agitação utilizado no processo pode ser nitrogênio, ar seco ou CO 2, sendo o primeiro o mais empregado, por resultar em menor consumo dos plugs (53). Nesse processo empregando-se 1,0 a 1,5% de CaC 2 pode-se obter teores de enxofre da ordem de 0,005%, a partir de um material base com cerca de 0,100% S (60). O carbeto de cálcio é um agente dessulfurante eficaz; podendo causar problema de poluição ambiental, razão pela qual tem havido também interesse na utilização de mistura cal fluorita, que podem ser empregadas da mesma forma que o carbeto de cálcio em quantidades aproximadamente duas vezes maior no processo Gazal (56, 60 62). As principais vantagens referentes à utilização dessa misturas são custo muito menor (cerca de 50%) que o do carbeto de cálcio, não se necessitando condições particulares de armazenamento, além de se ter ambiente seco (com o uso de carbeto de cálcio há necessidade de cuidados especiais, em virtude da possibilidade de formação de acetileno), ainda, não havendo problemas de poluição ambiental, e nem de deposição da escória formada, como ocorre no caso do uso de carbeto de cálcio. As características da mistura são o uso de 95% de finos de cal (0 6 mm) e 5% de fluorita em pó (< 0,1 m), com 95% de pureza, sendo a quantidade dessa mistura a ser utilizada, como já citado, cerca de duas vezes maior que a empregada de carbeto de cálcio para se obter, a partir de uma dada condição (temperatura, quantidade de metal a ser tratada, composição inicial), um mesmo teor final de enxofre (56). Um aspecto importante a ser observada com o uso de mistura cal fluorita para dessulfuração é o de se evitar a presença de escória ácida, proveniente do forno de fusão, pois esta reduz a eficiência obtida. É recomendável, inclusive, o uso de produtos aglomeradores de escória, que devem ser adicionados antes de se proceder à dessulfuração, para evitar esse

11 inconveniente. Deve-se mencionar ainda que a estocagem deva ser, efetuada em ambiente seco, pois a presença de água causa a hidratação de cal, com liberação de calor, reduzindo a eficiência da dessulfuração (56). Pode-se utilizar também injeção de Ca-Si para se efetuar a dessulfuração (64, 65), ou ainda finos de agentes nodulizantes, como ligas a base de magnésio, ou de cério ou ouros metais do grupo das terras raras (54, 66, 67). Em síntese, para a produção de ferros fundidos nodulares devem-se utilizar composições base com baixo teor de enxofre (menor que 0,020%, preferencialmente inferior a 0,10%), para se diminuir o consumo de agentes nodulizantes no processo e ter-se menores custos de produção. Dentre as varias alternativas disponíveis para a dessulfuração de feros fundidos, tanto no que se refere a agentes dessulfurantes quanto a processos, tem encontrão maior aceitação o método de plug-poroso (intermitente ou conjunto), por possibilitar boas condições de operação em diferentes escalas de produção, com custo de investimento relativamente pequeno, prática operacional simples e segura, sendo o carbeto de cálcio e as misturas cal (95%) + fluorita (5%), mais recentemente desenvolvidos, os agentes mais adequados. 8. ELEMENTOS DELETERIOS. Elementos, como chumbo, bismuto, arsênio, telúrio, antimônio e titânio podem causar a formação de grafita degenerada na microestrutura de ferros fundidos nodulares, mesmo quando presente em teores residuais bastante pequenos (68,69), resultando em valores de propriedade mecânicas inferiores às especificações. A influência desses elementos na forma da grafita pode ser neutralizada efetuando-se adições de cério (0,005 a 0,020%), ou outros metais do grupo das terras raras (70 73). Essa é a principal razão da presença de terras raras na composição química de ligas nodulizantes Fe-Si- Mg, Ni-Mg e Cu- Mg Deve-se destacar ainda que os elementos deletérios tenham efeito cumulativo. Assim, no caso de ocorrência simultânea de mais de um desses elementos, as concentrações desses elementos que podem causar degenerescência da grafita nodular são ainda menores. Serão a seguir apresentados alguns resultados citados na literatura referente a influência da contaminação individual por elementos deletérios, e ferro fundido nodular. Chumbo. O chumbo atuaria como elemento deletério à morfologia da grafita em ferros fundidos nodulares a partir de teores superiores a 90 ppm (0,009%) (70, 74, 75), ou ainda, segundo Tybulczuk (75), a partir de 20 a 40 ppm Pb ter-se-ia a presença de grafita lamelar na estrutura. O efeito de pequenos teores de chumbo causando degenerescência da grafita esferoidal é utilizado como uma das maneiras de se obter ferro fundido com grafita compacta, quando associado a teores residuais de magnésio insuficientes para fabricar ferro fundido nodular. Assim, empregando-se materiais de composição eutética, contendo 0,013 a 0,020% de enxofre e utilizando ligas Fe-Si-Mg (8-10% Mg, 0,6-1% TR, 1-1,5% Ca), verificou-se que combinações de teores de 50 a 120 ppm Pb e 0,010 0,017% Mg causaram a obtenção de estruturas com predominância de grafita compacta (76).

12 Bismuto. No caso do bismuto, seria observado efeito prejudicial à morfologia nodular da grafita a partir de teores da ordem de 30 ppm (0,003%), enquanto a partira de 60 ppm obter-se-ia ferro fundido cinzento (70, 75, 77). Pan e Chen (78) estudaram a influência de adições de bismuto de 15 a 60 ppm para ferro fundidos nodulares hipoeutéticos, utilizando corpos de prova cilíndricos de 30 e 60 mm de diâmetro, isto é uma situação correspondente à fabricação de peça espessa em ferro fundido nodular. No tratamento de nodulização foi empregada uma liga Ni Mg (15% Mg), insenta de terras raras. Para adições de 15 e 30 ppm de bismuto esses autores observaram percentagens de grafita nodular situadas entre cerca de 70 e 85%, enquanto para 45 e 60 ppm Bi esses resultados foram de 45 a 60% (78). Esse efeito é mostrado na figura 3. 0,00 % Bi 0,0015 % Bi 0,0030 % Bi 0,0045 % Bi 0,0060 % Bi Figura 3 Microestrutura com ataque de ferros fundidos nodulares hipoeutéticos com diferentes adições de bismuto, Nital 60 X (78).

13 Para verificar a influência de terras raras na neutralização do efeito prejudicial do bismuto nesses ferros fundidos nodulares, os autores citados (78) empregaram a adição de 45 ppm Bi e relação % Ce % Bi de 0,8, 1,1 e 1,4, utilizando uma liga Fe Si Ce, tendo constatado, para três níveis de cério adicionados, a obtenção de mais de 80% de grafita esferoidal na estrutura. Para 60 ppm Bi adicionado e relação %Ce / %Bi de 1,1 verificaram-se resultados acima de 70% de grafita na estrutura, como mostra a figura 4. 0,0045 % Bi 0,0045 % Bi, Ce / Bi = 0,8. 0,0045 % Bi, Ce / Bi = 1,1. 0,0045 % Bi, Ce / Bi = 1,4. Figura 4 Microestrutura com ataque de ferros fundidos nodulares hipoeutéticos com adição de bismuto de 0,045% e diferentes relações % Ce / % Bi, Nital 60 X (78). Arsênio. O arsênio segundo Morrogh (70) e Zhabotinski et al (74), apresentaria efeito prejudicial em ferros fundidos nodulares a partir de cerca de 30 a 49 ppm (0,003 0,0% As), embora Tibulczuk et al (75) admitam que esse limite, seja cerca de dez vazes maior, também resultado, a exemplo do chumbo e do bismuto, em formação de grafita lamela fina. Telúrio. Teores residuais de telúrio entre 40 e 100 ppm promoveriam a ocorrência de grafita lamelar em ferros fundidos nodulares (75). Antimônio. O antimônio, quando presente em concentrações superiores a 50 a 100 ppm (0,0058 a 0,010% Sb) causariam degenerescência da grafita esferoidal (71, 75, 79).

14 Pan e Chen (78) estudaram também a influência de adição de antimônio de 40 a 160 ppm, empregando as mesmas condições experimentais já mencionadas. Para adições de 40 a 80 ppm Sb esses autores obtiveram, em geral, mais de 80% de grafita esferoidal na microestrutura. Para 100 ppm Sb a menor incidência de grafita nodular foi de 70% enquanto para 160 ppm Sb resultaram de 55 a 85% desse tipo de grafita na estrutura corresponde às diferentes posições examinadas nos corpos-de-prova. A figura 5 ilustra esses efeitos. 0,00% Sb 0,004% Sb 0,006% Sb 0,008% Sb 0,010% Sb 0,016% Sb Figura 5 Microestruturas com ataque de ferros fundidos nodulares hipoeutéticos com diferentes adições de antimônio, Nital 60 X (78). Visando neutralizar a influência do antimônio, Pan e Chen (78) utilizaram a adição de 160 ppm Sb e relações %Ce / %Sb de 0,4, 0,9 e 1,4, tendo verificado, para as três condições. A obtenção de mais de 80% de grafita nodular na estrutura correspondente as diferentes posições dos corpos-de-prova. A figura 6 apresenta as microestruturas obtidas.

15 0,016% Sb 0,016% Sb, Ce / Sb = 0,4. m 0,016% Sb, Ce / Sb = 0,9. 0,016% Sb, Ce / Sb = 1,4. Figura 6 Microestruturas com ataque de ferros fundidos nodulares de composição hipoeutéticas com adição de antimônio de 0,016% e diferentes relações %Ce / %Sb, Nital 60 X (78). Teores mais elevados, correspondentes a adições de 250 a 500 ppm Sb, causaram a formação de uma grafita do tipo estrela (80). Outro tipo de morfologia de grafita observada em materiais contendo maiores porcentagens de antimônio é a em que se forma uma espécie de anel em torno dos nódulos, como mostra a figura 7. Figura 7 Micrografia de ferros fundidos contendo 0,015% Mg e 0,29% Sb, sem ataque e com ataque de Nital, apresentando anéis de grafita em torno dos nódulos, 100 x (81).

16 Titânio. O titânio, quando presente em teores superiores à faixa 500 a 1000 ppm (0,05 a 0,10% Ti), causaria a degeneração da grafita esferoidal nos ferros fundidos nodulares (75). Esse elemento tendência ainda a acentuar o efeito prejudicial de outros elementos deletérios à morfologia da grafita esferoidal em presença simultânea (75). A figura 8 apresenta a micrografia de um fundido contendo magnésio e titânio. Figura 8 Micrografia de um ferro fundido contendo 0,050% Mg e 0,17% Ti. Nital, 250 x (75). Karsay (82) mencionou que o titânio apresentaria um comportamento diferente dos demais elementos deletérios em ferros fundidos nodulares. Assim, como já citado, arsênio, telúrio, chumbo e bismuto tenderiam a promover a formação de grafita lamelar, enquanto no caso titânio haveria um efeito combinado com o magnésio de tal modo que para maiores teores de titânio, seriam necessários teores mais elevados de magnésio para a obtenção de grafita de forma exclusivamente esferoidal, como mostra a figura 9. Figura 9 Efeitos dos teores de magnésio e titânio na formação de grafita nodular em ferros fundidos (82). Deve-se citar ainda que o exemplo do chumbo e de outros elementos deletérios pode-se utilizar adições conjuntas de magnésio e titânio para a fabricação de ferro fundido com grafita compacta, sendo esta associação a mais empregada industrialmente para a fabricação dessas ligas.

17 As variações entre os máximos teores de elemento deletério que podem causar a degenerescência da grafita esferoidal em ferros fundidos encontradas pelo diversos autores podem estar relacionadas às diferentes condições avaliadas, quanto a composição química base, teores residual de elementos nodulizantes, velocidade de esfriamento, processo de nodulização e de inoculação que, em última análise, influenciam a segregação desses elementos durante a solidificação. De qualquer modo, observa-se que o efeito de teores residuais de elementos deletérios à morfologia esferoidal da grafita é extremamente prejudicial na fabricação de ferros fundidos nodulares, devendo-se efetuar adições de cério ou outros metais do grupo de terras raras no tratamento de nodulização, par neutralizar essas impurezas. Dessa forma, é recomendável o controle periódico dos teores de chumbo, bismuto, arsênio, telúrio, antimônio e titânio no metal líquido, bem como a porcentagem residual de terras raras, para se evitar a ocorrência de grafita degenerada na estrutura causando refugo de peças. 9. CONSIDERAÇÕES FINAIS. A composição química é uma variável de processo importante na fabricação de ferros fundidos nodulares, destacando-se as seguintes recomendações principais: 1. Utilizando-se magnésio como agentes nodulizante, devem-se empregar teores residuais de 0,03 a 0,05%. No caso de terras raras, a concentração final de cério deve se situar entre 0,02 a 0,04% enquanto para agentes contendo cálcio, as porcentagens residuais devem ser de 0,02 a 0,04%. 2. O carbono equivalente, para a maioria das aplicações, deve estar no intervalo de 4,3 a 4,7% com teores de carbono de 3,5 a 3,8%. Para peças de pequena espessura (e< 10 mm) o carbono equivalente deveria ser de 4,4 a 4,7%, enquanto para seções espessas (e> 50 mm) seria de 4,2 a 4,4%, com teores de silício de 2,5 a 2,8%. A definição dos teores de carbono, silício e carbono equivalente a serem utilizadas em uma determinada peça estão ainda condicionadas à classe de ferro fundido nodular que é especificada. 3. O manganês geralmente situa-se no intervalo 0,1 a 1,2%. Para a fabricação de materiais com matriz ferrítica deve-se utilizar % Mn < 0,25, enquanto os nodulares ferríticos - perlíticos e predominantemente perlíticos podem apresentar concentrações desse elemento entre 0,3 a 1,2%. 4. O fósforo é considerado contaminação para Ferro fundido nodulares, devendo-se limitar sua concentração a 0,06%, tendo-se situações em que níveis de até 0,08% P podem ser empregados, desde que não se verifique formação de steadita na microestrutura. 5. Para a produção de ferros fundidos nodulares com requisitos especiais de resistência à fadiga ou ao impacto têm-se maiores restrições quanto as concentrações de carbono, silício, manganês, fósforo e também de elementos de liga. 6. As composições base para fabricação de ferro fundido nodular devem apresentar teor de enxofre mais baixo possível (menor que 0,020%, preferencialmente inferior a 0,010%). A dessulfuração pode ser realizada com agentes contendo sódio, cálcio, magnésio ou terras raras. O processo mais empregado é o plug-poroso (Gazal), intermitente ou continuo, utilizando carbeto de cálcio ou mistura cal (95%) + fluorita (5%). 7. As diferentes indicações relativas às concentrações de elementos deletérios que podem causar degenerescência da grafita em ferros fundidos nodulares devem ter como causa as diferentes condições experimentais utilizadas, principalmente quanto à composição química base, teor residual de elementos nodulizantes (com destaque para os metais do grupo das terras raras), velocidade de esfriamento. Processos de nodulização e de inoculação.

18 Tendo-se presença de um único elemento deletério, os menores teores a partir dos quais tem-se verificado a ocorrência de formas degeneradas de grafita em ferros fundidos nodulares seriam os seguintes: % Pb > 20 ppm % Bi > 30 ppm % As > 30 ppm % Te > 40 ppm % Sb > 50 ppm % Ti > 500 ppm Ao se verificar a ocorrência de mais de um desses elementos as concentrações que podem causar degenerescência da grafita são ainda menores, porque a influência é cumulativa. Adições de cério (0,005 a 0,020%), ou outros metais do grupo das terras raras podem neutralizar o efeito prejudicial desses elementos. 10. BIBLIOGRAFIA. (1) 33 rd Census of World Casting production Modem Casting, V. 89, n. 12, 40-1, dez (2) SOUZA SANTOS, A. B. de, BECKERT. E. A., FENILLI, R. e PIESKE, A. Processos de nodulização de ferros fundidos, Metalurgia ABM, V. 39, n. 311, p , out (3) SOUZA SANTOS, A. B. de Um processo de nodulização de ferros fundidos. Tese de Doutoramento apresentada à Escola Politécnica da Universidade de São Paulo, São Paulo, 275 p (4) SOUZA SANTOS. A. B. de, e PIESKE, A. Alguns aspectos referentes à adição de magnésio em ferros fundidos nodulares. Mineração e Metalurgia, V. 49, n. 470, p. 32-8, nov (5) SOUZA SANTOS, A. B. de, e PIESKE, A. Rendimento de adição de magnésio para fabricação de ferros fundidos nodulares 3º Congresso Brasileiro de Fundição. Associação Brasileira de Fundição ABIFA, São Paulo, out (6) GUESSER, W. L., GUERDES, L. C., DURAN, P. V. e SOUZA SANTOS, A. B. de Análise comparativa entre processos de nodulização. Seminário Inoculação e Nodulização de Ferros Fundidos. Associação Brasileira de Metalurgia e Materiais ABM, São Paulo. SP, 21 p., (7) SOUZA SANTOS, A. B. de, e CASTELLO BRANCO. C. H. Metalurgia dos Ferros Fundidos Cinzentos e Nodulares, IPT, São Paulo, 3ª. Edição, 205 p.,1989. (8) BARTON, R. Comunicação pessoal. Birmingham, abr (9) DE SY, A. L. Inoculacion et graphite dês fontes grises. International Foundry Congress, Paris, out (10) MERCHANT, H. D. Solidification of cast iron A review of literature. Recent Resesrch on Cast Iron Gordon & Breach, London, (11) ADEY, C. F. Das veredelte graphitentektikum mit kugeligem, Sphärolithischem graphit. Giesserei, V. 33, n. 3, p , set (12) FAIVRE, R., VIGNERON, B. e DEGROIS, M. Influence of carbon and silicon content of formation and morphology of graphite in cast Fe-C-Si alloys. Cast Metals Research Journal, V. 10, n. 2, p , jun

19 (13) THOMAS, P. M. E GRUZLESKI, J. E. Formation of nodules in cast iron without addition of a nodulizer. Journal of the Iron and Steel Institue, V. 211, n. 6, p , jun (14) LARSON, W. wt al, - General Motors describes Centrasteel. Modern Casting, V. 36, n. 3, p , mar (15) SOUZA SANTOS, A. B. de, CASTELLO BRANCO. C. H. e CAVALLANTE, F. L., - Novas ligas Fe-C-Al-Si desenvolvidas no IPT, Metalurgia ABM, V. 32, n. 218, p. 25-8, jan (16) SOUZA SANTOS, A. B. de, CASTELLO BRANCO. C. H. Estudo de algumas características das ligas Fe-C-Al-Si com grafita nodular. Congresso Latino Americano de Fundição, ILAFA, V. I., Rio de Janeiro, 20 p., nov (17) LOPER JR., C. R. e HEINE, R. W. The effect of processing variables on ductile iron quality. AFS Trasnsactions, V. 73, p , (18) Base iron preparation for ductile iron. Modern Casting, V. 76, n. 5, p. 37-8, (19) SOUZA SANTOS, A. B. de Microestrutura de ferros fundidos nodulares esfriados lentamente. Dissertação de Mestrado, Escola Politécnica da Universidade de São Paulo, São Paulo, 188 p (20) HEINE, R. W. Influence of flotation on some foundry proprieties of ductile iron. AFS Transactions, V. 99, p , (21) ALBERTIN, E. et al Flutuação de grafita em ferros fundidos nodulares. Metalurgia ABM, V. 33, n. 240,681-6, nov (22) REESMAN, R. W. e LOPER Jr., C. R. Heavy section ductile iron as affected by certain processing variables. AFS Transactions, V. 75, p. 1-9, (23) SOUZA SANTOS, A. B. de, e ALBERTIN, E. Defeitos em peças de secção espessa de ferro fundido nodular. Fundição e Matérias-Primas, n. 7, p , mai (24) SOUZA SANTOS, A. B. de, e ALBERTIN, E. - Microestruturas e propriedades mecânicas de ferros fundidos nodulares esfriados com baixa velocidade. Metalurgia ABM, V. 33, n. 231, p , fev (25) ALBERTINI, E., SOUZA SANTOS, A. B. de, E COSTA, P. H. C. efeitos do teor de magnésio em ferros fundidos grafíticos, Metalurgia ABM, V. 34, n. 253, p , (26) DURAN, P. V., GUEDES, L. C., GUESSER, W. L., PIESKE, A. e SOUZA SANTOS, A. B. de Defeitos de Microestrutura Relacionados à Solidificação dos Ferros Fundidos Nodulares. Seminário Inoculação e Nodulização de Feros Fundidos. Associação Brasileira de Metalurgia e Materiais ABM, São Paulo, 18 p., (27) GOODRICH, G. M. Cast iron microstructure anomalies and their cause. AFS Transactions, V. 105, p , (28) GOODRICH, G. M. Ductile iron casting defects. Ductile Iron Handbook. American Foundrymen s Society, Des Plaines, p , (29) FALLON, M. J. Experiences in the manufacture of ductile iron. Comgresso Nacional de Fundição CONAF 95. Associação Brasileira de Fundição ABIFA, São Paulo, p , set (30) LATONA, M. C. et al Factors influencing dross formation in ductile cast iron AFS Transactions, V. 92, p , (31) SOUZA SANTOS, A. B. de Formação de escória e drosses em ferros fundidos nodulares. VII Congresso Nacional de Fundição CONAF 97, Associação Brasileira de Fundição ABIFA, São Paulo, 23 p., set (50) SUGIYAMA, N. et al Influência do manganês da produção de ferro fundido nodular Metalurgia ABM, V. 28, n. 171, p fev

20 (51) LALICH, M. J. e LOPRE JR., C. R. Efrrects of pearlite promoting elements on the kinetic of the eutectic transformation in ductile cast irons. AFS Transactions, V. 81, p , (52) HEINE, R. W. Major aspects of processing cast irons. AFS Transactions, V. 102, , (53) SUGYAMA, N., SOUZA SANTOS, A. B. de, CAVALLANTE, F. L. e PIESKE, A. Dessulfuração de ferros fundidos por CaC 2. Metalurgia ABM, V. 29, n. 192, p ,1977. (54) BRADASCHIA, C. Dessulfuração do ferro fundido para fins especiais. ABM Boletim, V. 15, n. 57, p , (55) CIOW, S. C. The effect and control of sulfur in iron. AFS Transactions, V. 79, p , (56) COON, P. M. The development of industrial application of lime fluorspar mixture for the dessulfurization of cast iron. AFS Transactions, V. 80, n. 107, p , (57) CAVALLANTE, F. L. Dessulfuração de ferros fundidos. Metalurgia ABM, V. 29, M. 187, p , (58) TROJAN, P. K. et al Sulfur removal from liquid high carbon iron by various slags and by calcium carbide. AFS transactions, V. 80, p , (59) FOULARD, J. GALEY, J., LUTGEN, N. e TOMAN, W. Treatment of molten metal by agitation with neutral purge gases (Gazal Process). AFS International Cast Metals Journal, p , set (60) BARTON, R. Recent developments in the production of nodular (spheroidal graphite) iron. The British Foundryman, V. 70, n. 6, , (61) HUGHES, I. C. H. The developing technology of iron founding some recent contributions and opportunities. The Bristish Foundryman, V. 74, n. 11, p , (62) COON, P. M. Burnt lime as a dessulphuriring agent in the porous plug ladle. BCIRA Report, n. 1328, p , jan (63) COON, P. M. Developments in the use of burnt lime for the porous plug desulphurization of cast iron. BCIRA Report, n. 1345, p , jul (64) GALVÃO, C. R., GUDIS. L. L. de, PARISH, J. C. G. Equipamento para injeção profundo de pós reativos em panela de aço; desenvolvimento IPT COSIPA. 38. Congresso Anual da ABM, São Paulo, 20 p., jul (65) SOUZA, H. R. de Desenvolvimento de processo de injeção de cálcio silício em panela de aço exemplo de interação entre Instituto de Pesquisa e Empresa. 38º Congresso Anual da ABM, São Paulo, p , jul (66) GARCIA DE O, A. M. P. e BAPTISTA, L. A. S. Utilização da liga Fe-SiMg-Ca-TR como dessulfurante de gusa. Metalurgia ABM, V. 33, n. 240 p , nov (67) SILVA, P., ACCIARITO FILHO, E. SEGRETO, A., LELLIS, L. E. P. e CHAVES, C. A. Dessulfuração de gusa por imersão de mag-coke em carro torpedo. Metalurgia ABM, V. 35, n. 258,p , maio (68) SOUZA SANTOS, A. B. de, SUGIYAMA, N. e OIESKE, A. Efeitos de algumas variáveis de processo na estrutura e propriedades de ferro fundido nodular. Metalurgia ABM, V. 30, n. 201, p , ago (69) KARSAY, S. I. Spheroidizing. Ductile Iron Production practices. American Foundrymen s Society, Des Plaines, p , (70) MORROGH, H. Influence of some residual elements and their neutralization in magnesium treatment nodular cast iron. AFS Transactions, V. 60, p , (71) APPENDINO, P. et al. Grafitizzazione in presenza di antimonio di ghise sferoidali elaborate com leghe contenenti cerio. La Fonderia Italiana, V. 10, p , 1982.

FERROS FUNDIDOS. Materiais Metálicos Profa.Dr. Lauralice Canale

FERROS FUNDIDOS. Materiais Metálicos Profa.Dr. Lauralice Canale FERROS FUNDIDOS Materiais Metálicos Profa.Dr. Lauralice Canale Ferros Fundidos - Introdução - Ligas ferrosas contendo 1,7 a 4,0% C e 0,5 a 3,5% Si - Composição torna excelente para fundição (fluidez) Utilizados

Leia mais

PRODUÇÃO DE FERRO E AÇO FERROS FUNDIDOS. Ciência e Engenharia dos Materiais I Profa. Dra. Lauralice Canale

PRODUÇÃO DE FERRO E AÇO FERROS FUNDIDOS. Ciência e Engenharia dos Materiais I Profa. Dra. Lauralice Canale PRODUÇÃO DE FERRO E AÇO FERROS FUNDIDOS Ciência e Engenharia dos Materiais I Profa. Dra. Lauralice Canale Recursos - Minerais Recursos - Minerais Recursos - Minerais Recursos - Minerais Recursos - Minerais

Leia mais

INOCULAÇÃO EM FERROS FUNDIDOS CINZENTOS

INOCULAÇÃO EM FERROS FUNDIDOS CINZENTOS INOCULAÇÃO EM FERROS FUNDIDOS CINZENTOS O objetivo deste trabalho é a de transmitir conhecimentos teóricos bastante superficiais sobre inoculação visando apenas armá-lo para um diálogo na promoção de vendas

Leia mais

FERROS FUNDIDOS NODULARES. Ferros fundidos nodulares

FERROS FUNDIDOS NODULARES. Ferros fundidos nodulares FERROS FUNDIDOS NODULARES Ferros fundidos nodulares Cinzentos vs. nodulares Cinzento Nodular CE 3,5 a 4,4 4,0 a 4,8 Si 1,5 a 2,4 2 a 3,5 (5!) Grafita Lamelar, A Nodular defeitos D, B, C desvios da nodular

Leia mais

TECNOLOGIA DOS MATERIAIS

TECNOLOGIA DOS MATERIAIS TECNOLOGIA DOS MATERIAIS Aula 5: Aços e Ferros Fundidos Produção Feito de Elementos de Liga Ferros Fundidos CEPEP - Escola Técnica Prof.: Aços e Ferros Fundidos O Ferro é o metal mais utilizado pelo homem.

Leia mais

Disciplina : Metalurgia Física- MFI Professores: Guilherme Ourique Verran - Dr. Eng. Metalúrgica. Aula 05 - Solidificação e Equilíbrio

Disciplina : Metalurgia Física- MFI Professores: Guilherme Ourique Verran - Dr. Eng. Metalúrgica. Aula 05 - Solidificação e Equilíbrio Disciplina : - MFI Professores: Guilherme Ourique Verran - Dr. Eng. Metalúrgica Aula 05 - Solidificação e Equilíbrio Desenvolvimento das Microestruturas sob condições de Equilíbrio e de Não Equilíbrio

Leia mais

O teor de C (>2%) está acima do teor que pode ser retido em solução sólida na austenita. " Consequência

O teor de C (>2%) está acima do teor que pode ser retido em solução sólida na austenita.  Consequência 1 FERROS FUNDIDOS - FOFOS É uma liga de Fe-C-Si É considerada uma liga ternária devido a presença do Si Os teores de Si podem ser maiores que o do próprio C O Si influi muito nas propriedades dos fofos

Leia mais

DROSSES EM FERRO FUNDIDO NODULAR.

DROSSES EM FERRO FUNDIDO NODULAR. Adalberto Bierrembach de Souza Santos Membro e conselheiro da ABM, engenheiro Metalurgista, Mestre em engenharia Metalúrgica e doutor em engenharia. Diretor da Metal Consult Joinville, SC. DROSSES EM FERRO

Leia mais

DIAGRAMAS DE FASES DIAGRAMAS DE FASES

DIAGRAMAS DE FASES DIAGRAMAS DE FASES DIAGRAMAS DE FASES Prof. Dr. Anael Krelling 1 São mapas que permitem prever a microestrutura de um material em função da temperatura e composição de cada componente; Informações sobre fenômenos de fusão,

Leia mais

56º Congresso anual da ABM

56º Congresso anual da ABM Adalberto Bierrenbach de Souza Santos - Membro da ABM, engenheiro Metalurgista, Mestre em Engenharia Metalúrgica e doutor em Engenharia. Diretor da Metal Consult Ltda., Joinville (SC). Ricardo Mery - Membro

Leia mais

DIAGRAMAS DE EQUILÍBRIO DIAGRAMAS DE EQUILÍBRIO

DIAGRAMAS DE EQUILÍBRIO DIAGRAMAS DE EQUILÍBRIO DIAGRAMAS DE EQUILÍBRIO Prof. Dr.: Anael Krelling 1 São mapas que permitem prever a microestrutura de um material em função da temperatura e composição de cada componente; Informações sobre fenômenos de

Leia mais

Endurecimento por dispersão de fases e diagramas de fases eutéticos

Endurecimento por dispersão de fases e diagramas de fases eutéticos UNIVESIDADE DE SÃO PAULO EESC/IFSC/IQSC SCM5757 Ciência dos Materiais I Endurecimento por dispersão de fases e diagramas de fases eutéticos Prof. Dra. Lauralice Canale 1º semestre de 2017 1 Compostos intermetálicos

Leia mais

Ferros Fundidos. Universidade de São Paulo. Escola de Engenharia de São Carlos. Departamento de Engenharia de Materiais

Ferros Fundidos. Universidade de São Paulo. Escola de Engenharia de São Carlos. Departamento de Engenharia de Materiais Universidade de São Paulo Escola de Engenharia de São Carlos Departamento de Engenharia de Materiais Ferros Fundidos SMM0193-Engenharia e Ciência dos Materiais I Waldek Wladimir Bose Filho Ferros Fundidos

Leia mais

UNIVERSIDADE ESTADUAL DE PONTA GROSSA PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO SECRETARIA DE PÓS-GRADUAÇÃO-LATO SENSU

UNIVERSIDADE ESTADUAL DE PONTA GROSSA PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO SECRETARIA DE PÓS-GRADUAÇÃO-LATO SENSU UNIVERSIDADE ESTADUAL DE PONTA GROSSA PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO SECRETARIA DE PÓS-GRADUAÇÃO-LATO SENSU EFEITO DO CARBONO EQUIVALENTE NO NÚMERO DE NÓDULOS EM FERROS FUNDIDOS NODULARES PRODUZIDOS

Leia mais

Ferro Fundido. A.S.D Oliveira

Ferro Fundido. A.S.D Oliveira Ferro Fundido Ferros fundidos Ligas ferrosas contendo 2.1%-4% C e 1%-3% Si - composição torna-os excelentes para fundição - a fabricação de ferros fundidos é várias vezes superior a de qualquer outro metal

Leia mais

Aula 1: Aços e Ferros Fundidos Produção Feito de Elementos de Liga Ferros Fundidos. CEPEP - Escola Técnica Prof.: Kaio Hemerson Dutra

Aula 1: Aços e Ferros Fundidos Produção Feito de Elementos de Liga Ferros Fundidos. CEPEP - Escola Técnica Prof.: Kaio Hemerson Dutra Aula 1: Aços e Ferros Fundidos Produção Feito de Elementos de Liga Ferros Fundidos CEPEP - Escola Técnica Prof.: Kaio Aços e Ferros Fundidos O Ferro é o metal mais utilizado pelo homem. A abundância dos

Leia mais

Processos Metalúrgicos PROF.: KAIO DUTRA

Processos Metalúrgicos PROF.: KAIO DUTRA Processos Metalúrgicos AULA 6 LIGAS FERROAS E DIAGRAMA DE FASES PROF.: KAIO DUTRA Ligas Ferrosas As ligas ferrosas são, em princípio, divididas em dois grupos: Aços, com teores de carbono até 2,11%; Ferros

Leia mais

Sistema Ferro - Carbono

Sistema Ferro - Carbono Sistema Fe-C Sistema Ferro - Carbono Diagrama de equilíbrio Fe-C Ferro comercialmente puro - < 0,008% Ligas de aços 0 a 2,11 % de C Ligas de Ferros Fundidos acima de 2,11% a 6,7% de C Ferro alfa dissolve

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE TECNOLOGIA FACULDADE DE ENGENHARIA MECÂNICA CURSO DE ENGENHARIA MECÂNICA

UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE TECNOLOGIA FACULDADE DE ENGENHARIA MECÂNICA CURSO DE ENGENHARIA MECÂNICA Disciplina: Materiais de Construção Mecânica Assunto: Diagrama de equilíbrio de fases Professor: Jorge Teófilo de Barros Lopes 1) Determine a composição e a quantidade relativa de cada fase presente em

Leia mais

- Pág. 1 / Aula nº 15 -

- Pág. 1 / Aula nº 15 - AULA Nº 15 2. Ferros fundidos - propriedades, microestrutura e processamento Os ferros fundidos são materiais com particular aptidão ao processamento por fundição, como aliás a sua designação sugere; esta

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE TECNOLOGIA FACULDADE DE ENGENHARIA MECÂNICA CURSO DE ENGENHARIA MECÂNICA

UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE TECNOLOGIA FACULDADE DE ENGENHARIA MECÂNICA CURSO DE ENGENHARIA MECÂNICA Disciplina: Materiais de Construção Mecânica Assunto: Diagrama de equilíbrio de fases Professor: Jorge Teófilo de Barros Lopes 1) Determine a composição e a quantidade relativa (proporção) de cada fase

Leia mais

DIAGRAMAS DE FASES DIAGRAMAS DE FASES

DIAGRAMAS DE FASES DIAGRAMAS DE FASES DIAGRAMAS DE FASES Prof. MSc: Anael Krelling 1 São mapas que permitem prever a microestrutura de um material em função da temperatura e composição de cada componente; Informações sobre fenômenos de fusão,

Leia mais

AÇO-CARBONO AÇO-LIGA ALOTROPIA DO FERRO

AÇO-CARBONO AÇO-LIGA ALOTROPIA DO FERRO AÇO-CARBONO Aço é a liga ferro-carbono contendo geralmente 0,008% ate aproximadamente 2,11% de carbono. AÇO-LIGA Aço que contem outros elementos de liga ou apresenta os teores residuais acima dos que são

Leia mais

Aula 9- Usinabilidade dos Materiais

Aula 9- Usinabilidade dos Materiais -A usinabilidade pode ser definida como uma grandeza tecnológica que expressa, por meio de um valor numérico comparativo ( índice de usinabilidade), um conjunto de propriedades de usinagem de um material

Leia mais

SUMÁRIO. 1 Introdução Obtenção dos Metais Apresentação do IBP... xiii. Apresentação da ABENDI... Apresentação da ABRACO...

SUMÁRIO. 1 Introdução Obtenção dos Metais Apresentação do IBP... xiii. Apresentação da ABENDI... Apresentação da ABRACO... SUMÁRIO Apresentação do IBP... xiii Apresentação da ABENDI... xv Apresentação da ABRACO... xvii Prefácio... xix 1 Introdução... 1 1.1 Exercícios... 3 2 Obtenção dos Metais... 5 2.1 Minérios... 5 2.1.1

Leia mais

EFEITO DOS ELEMENTOS DE LIGA NOS AÇOS RSCP/ LABATS/DEMEC/UFPR

EFEITO DOS ELEMENTOS DE LIGA NOS AÇOS RSCP/ LABATS/DEMEC/UFPR EFEITO DOS ELEMENTOS DE LIGA NOS AÇOS RSCP/ LABATS/DEMEC/UFPR Seleção do processo de fundição Metal a ser fundido [C. Q.]; Qualidade requerida da superfície do fundido; Tolerância dimensional requerida

Leia mais

EFEITO DO MATERIAL DE CARGA NA OBTENÇÃO DE FERROS FUNDIDOS NODULARES FERRÍTICOS. (Trabalho apresentado no CONAF 97).

EFEITO DO MATERIAL DE CARGA NA OBTENÇÃO DE FERROS FUNDIDOS NODULARES FERRÍTICOS. (Trabalho apresentado no CONAF 97). Fernando Cezar Lee Tavares e Mauro Monteiro (Thyssen Fundições) Gloria de Almeida Soares (Coppe / URJ) EFEITO DO MATERIAL DE CARGA NA OBTENÇÃO DE FERROS FUNDIDOS NODULARES FERRÍTICOS. (Trabalho apresentado

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA RAFAEL MARCIO OLIVEIRA INFLUÊNCIA DA ADIÇÃO DE COBRE E MANGANÊS NAS PROPRIEDADES DE FERROS FUNDIDOS NODULARES

UNIVERSIDADE FEDERAL DE SANTA CATARINA RAFAEL MARCIO OLIVEIRA INFLUÊNCIA DA ADIÇÃO DE COBRE E MANGANÊS NAS PROPRIEDADES DE FERROS FUNDIDOS NODULARES 1 UNIVERSIDADE FEDERAL DE SANTA CATARINA RAFAEL MARCIO OLIVEIRA INFLUÊNCIA DA ADIÇÃO DE COBRE E MANGANÊS NAS PROPRIEDADES DE FERROS FUNDIDOS NODULARES FLORIANÓPOLIS 2005 2 UNIVERSIDADE FEDERAL DE SANTA

Leia mais

FERRO FUNDIDO VERMICULAR OBTENÇÃO, MICROESTRUTURAS E PROPRIEDADES MECÂNICAS.

FERRO FUNDIDO VERMICULAR OBTENÇÃO, MICROESTRUTURAS E PROPRIEDADES MECÂNICAS. Adalberto Bierrenbach de Souza Santos. Contribuição Técnica a ser apresentada no XXXIV Congresso Anual da ABM, Porto Alegre (RS), julho de 1979. Pedro Henrique Carpinetti Costa. Membro da ABM, Engenheiro

Leia mais

Efeito do antimônio na microestrutura e propriedades mecânicas do ferro fundido nodular

Efeito do antimônio na microestrutura e propriedades mecânicas do ferro fundido nodular Efeito do antimônio na microestrutura e propriedades mecânicas do ferro fundido nodular Adriano Luis Koerich adriano_koerich@hotmail. com Instituto Superior Tupy - IST Soceisc Juliano Manoel Mendes Juliano.mendes@ppefios.

Leia mais

Aula 07: Solidificação de ferros fundidos e ligas de alumínio

Aula 07: Solidificação de ferros fundidos e ligas de alumínio Dr. Eng. Metalúrgica Aula 07: Solidificação de ferros fundidos e ligas de alumínio 1. 2. Solidificação das Ligas de Alumínio - Introdução - Diagrama Fe-C - Diagrama Duplo Fe-C para os Ferros Fundidos -

Leia mais

AÇOS E FERROS FUNDIDOS AÇOS E FERROS FUNDIDOS

AÇOS E FERROS FUNDIDOS AÇOS E FERROS FUNDIDOS AÇOS E FERROS FUNDIDOS Prof. MSc: Anael Krelling 1 2 AÇOS Aços são ligas Fe-C que podem conter outros elementos Propriedades mecânicas dependem da % C. % C < 0,25% - baixo carbono. 0,25% < % C < 0,60%

Leia mais

Ferros fundidos. Apresenta atributos não encontrados em nenhum outro material e também é um dos metais mais baratos que se dispõe.

Ferros fundidos. Apresenta atributos não encontrados em nenhum outro material e também é um dos metais mais baratos que se dispõe. O ferro fundido (fofo) material fundido de maior consumo no país e no mundo. Apresenta atributos não encontrados em nenhum outro material e também é um dos metais mais baratos que se dispõe. Ferros fundidos

Leia mais

AÇOS E FERROS FUNDIDOS AÇOS E FERROS FUNDIDOS

AÇOS E FERROS FUNDIDOS AÇOS E FERROS FUNDIDOS AÇOS E FERROS FUNDIDOS Prof. Dr. Anael Krelling 1 2 AÇOS Aços são ligas Fe-C que podem conter outros elementos Propriedades mecânicas dependem da % C. % C < 0,25% - baixo carbono. 0,25% < % C < 0,60% -

Leia mais

Microestrutura (fases) Parte 5

Microestrutura (fases) Parte 5 Microestrutura (fases) Parte 5 DIGRM DE FSES DO SISTEM Fe - DIGRM DE FSES DO SISTEM Fe Ferros Família dos aços Família dos ferros fundidos Soluções sólidas: Ferro δ ustenita Ferrita omposto estequiométrico:

Leia mais

FERROS FUNDIDOS (PROPRIEDADES E TRATAMENTOS TÉRMICOS) C Si Mn S P. Cinzento 2,5-4,0 1,0-3,0 0,25-1,0 0,02-0,25 0,05-1,0

FERROS FUNDIDOS (PROPRIEDADES E TRATAMENTOS TÉRMICOS) C Si Mn S P. Cinzento 2,5-4,0 1,0-3,0 0,25-1,0 0,02-0,25 0,05-1,0 FERROS FUNDIDOS (PROPRIEDADES E TRATAMENTOS TÉRMICOS) C Si Mn S P Cinzento 2,5-4,0 1,0-3,0 0,25-1,0 0,02-0,25 0,05-1,0 Branco 1,8-3,6 0,5-1,9 0,25-0,80 0,06-0,20 0,06-0,18 Maleável 2,0-2,6 1,1-1,6 0,20-1,0

Leia mais

EFEITO DE ALGUMAS VARIAÁVEIS DE PROCESO NA FABRICAÇÃO DE FERROS FUNDIDOS VERMICULARES OBTIDOS A PARTIR DE TRATAMENTO COM TERRAS RARAS.

EFEITO DE ALGUMAS VARIAÁVEIS DE PROCESO NA FABRICAÇÃO DE FERROS FUNDIDOS VERMICULARES OBTIDOS A PARTIR DE TRATAMENTO COM TERRAS RARAS. Edmundo Alberto Beckert. Membro da ABM, Técnico Metalurgista. Pesquisador do Centro de Pesquisas e Desenvolvimento Fundição Tupy S/A Joinville SC. Pedro Ventrella Duran. Membro da ABM, Engenheiro Metalurgista

Leia mais

Metalurgia dos Ferros Fundidos Nodulares

Metalurgia dos Ferros Fundidos Nodulares Metalurgia dos Ferros Fundidos Nodulares Aspectos fundamentais na produção e controle Eduardo de S. Moreira Ago/2010 ver. Jul/2011 Tópicos Apresentação - A - Processos da Objetivo Introdução - Ferros Fundidos

Leia mais

Processo de Soldagem Eletrodo Revestido

Processo de Soldagem Eletrodo Revestido Processos de Fabricação I Processo de Soldagem Eletrodo Revestido Prof.: João Carlos Segatto Simões Características gerais O Processo Manual Taxa de deposição: 1 a 5 kg/h Fator de ocupação do soldador

Leia mais

DIAGRAMAS DE EQUILÍBRIO DIAGRAMAS DE EQUILÍBRIO

DIAGRAMAS DE EQUILÍBRIO DIAGRAMAS DE EQUILÍBRIO DIAGRAMAS DE EQUILÍBRIO Prof. M.Sc.: Anael Krelling 1 São mapas que permitem prever a microestrutura de um material em função da temperatura e composição de cada componente; Informações sobre fenômenos

Leia mais

Introdução a Ciência dos Materiais Diagramas de fases. Professora: Maria Ismenia Sodero

Introdução a Ciência dos Materiais Diagramas de fases. Professora: Maria Ismenia Sodero Introdução a Ciência dos Materiais Diagramas de fases Professora: Maria Ismenia Sodero maria.ismenia@usp.br O que você vai aprender? definição de fase ; curva de resfriamento; diagramas de equilíbrio de

Leia mais

DIAGRAMA FERRO CARBONO

DIAGRAMA FERRO CARBONO DIAGRAMA FERRO CARBONO Referências Bibliográficas: Ciência e Engenharia dos Materias uma Introdução. William D. Calister Jr. Metalografia dos Produtos Siderúrgicos Comuns. Colpaert Prof. Dr. João Manuel

Leia mais

Processo de Soldagem MIG/MAG. Processo MIG / MAG Prof. Vilmar Senger

Processo de Soldagem MIG/MAG. Processo MIG / MAG Prof. Vilmar Senger Processo de Soldagem MIG/MAG Gases de proteção O ar atmosférico é expulso da região de soldagem por um gás de proteção com o objetivo de evitar a contaminação da poça de fusão. A contaminação é causada

Leia mais

SOLDAGEM TIG. Prof. Dr. Hugo Z. Sandim. Marcus Vinicius da Silva Salgado Natália Maia Sesma William Santos Magalhães

SOLDAGEM TIG. Prof. Dr. Hugo Z. Sandim. Marcus Vinicius da Silva Salgado Natália Maia Sesma William Santos Magalhães SOLDAGEM TIG Prof. Dr. Hugo Z. Sandim Marcus Vinicius da Silva Salgado Natália Maia Sesma William Santos Magalhães Soldagem TIG Processo de soldagem TIG Fonte: www.infosolda.com.br e Welding Metallurgy

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais DIAGRAMAS DE FASES

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais DIAGRAMAS DE FASES ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais DIAGRAMAS DE FASES PMT 3100 - Introdução à Ciência dos Materiais para Engenharia 2º semestre de 2014

Leia mais

DIAGRAMAS TTT DIAGRAMAS TTT

DIAGRAMAS TTT DIAGRAMAS TTT DIAGRAMAS TTT Prof. Dr. Anael Krelling 1 MATERIAIS METÁLICOS Ampla gama de propriedades mecânicas Mecanismos de aumento de resistência Refino do tamanho de grão Formação de solução sólida Encruamento Outras

Leia mais

UFF-Termodinâmica Aplicada a Aciaria

UFF-Termodinâmica Aplicada a Aciaria Do ponto de vista dos cálculos termodinâmico, há três situações principais quando se analisa processos de desoxidação: 1. com produto (óxido) puro; 2. com formação de misturas de óxidos; e 3. com auxílio

Leia mais

TRATAMENTOS TÉRMICOS

TRATAMENTOS TÉRMICOS TRATAMENTOS TÉRMICOS Definição Submeter um material a um ciclo de variações de temperatura conhecido (idealmente seria controlado), com o objetivo de se obter no material uma determinada microestrutura,

Leia mais

LOM 3080 PROCESSOS DA INDÚSTRIA METALÚRGICA E SIDERÚRGICA

LOM 3080 PROCESSOS DA INDÚSTRIA METALÚRGICA E SIDERÚRGICA Universidade de São Paulo Escola de Engenharia de Lorena Departamento de Engenharia de Materiais LOM 3080 PROCESSOS DA INDÚSTRIA METALÚRGICA E SIDERÚRGICA Prof. Dr. Cassius O.F.T. Ruchert, Professor Associado

Leia mais

Sistema Fe-C C ou Fe-Fe

Sistema Fe-C C ou Fe-Fe DIAGRAMA DE FASE Fe-Fe Fe3C TRANSFORMAÇÃO ALOTRÓPICA Sistema Fe-C C ou Fe-Fe 3 C e microestruturas que se formam no resfriamento lento 1 CCC CFC CCC DIAGRAMA DE FASE Fe-Fe Fe3C TRANSFORMAÇÃO ALOTRÓPICA

Leia mais

Figura 49 Dispositivo utilizado no ensaio Jominy e detalhe do corpo-de-prova (adaptado de Reed-Hill, 1991).

Figura 49 Dispositivo utilizado no ensaio Jominy e detalhe do corpo-de-prova (adaptado de Reed-Hill, 1991). INTRODUÇÃO AO ESTUDO DOS AÇOS SILVIO FRANCISCO BRUNATTO 81 2.3.3 TEMPERABILIDADE A temperabilidade de um aço pode ser entendida como a capacidade de endurecimento ou a capacidade que o aço possui de obter

Leia mais

METAIS FERROSOS MATERIAIS DE CONSTRUÇÃO MECÂNICA. Prof.(a) : Graziele Braga ENGENHARIA MECÂNICA.

METAIS FERROSOS MATERIAIS DE CONSTRUÇÃO MECÂNICA. Prof.(a) : Graziele Braga ENGENHARIA MECÂNICA. METAIS FERROSOS MATERIAIS DE CONSTRUÇÃO MECÂNICA ENGENHARIA MECÂNICA Prof.(a) : Graziele Braga Email: grazi_gbraga@hotmail.com Betim 2016 DIAGRAMAS DE EQUILÍBRIO Fases presentes Composição dessas fases

Leia mais

Universidade Estadual de Ponta Grossa Curso: Engenharia de Materiais Disciplina: Ciência dos Materiais 1 Lista de Exercícios 6

Universidade Estadual de Ponta Grossa Curso: Engenharia de Materiais Disciplina: Ciência dos Materiais 1 Lista de Exercícios 6 Universidade Estadual de Ponta Grossa Curso: Engenharia de Materiais Disciplina: Ciência dos Materiais 1 Lista de Exercícios 6 1) Cite três variáveis que determinam a microestrutura de uma liga. 2) Qual

Leia mais

Previsão Automática de Propriedades de Material para a Simulação de Processos de Fundição e Sua Influência nos Resultados Obtidos (1)

Previsão Automática de Propriedades de Material para a Simulação de Processos de Fundição e Sua Influência nos Resultados Obtidos (1) Previsão Automática de Propriedades de Material para a Simulação de Processos de Fundição e Sua Influência nos Resultados Obtidos (1) Arthur Camanho (2) Um dos desafios da simulação de processos é a disponibilidade

Leia mais

ANÁLISE DA MICROESTRUTURA E PROPRIEDADES MECÂNICAS DE UM FERRO FUNDIDO NODULAR FE EM FUNÇÃO DO TEMPO DE VAZAMENTO

ANÁLISE DA MICROESTRUTURA E PROPRIEDADES MECÂNICAS DE UM FERRO FUNDIDO NODULAR FE EM FUNÇÃO DO TEMPO DE VAZAMENTO ANÁLISE DA MICROESTRUTURA E PROPRIEDADES MECÂNICAS DE UM FERRO FUNDIDO NODULAR FE-40015 EM FUNÇÃO DO TEMPO DE VAZAMENTO Raphael Ferreira 1, Eduardo Dalmolin 2, Diego Rodolfo Simões de Lima 2 1 IFC-Luzerma/raphaelfol@gmail.com

Leia mais

Utilização dos D.E. no entendimento dos diferentes tipos de solidificação de metais e/ou ligas

Utilização dos D.E. no entendimento dos diferentes tipos de solidificação de metais e/ou ligas Dr. Eng. Metalúrgica Aula 06: Fundamentos da Solidificação dos Metais Parte 2 Utilização dos Diagramas de Equilíbrio no estudo da solidificação Solidificação e Equilíbrio formação da microestrutura Macroestruturas

Leia mais

Ciências dos materiais- 232

Ciências dos materiais- 232 1 Ciências dos materiais- 232 Aula 6 - Tratamentos Térmicos Quinta Quinzenal Semana par 26/05/2015 1 Professor: Luis Gustavo Sigward Ericsson Curso: Engenharia Mecânica Série: 5º/ 6º Semestre 2015-1_CM_Aula06_TratTermico.pdf

Leia mais

ANÁLISES DE FERRO FUNDIDO COM O OES-5500II

ANÁLISES DE FERRO FUNDIDO COM O OES-5500II ANÁLISES DE FERRO FUNDIDO COM O OES-5500II Este relatório de aplicação é direcionado para ferros fundidos (ligados ou não). Ferros fundidos ligados são caracterizados pela sua composição química. As propriedades

Leia mais

12, foram calculados a partir das equações mostradas seguir, com base nas análises químicas apresentadas na Tabela 8.

12, foram calculados a partir das equações mostradas seguir, com base nas análises químicas apresentadas na Tabela 8. 5 Discussão O estudo da fragilização ao revenido com base nos fenômenos de segregação tem como ponto de partida os resultados obtidos de experiências com pares de elementos liga e/ou impurezas, correspondendo

Leia mais

ALTO FORNO E ACIARIA. Curso: Engenharia Mecânica Disciplina: Tecnologia Metalúrgica Período: Prof. Ms. Thayza Pacheco dos Santos Barros

ALTO FORNO E ACIARIA. Curso: Engenharia Mecânica Disciplina: Tecnologia Metalúrgica Período: Prof. Ms. Thayza Pacheco dos Santos Barros ALTO FORNO E ACIARIA Curso: Engenharia Mecânica Disciplina: Tecnologia Metalúrgica Período: 2017.1 Prof. Ms. Thayza Pacheco dos Santos Barros 1 Alto forno Serve para produzir o ferro gusa, que é uma forma

Leia mais

Diagramas de fase. A.S.D Oliveira

Diagramas de fase. A.S.D Oliveira Diagramas de fase O que são Diagramas de Fase? Mapas que representam a relação de fases em função da temperatura, pressão e composição química Fornecem informação necessária para o controle das fases/microestrutura

Leia mais

Beneficiamento de Aços [21]

Beneficiamento de Aços [21] [21] Tratamentos para beneficiamento de aços: Têmpera: aumento de resistência i mecânica e dureza dos aços causado pela formação da martensita, um microconstituinte que usualmente apresenta um comportamento

Leia mais

Introdução a Ciência dos Materiais Diagramas de fases. Professora: Maria Ismenia Sodero

Introdução a Ciência dos Materiais Diagramas de fases. Professora: Maria Ismenia Sodero Introdução a Ciência dos Materiais Diagramas de fases Professora: Maria Ismenia Sodero maria.ismenia@usp.br O que você vai aprender? definição de fase ; curva de resfriamento; diagramas de equilíbrio de

Leia mais

Como as inclusões no material da peça podem afetar o desgaste da ferramenta?

Como as inclusões no material da peça podem afetar o desgaste da ferramenta? 26 Pesquisa & Desenvolvimento Como as inclusões no material da peça podem afetar o desgaste da ferramenta? O desgaste da ferramenta aumentou. A microestrutura do material foi analisada e aparentemente

Leia mais

palavras chave: ferro fundido, eutético, grafita, cementita, carbono equivalente, equilíbrio estável, equilíbrio metaestável.

palavras chave: ferro fundido, eutético, grafita, cementita, carbono equivalente, equilíbrio estável, equilíbrio metaestável. OS DIAGRAMAS DE FASE ESTÁVEL E METAESTÁVEL DO SISTEMA Fe-C-X (X=Cr, Si) E A SOLIDIFICAÇÃO DOS FERROS FUNDIDOS Cabezas, C. S. 1 Schön, C. G. 2 Sinatora, A. 3 Goldenstein, H. 4 Resumo São estudados os efeitos

Leia mais

Unidade 8 DIAGRAMAS DE FASES. ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais

Unidade 8 DIAGRAMAS DE FASES. ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais 1 ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais Unidade 8 DIAGRAMAS DE FASES PMT 3100 - Fundamentos de Ciência e Engenharia dos Materiais 1º semestre

Leia mais

Fundição Continua RSCP/LABATS/DEMEC/UFPR

Fundição Continua RSCP/LABATS/DEMEC/UFPR RSCP/LABATS/DEMEC/UFPR Fundição contínua O processo de fundição contínua consiste em fundir e conformar o produto final numa única operação, eliminando tempos intermediários de esfriamento em moldes, garantindo

Leia mais

Metalurgia da Soldagem Particularidades Inerentes aos Aços Carbono

Metalurgia da Soldagem Particularidades Inerentes aos Aços Carbono Metalurgia da Soldagem Particularidades Inerentes aos Aços Carbono A partir do estudo deste texto você conhecerá as particularidades inerentes a diferentes tipos de aços: aços de médio carbono (para temperaturas

Leia mais

MATERIAIS METÁLICOS AULA 4

MATERIAIS METÁLICOS AULA 4 UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA CURSO DE ENGENHARIA CIVIL DEPARTAMENTO DE TECNOLOGIA MATERIAIS DE CONSTRUÇÃO I E (TEC 156) MATERIAIS METÁLICOS AULA 4 Profª. Cintia Maria Ariani Fontes 1 METAIS

Leia mais

6 - Microestrutura Fases

6 - Microestrutura Fases 24 6 - Microestrutura 6-1. Fases Um cubo de gelo flutuando na água e a atmosfera que os envolve são exemplos dos três estados da matéria, sem dúvida, mas também são exemplos de fases (Figura 6-1). Uma

Leia mais

ZAMAC MEGA ZINCO METAIS

ZAMAC MEGA ZINCO METAIS ZAMAC MEGA ZINCO METAIS Zinco Alumínio Magnésio Cobre 1 ZAMAC - Composição Química COMPOSIÇÃO QUÍMICA DAS LIGAS DE ZINCO ASTM B 240 07 - LINGOTES Elemento Químico ZAMAC 3 ZAMAC 5 Zamac 8 Alumínio - Al

Leia mais

Ciência dos Materiais Lista de Exercícios Diagrama de fases

Ciência dos Materiais Lista de Exercícios Diagrama de fases 1. Qual é a diferença entre os estados de equilíbrio de fases e de metaestabilidade? 2. Uma liga cobre-níquel com composição de 70 %p Ni-30 %p Cu é aquecida lentamente a partir de uma temperatura de 1300

Leia mais

Fone(0xx47) , Fax (0xx47)

Fone(0xx47) , Fax (0xx47) DETERMINAÇÃO DA JANELA DE PROCESSO DE UM FERRO FUNDIDO NODULAR AUSTEMPERADO (ADI) SEM ADIÇÃO DE ELEMENTOS DE LIGA ATRAVÉS DE ENSAIOS MECÂNICOS E METALOGRÁFICOS Marcos E. Balzer 1 e C. A. S. Oliveira 2

Leia mais

DIAGRAMAS DE FASE II TRANSFORMAÇÕES DE FASE

DIAGRAMAS DE FASE II TRANSFORMAÇÕES DE FASE ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais DIAGRAMAS DE FASE II TRANSFORMAÇÕES DE FASE PMT 2100 - Introdução à Ciência dos Materiais para Engenharia

Leia mais

Ciência e Engenharia de Materiais I Introdução aos Materiais

Ciência e Engenharia de Materiais I Introdução aos Materiais Ciência e Engenharia de Materiais I Introdução aos Materiais 3 aula Aços ligados e ferros fundidos Mestrado Integrado em Engenharia Mecânica Licenciatura em Engenharia e Gestão Industrial Para que servem

Leia mais

Ligas de alumínio para fundição

Ligas de alumínio para fundição Ligas de alumínio para fundição Relações entre o processo de fundição e a microestrutura Marcelo F. Moreira Instituto de Pesquisas Tecnológicas IPT Escola de Engenharia Mauá (011) 37674170 e-mail: mfmoreir@ipt.br

Leia mais

UNIVERSIDADE FEDERAL DE MINAS GERAIS Curso de Pós-Graduação em Engenharia Metalúrgica e de Minas. Clênio Silva

UNIVERSIDADE FEDERAL DE MINAS GERAIS Curso de Pós-Graduação em Engenharia Metalúrgica e de Minas. Clênio Silva UNIVERSIDADE FEDERAL DE MINAS GERAIS Curso de Pós-Graduação em Engenharia Metalúrgica e de Minas Clênio Silva INFLUÊNCIA DO NÚMERO DE NÓDULOS DE GRAFITA NAS PROPRIEDADES MECÂNICAS DO FERRO FUNDIDO NODULAR

Leia mais

FUNDIÇÃO POR CENTRIFUGAÇÃO

FUNDIÇÃO POR CENTRIFUGAÇÃO FUNDIÇÃO POR CENTRIFUGAÇÃO Rscp/labats/demec/ufpr/2017 O processo de fabricação por centrifugação consiste em vazar-se metal líquido num molde dotado de movimento de rotação, de modo que a força centrífuga

Leia mais

Objetivo do Seminário definido pela feam: Promover a disseminação de

Objetivo do Seminário definido pela feam: Promover a disseminação de Objetivo do Seminário definido pela feam: Promover a disseminação de conhecimentos e o intercambio de soluções técnicas existentes e inovadoras ambientalmente adequadas, dos usos das Escórias de Aciaria.

Leia mais

FERROS FUNDIDOS. Peças de geometria complexa. Peças onde a deformação plástica é inadmissível.

FERROS FUNDIDOS. Peças de geometria complexa. Peças onde a deformação plástica é inadmissível. FERROS FUNDIDOS FERROS FUNDIDOS Peças de geometria complexa. Peças onde a deformação plástica é inadmissível. FERROS FUNDIDOS FF CINZENTO (Gray iron) FF DÚCTIL ou Nodular (Spheroidal iron) FF BRANCO

Leia mais

INFLUÊNCIA DA TAXA DE RESFRIAMENTO E ADIÇÃO DE SR NA MICROESTRUTURA DE UMA LIGA A356 SOLIDIFICADA SOB CONDIÇÕES CONTROLADAS

INFLUÊNCIA DA TAXA DE RESFRIAMENTO E ADIÇÃO DE SR NA MICROESTRUTURA DE UMA LIGA A356 SOLIDIFICADA SOB CONDIÇÕES CONTROLADAS INFLUÊNCIA DA TAXA DE RESFRIAMENTO E ADIÇÃO DE SR NA MICROESTRUTURA DE UMA LIGA A356 SOLIDIFICADA SOB CONDIÇÕES CONTROLADAS F. F. dos Santos, A. V. Souza, E. A. Vieira Av. Vitória, 1729, Jucutuquara, Vitória,

Leia mais

COTAÇÕES. Universidade Técnica de Lisboa. Instituto Superior Técnico. Ciência de Materiais Repescagem 2º Teste (30.Janeiro.2012)

COTAÇÕES. Universidade Técnica de Lisboa. Instituto Superior Técnico. Ciência de Materiais Repescagem 2º Teste (30.Janeiro.2012) Universidade Técnica de Lisboa Instituto Superior Técnico Ciência de Materiais Repescagem 2º Teste (30.Janeiro.2012) COTAÇÕES Pergunta Cotação 1. (a) 0,50 1. (b) 0,50 1. (c) 1,00 1. (d) 0,50 1. (e) 1,50

Leia mais

Têmpera. Lauralice Canale

Têmpera. Lauralice Canale Têmpera Lauralice Canale Transformação de fase em metais Fases metaestáveis podem ser formadas como um resultado de mudanças muitos rápidas de temperatura. A microestrutura é fortemente afetada pela taxa

Leia mais

EFEITO DO ANTIMÔNIO NA MATRIZ E PROPRIEDADES MECÂNICAS DO FERRO FUNDIDO NODULAR

EFEITO DO ANTIMÔNIO NA MATRIZ E PROPRIEDADES MECÂNICAS DO FERRO FUNDIDO NODULAR EFEITO DO ANTIMÔNIO NA MATRIZ E PROPRIEDADES MECÂNICAS DO FERRO FUNDIDO NODULAR Adriano Luis Koerich 1, adriano_l_koerich@embraco.com.br Juliano Manoel Mendes 2, juliano.mendes@ppefios.com.br Guido Warmling

Leia mais

Aços de alta liga resistentes a corrosão II

Aços de alta liga resistentes a corrosão II Aços de alta liga resistentes a corrosão II Aços de alta liga ao cromo ferríticos normalmente contêm 13% ou 17% de cromo e nenhum ou somente baixo teor de níquel. A figura da esquerda apresenta uma parte

Leia mais

Dra.ROSINEIDE JUNKES LUSSOLI

Dra.ROSINEIDE JUNKES LUSSOLI NUCLEAÇÃO DA GRAFITA EM FERRO FUNDIDO CINZENTO UTILIZANDO PARTÍCULAS CERÂMICAS NANOMÉTRICAS Dra.ROSINEIDE JUNKES LUSSOLI Sumário: INSTITUTO DE CERÂMICA Y VIDRIO - OBJETIVOS E INOVAÇÃO - FUNDAMENTAÇÃO TEÓRICA

Leia mais

Ferros Fundidos Nodulares Perlíticos (1)

Ferros Fundidos Nodulares Perlíticos (1) Ferros Fundidos Nodulares Perlíticos (1) Wilson Luiz Guesser (2) Diane Ghisi Hilário (3) RESUMO Discutem-se as diversas alternativas de produção de ferros fundidos nodulares perlíticos, bem como os resultados

Leia mais

Instituto de Pesquisas Tecnológicas do Estado de São Paulo. Miguel Aparecido Rodrigues

Instituto de Pesquisas Tecnológicas do Estado de São Paulo. Miguel Aparecido Rodrigues Instituto de Pesquisas Tecnológicas do Estado de São Paulo Miguel Aparecido Rodrigues Avaliação da tendência ao coquilhamento em ferro fundido nodular utilizando teste de cunha e analise térmica. São Paulo

Leia mais

Ferro Fundido. A.S.D Oliveira

Ferro Fundido. A.S.D Oliveira Ferro Fundido Ferros fundidos Ligas ferrosas contendo comumente de 2.1%-4% C e 1%-3% Si Ferros fundidos com mais de 4%-4.5%C não são interessantes comercialmente devido à alta fragilidade; São considerados

Leia mais

Ferro fundido cinzento

Ferro fundido cinzento 23/03/2016 Ferro fundido cinzento Fe = matriz + C = +2,0% Grafita + Si = 2,0% = evitar Ferro Branco e + gerar grafita Mg = determina o tipo de grafita 0,035% = FE 0,017% = FV 0,010 = FC cinzento do ferro

Leia mais

Materiais de Construção Aços

Materiais de Construção Aços Materiais de Construção José Carlos G. Mocito email:jmocito@ipcb.pt O que é o aço? O aço é uma liga Ferro Carbono (liga FE C), cujo teor em carbono varia entre 0.03 e 2,06%. Uma propriedade característica

Leia mais

UNIVERSIDADE DE CAXIAS DO SUL CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA CURSO DE ENGENHARIA MECÂNICA GUILHERME SCHRODER COMIN

UNIVERSIDADE DE CAXIAS DO SUL CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA CURSO DE ENGENHARIA MECÂNICA GUILHERME SCHRODER COMIN UNIVERSIDADE DE CAXIAS DO SUL CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA CURSO DE ENGENHARIA MECÂNICA GUILHERME SCHRODER COMIN ESTUDO DO EFEITO DO COBRE E DO ESTANHO NA FORMAÇÃO DA PERLITA E NAS PROPRIEDADES

Leia mais

Sistemas Estruturais. Prof. Rodrigo mero

Sistemas Estruturais. Prof. Rodrigo mero Sistemas Estruturais Prof. Rodrigo mero Aula 4 O Material aço Índice Características de Aço da Construção Civil Propriedades Modificadas Ligas Metálicas Ligas Ferrosas Ligas Não-Ferrosas Teor de Carbono

Leia mais

Profa. Dra. Lauralice Canale

Profa. Dra. Lauralice Canale Profa. Dra. Lauralice Canale A1: Temperatura de equilíbrio de início de austenitização A3: Temperatura de equilíbrio de fim de austenitização Estrutura da perlita Perlita (0.8% C em média) Cementita

Leia mais

FUNDIÇÃO POR CENTRIFUGAÇÃO

FUNDIÇÃO POR CENTRIFUGAÇÃO FUNDIÇÃO POR CENTRIFUGAÇÃO O processo de fabricação por centrifugação consiste em vazar-se metal líquido num molde dotado de movimento de rotação, de modo que a força centrífuga origine uma pressão além

Leia mais

Ciências dos materiais- 232

Ciências dos materiais- 232 1 Ciências dos materiais- 232 Transformações de Fase em Metais e Microestruturas Quinta Quinzenal Semana par 05/05/2015 1 Professor: Luis Gustavo Sigward Ericsson Curso: Engenharia Mecânica Série: 5º/

Leia mais

21º CBECIMAT - Congresso Brasileiro de Engenharia e Ciência dos Materiais 09 a 13 de Novembro de 2014, Cuiabá, MT, Brasil

21º CBECIMAT - Congresso Brasileiro de Engenharia e Ciência dos Materiais 09 a 13 de Novembro de 2014, Cuiabá, MT, Brasil USO DA TERMODINÂMICA COMPUTACIONAL PARA CARACTERIZAR MISTURAS DESSULFURANTES DE FERRO GUSA H. C. C. de Oliveira, F. C. Broseghini, S. G. Soares, R. A. Sampaio, J. R. de Oliveira Avenida Vitória, 1729 Bairro

Leia mais

Eletrodos Revestidos

Eletrodos Revestidos Eletrodos Revestidos O eletrodo revestido é um consumível composto formado por duas partes: uma metálica, chamada de alma, e outra na forma de massa, chamada de revestimento. Na soldagem de aços-carbono

Leia mais

Introdução à Ciência dos Materiais para Engenharia PMT 3110

Introdução à Ciência dos Materiais para Engenharia PMT 3110 Lista de Exercícios 05 / 2018 Diagramas de Fases e Transformações de Fases 1. Considere o diagrama de fases do sistema cobre-prata (determinado a pressão constante) apresentado abaixo. Uma liga com composição

Leia mais

Diagramas de Fase. Os diagramas de equilíbrio relacionam temperaturas, composições químicas e as quantidades das fases em equilíbrio.

Diagramas de Fase. Os diagramas de equilíbrio relacionam temperaturas, composições químicas e as quantidades das fases em equilíbrio. Diagramas de Fase Os diagramas de equilíbrio relacionam temperaturas, composições químicas e as quantidades das fases em equilíbrio. Diagramas de Fase Definições: Componentes: São elementos químicos e/ou

Leia mais