9 RADIOFÁRMACOS GLOSSÁRIO

Tamanho: px
Começar a partir da página:

Download "9 RADIOFÁRMACOS GLOSSÁRIO"

Transcrição

1 9 RADIOFÁRMACOS GLOSSÁRIO Atividade específica (ou radioatividade específica): Radioatividade do radionuclídeo relacionada à massa unitária do elemento ou composto. É comumente referida à atividade de 1 g da substância especificada na monografia: em que: S = radioatividade específica; N = número de Avogadro; W = peso atômico; M = peso molecular. Componentes não radioativos para marcação: preparação ou conjunto de reagentes que devem ser reconstituídos ou combinados com um radionuclídeo para a síntese do radiofármaco final, antes da administração ao paciente. Podem vir na forma de reagentes liofilizados ou outras substâncias e são mais comumente conhecidos como kits para marcação. Concentração radioativa: a concentração radioativa da solução é a radioatividade do radionuclídeo contida no volume unitário e geralmente referida como atividade por 1 ml. Como ocorre com todas as especificações envolvendo radionuclídeos, é necessário declarar a data e, no caso de radionuclídeos com meia-vida curta, a hora na qual a concentração radioativa foi determinada. Carreador: isótopo estável do radionuclídeo em questão, adicionado à preparação radioativa na forma química idêntica àquela na qual o radionuclídeo está presente. Decaimento radiativo: os núcleos dos elementos radioativos radionuclídeos sofrem perda de partículas e/ou de energia segundo suas características próprias. Essas características incluem a velocidade de decaimento e o tipo de emissão. A emissão de partículas pelos núcleos determina modificação de seu número de massa. Quando a partícula emitida é portadora de carga positiva ou negativa o núcleo sofre mudança de número atômico e, consequentemente, o número de elétrons na eletrosfera do átomo que lhe corresponde, determinando mudança nas propriedades químicas do átomo. A radioatividade decai em razão exponencial, que é característica para cada radionuclídeo. A atividade em qualquer tempo pode ser calculada pela exressão expressão em que: A = atividade no tempo t; A 0 = atividade inicial; λ = constante de decaimento - também denominada de constante de desintegração ou constante de transformação, i.e., a fração de átomos radiativos que sofrem transformações na unidade de tempo, desde que este tempo seja curto em comparação com a meia-vida física;

2 t = tempo decorrido; e = base de logaritmos neperianos. Desintegração: transformação na qual o núcleo emite uma ou mais partículas. Gerador: sistema que incorpora um radionuclídeo pai que, por decaimento, produz um radionuclídeo filho que pode ser removido por eluição ou por algum outro método para ser utilizado como parte integrante de um radiofármaco. Isótopos: nuclídeos de um mesmo elemento químico cujos núcleos têm o mesmo número atômico e massa atômica diferente. Material de Partida: todos os constituintes que são utilizados na preparação de radiofármacos. Meia-vida biológica: tempo necessário para um organismo remover, por eliminação biológica, metade da quantidade de uma substância administrada. Meia-vida efetiva: tempo necessário para um radionuclídeo em um organismo diminuir sua atividade pela metade como um resultado combinado da eliminação biológica e do decaimento radioativo. A meia-vida efetiva é importante para o cálculo da dose ótima do radiofármaco a ser administrada e no monitoramento da quantidade de exposição à radiação. Pode ser calculado a partir da fórmula: T 1/2e = tempo de meia-vida efetiva do radiofármaco; T 1/2p = tempo de meia-vida física do radionuclideo; T 1/2b = tempo de meia-vida biológica do radiofármaco. Meia-vida física: tempo necessário para metade de uma população de átomos de um radionuclídeo decair para outra forma nuclear. A meia-vida é relacionada à constante de decaimento (λ) pela equação: Neutrino: partícula de difícil detecção, com massa desprezível, neutra, porém dotada de energia, emitida simultaneamente à emissão de partícula beta. A soma das energias da partícula beta e do neutrino corresponde a valor quantificado para cada processo de desintegração beta. Nuclídeos: espécies de átomos caracterizados pela constituição do seu núcleo, em particular pelo seu número de prótons e nêutrons e, também, por seu estado de energia nuclear. Precursores ou matéria-prima para síntese: geralmente, esses precursores não são produzidos em larga escala. Alguns precursores são sintetizados pelo laboratório de produção de radiofármacos, outros são fornecidos por laboratórios produtores especializados. Testes para identidade, para pureza química e ensaio devem ser realizados por meio de procedimentos validados. Quando lotes de precursores são aceitos utilizando-se os certificados de análise, evidências adequadas devem ser estabelecidas para demonstrar a confiabilidade da análise do fornecedor e pelo menos um teste de

3 identidade deve ser realizado. Recomenda-se testar materiais precursores antes de seu uso na rotina de produção do radiofármaco, para garantir que sob condições de produção especificadas, o precursor possibilita a preparação do radiofármaco na quantidade e qualidade especificada. Pureza Radionuclídica: é a razão, expressa em porcentagem, da radioatividade do radionuclídeo em relação à radioatividade total do radiofármaco. As impurezas radionuclídicas relevantes estão listadas, com seus limites, nas monografias individuais. Radioatividade Específica: a radioatividade de um radionuclídeo por unidade de massa do elemento ou do produto químico de interesse. Radioatividade Total: a radioatividade do nuclídeo expressa por unidade de massa do elemento ou do produto químico de interesse (frasco, cápsula, ampola, gerador, etc.). Radioisótopos: isótopos radioativos ou radionuclídeos. São isótopos instáveis os quais sofrem decaimento radioativo e transmutam-se em novo elemento. São átomos que se desintegram por emissão de radiação corpuscular (partícula) ou eletromagnética. Todo radioisótopo é caracterizado pelo seu tempo de meia-vida (T1/2), expresso em unidades de tempo (segundos, minutos, horas, dias e anos) e pela natureza e energia de sua radiação. A energia pode ser expressa em eletronvolts (ev), kilo-elétronvolts (kev) ou mega-elétronvolts (MeV). Pureza química: pode ser entendida como a razão expressa em porcentagem da massa da molécula do composto de interesse em seu estado químico indicado, em relação à massa total da preparação. As impurezas químicas relevantes estão listadas com seus limites nas monografias individuais. Pureza Radioquímica: pode ser entendida como a razão expressa em porcentagem de radioatividade do radionuclídeo de interesse no seu estado químico indicado, em relação à radioatividade total da preparação radiofarmacêutica. As impurezas radioquímicas relevantes estão listadas, com seus limites, nas monografias individuais. INTRODUÇÃO Radiofármacos são preparações farmacêuticas com finalidade diagnóstica ou terapêutica que, quando prontas para o uso, contêm um ou mais radionuclídeos. Os radiofármacos compreendem, também, os componentes não-radioativos para marcação e os radionuclídeos, incluindo os componentes extraídos dos geradores de radionuclídeos. A produção dos radiofármacos deverá atender os requisitos das Boas Práticas de Fabricação (BPF) de Radiofármacos, além de atender às especificações farmacopeicas. Os radiofármacos têm a sua produção, suprimento, estocagem, uso e despejo regulamentados pela legislação nacional vigente. O radiofármaco contém o radionuclídeo numa das seguintes formas: como um elemento atômico ou molecular; como um íon; incluído ou ligado as moléculas orgânicas, por processo de quelação ou por ligação covalente. As formas de obtenção de radionuclídeos, usados na produção de radiofármacos são:

4 bombardeamento de nêutrons em reatores nucleares; bombardeamento com partículas carregadas em aceleradores de partículas; fissão nuclear de nuclídeos pesados após bombardeamento com nêutrons ou com partículas; sistemas geradores de radionuclídeos que envolvem a separação física ou química de um radionuclídeo filho, de meia-vida mais curta do que o radionuclídeo pai. ARMAZENAGEM Os radiofármacos devem ser mantidos em recipientes vedados e em local suficientemente protegido para evitar irradiação do pessoal por emissões primárias ou secundárias, de acordo com regulamentos nacionais e internacionais sobre manuseio de substâncias radioativas. ESTABILIDADE As preparações de radiofármacos tendem a serem menos estáveis do que os seus correspondentes inativos, ocorrendo sua decomposição por radiólise e, por isso, devem ser utilizadas em curto prazo. Os efeitos da radiação primária incluem a desintegração do átomo radioativo e a decomposição de moléculas quando a fração de energia de partícula emitida ou do raio gama é absorvida por essas moléculas. A estabilidade dos radiofármacos depende de muitos fatores, incluindo a energia e a natureza da radiação, a atividade específica e o tempo de armazenagem. Os efeitos de radiação primária podem induzir efeitos secundários devidos à formação de espécies excitadas, que podem degradar outras moléculas, por exemplo, as dos solventes ou conservantes. Também, deve ser considerada a susceptibilidade à oxidação e redução de pequena quantidade de espécies químicas presentes. A exclusão inicial de todos os traços de agentes de oxidação e redução nem sempre é suficiente, porque tais agentes podem formar-se continuamente por efeitos da radiação. Durante o armazenamento, recipientes e soluções podem escurecer devido à radioatividade emitida. Tal fato não indica, necessariamente, a deterioração da preparação. Conservantes Preparações radiofarmacêuticas injetáveis são geralmente acondicionadas em recipientes multidose. Os conservantes antimicrobianos podem sofrer decomposição pela influência da radiação e isso restringe seu uso para alguns radiofármacos injetáveis. Portanto, a exigência de que preparações injetáveis contenham um conservante antimicrobiano adequado, em concentração adequada, não se aplica necessariamente, às preparações radiofarmacêuticas. As preparações radiofarmacêuticas injetáveis com período de vida útil maior que um dia e que não contenham um conservante antimicrobiano devem ser fornecidas em frascos de dose única. Se, contudo, a preparação for fornecida num recipiente multidose, deve ser utilizada dentro de 24 horas após a retirada da primeira dose, de forma asséptica. As preparações radiofarmacêuticas injetáveis para as quais o período de vida útil é maior que um dia e que contenham conservante antimicrobiano podem ser fornecidas em recipientes multidose.

5 Após a retirada da primeira dose, de forma asséptica, o recipiente deve ser armazenado em temperatura na faixa de 2 C a 8 C e os conteúdos utilizados no prazo de 7 dias. DILUIÇÃO Caso necessário fazer diluição é preferível utilizar veículos de mesma composição que os presentes na preparação. Em caso de radiofármacos injetáveis devem ser utilizados soluções e materiais estéreis, livres de partículas e de traços de matéria orgânica. A quantidade de material radioativo presente na preparação é frequentemente muito pequena para ser medida pelos métodos químicos ou físicos disponíveis. Considerando a fórmula em que: Smax = atividade específica máxima, W = peso atômico, T 1/2 = tempo de meia-vida em horas. Verifica-se que, por exemplo, para solução de pertecnetato de sódio ( 99m Tc) com a concentração radioativa de 37 MBq (1 mci) por ml, a concentração do pertecnetato pode ser tão baixa quanto 3 x g ml -1. O comportamento de massas tão pequenas em soluções muito diluídas pode requerer a adição de carreador inerte para limitar a adsorção à superfície do recipiente assim como facilitar as reações químicas de preparação de radiofármacos. CONTROLE BIOLÓGICO Esterilidade Radiofármacos injetáveis devem ser preparados de acordo com as BPF de modo a assegurar a esterilidade, atendendo aos critérios do Teste de esterilidade ( ). Por causa das características radioativas das preparações, não é praticável atrasar a liberação de alguns produtos farmacêuticos radioativos por conta do teste de esterilidade. Em tais casos, os resultados dos testes de esterilidade fornecem apenas evidência retrospectiva confirmatória para a garantia da esterilidade, que portanto, depende dos métodos iniciais estabelecidos na fabricação e nos procedimentos de validação/certificação. No caso de radiofármacos preparados em pequenos lotes e para os quais a execução do teste de esterilidade apresenta grau elevado de risco radiológico, a quantidade de amostra requerida no teste de esterilidade deve ser considerada. Se a preparação radiofarmacêutica é esterilizada por filtração ou processada assepticamente, a validação do processo é necessária. Endotoxinas Bacterianas

6 Quando especificado, uma monografia individual para uma preparação radiofarmacêutica requer conformidade com o teste para endotoxinas bacterianas, descrito em Métodos Biológicos Endotoxinas Bacterianas ( ). Na realização do teste devem-se tomar as precauções necessárias para limitar a irradiação do pessoal que realiza o teste. O limite de endotoxinas bacterianas é indicado nas monografias dos radiofármacos. A validação do teste é necessária para excluir qualquer interferência devido à natureza do radiofármaco. Níveis de radioatividade devem ser padronizados já que alguns tipos de radiação e radionuclídeos, especialmente altos níveis de atividade, podem interferir com o teste. O ph de algumas preparações radiofarmacêuticas deverá ser ajustado a ph 6,5-7,5 para promover resultados ótimos. Quando a natureza da preparação radiofarmacêutica resultar em uma interferência por inibição ou potencialização e não for possível eliminar o fator interferente, a conformidade com o teste para endotoxinas bacterianas deve ser especificada. Em alguns casos é difícil concluir o teste antes da liberação do lote para uso, quando a meia-vida do radionuclídeo na preparação é curta. O teste então se constitui um controle da qualidade da produção. PRAZO DE VALIDADE Data limite especificada pelo fabricante para a utilização de um radiofármaco, antes e após a reconstituição e/ou marcação radioativa do produto, levando em conta produtos de degradação químicos, radioquímicos e radionuclídicos, sendo mantidas as condições de armazenagem e transporte estabelecidos. RADIOATIVIDADE Propriedade que certos nuclídeos têm de emitir radiação por transformações espontâneas de seus núcleos. Geralmente o termo radioatividade é usado para descrever o fenômeno de decaimento radioativo e para expressar a quantidade física (atividade) desse fenômeno. A atividade de uma preparação é o número de transformações nucleares por unidade de tempo que ocorrem na preparação. Essas transformações podem envolver a emissão de partículas carregadas, captura de elétrons ou transição isomérica. As partículas carregadas emitidas pelo núcleo podem ser partículas alfa (núcleos de hélio, de número de massa 4) ou partículas beta (elétrons de carga negativa ou positiva, respectivamente -1β négatron ou +1β pósitron). A emissão de partículas beta é acompanhada da emissão de neutrino. A emissão de partículas carregadas pode ser acompanhada de raios gama, os quais, também, são emitidos no processo de transição isomérica. Essa emissão de raios gama pode ser parcialmente substituída pela ejeção de elétrons, conhecidos como elétrons de conversão interna. Esse fenômeno, assim como o processo de captura de elétrons, causa emissão secundária de raios X, devido à reorganização de elétrons no átomo. Essa emissão secundária causa, também, a ejeção de elétrons de baixa energia conhecidos como elétrons Auger. Raios X, eventualmente acompanhados pelos raios gama, são emitidos no processo de captura de elétrons. Partículas +1β são aniquiladas em contato com outro elétron (-1e) presente na matéria, sendo esse processo acompanhado pela emissão de dois fótons gama, cada um com energia de 511 kev, geralmente emitidos a 180 um do outro e que se denomina radiação de aniquilação. O poder penetrante de cada radiação varia consideravelmente de acordo com sua natureza e energia. Partículas alfa são completamente absorvidas por espessuras de sólidos ou líquidos que variam de alguns a dezenas de micrometros; partículas beta são absorvidas completamente na espessura de

7 alguns milímetros a vários centímetros. Raios gama não são completamente absorvidos, mas somente atenuados, e uma redução de dez vezes pode requerer, por exemplo, alguns centímetros de chumbo. Quanto mais denso é o absorvente, menor é o alcance de partículas alfa e beta e maior a atenuação de raios gama. Medida da radioatividade A medida absoluta da radioatividade de uma amostra pode ser efetuada se o esquema de decaimento do nuclídeo é conhecido, mas na prática muitas correções são requeridas para se obter resultados acurados. Por essa razão é comum realizar medidas utilizando-se uma fonte padrão primária. Padrões primários podem não existirem para radionuclídeos de meia-vida curta, como por exemplo, emissores de pósitrons. Os instrumentos de medida são calibrados utilizando-se padrões apropriados para radionuclídeos emissores de partículas. O contador Geiger-Müller pode ser utilizado para medir emissores beta e beta-gama. Contadores de cintilação, semicondutores ou câmaras de ionização podem ser utilizados para medir raios gama. Emissores beta de baixa energia necessitam de contador de cintilação líquido. Nesse caso, a amostra é dissolvida na solução de uma ou mais (geralmente duas) substâncias orgânicas fluorescentes (cintiladores primários e secundários), que convertem parte da energia de desintegração em fótons de luz, os quais são detectados e convertidos em impulsos elétricos no fotomultiplicador. Quando se utiliza o contador de cintilação líquido, medidas comparativas devem ser corrigidas devido aos efeitos de interferência da luz. Medidas diretas devem ser feitas em condições que assegurem que as condições geométricas sejam constantes (volumes idênticos dos recipientes e soluções). Qualquer que seja o equipamento usado é essencial que se trabalhe em condições geométricas extremamente bem definidas, de modo que a fonte radioativa esteja sempre na mesma posição no aparelho e, conseqüentemente, sua distância do dispositivo de medição seja constante e permaneça a mesma, enquanto a amostra é substituída pelo padrão. Todas as medidas de radioatividade devem ser corrigidas pela subtração da atividade da radiação de fundo, devida à radiatividade do meio e aos sinais espúrios gerados no próprio aparelho. Em certos equipamentos, nos quais a contagem é feita em altos níveis de atividade, a correção pode ser necessária em razão das perdas por coincidência, devidas ao tempo de resolução do detector e do equipamento eletrônico associado. Para sistema de contagem com tempo morto fixo (τ), após cada contagem a correção é dada pela equação: N = taxa de contagem real por segundo; N 0 = taxa de contagem medida por segundo; τ = tempo morto em segundos. Em certos equipamentos, a correção é feita automaticamente. Correções da perda por coincidência devem ser feitas antes das correções para radiação de fundo.

8 Nas determinações de radioatividade há variações estatísticas porque estão relacionadas à probabilidade de desintegração nuclear. Um número suficiente de contagens deve ser feito para compensar variações no número de desintegrações por unidade de tempo. Pelo menos contagens são necessárias para obter desvio padrão de não mais de 1%. A atividade decai em razão exponencial, que é característica de cada radionuclídeo. Sua determinação somente é verdadeira no tempo de referência especificado. A atividade em outros tempos pode ser calculada a partir da equação exponencial ou pela tabela de decaimento ou, ainda, pode ser obtida graficamente da curva estabelecida para cada radionuclídeo. Todas as determinações de atividade devem ser acompanhadas de declaração da data e, se necessário, da hora em que as medidas foram feitas. A medida da atividade de amostra em solução é calculada em relação ao seu volume original e expressa por unidade de volume - concentração radioativa. Unidades de Radioatividade No Sistema Internacional (SI) a radioatividade é expressa em becquerel (Bq) que significa uma transformação por segundo. A unidade histórica de atividade é o curie (Ci) que é equivalente a 3,7 x Bq. Os fatores de conversão entre becquerel e curie e seus submúltiplos são assinalados na Tabela 1. Tabela 1 Unidades de radioatividade utilizadas em radiofarmácia e as conversões entre unidades SI e unidades históricas. Número de átomos transformados por segundo Unidade SI: becquerel (Bq) Unidade Histórica: curie (Ci) 1 1 Bq 27 picocurie (pci) kilobecquerel (Kbq) 27 nanocurie (nci) 1 x megabecquerel (MBq) 27 microcurie (µci) 1 x gigabecquerel (GBq) 27 millicurie (mci) Bq 1 (nci) KBq 1 (µci) 3,7 x MBq 1 (mci) 3,7 x GBq 1 Ci Identificação de radionuclídeos O radionuclídeo é, geralmente, identificado pela meia-vida física ou pela natureza e energia de sua radiação ou radiações, ou por ambos. Medida do tempo de meia-vida A meia-vida é medida com auxílio de aparelhos de detecção tais como câmara de ionização, contador Geiger- Müller, contador de cintilações ou detector semicondutor. A quantidade de radioatividade, consideradas as condições experimentais, deve ser suficientemente alta para permitir a detecção durante várias meias-vidas presumíveis, porém não alta demais, para evitar o fenômeno de perda por coincidência devida, por exemplo, ao tempo morto do equipamento.

9 A fonte radioativa é preparada de modo a evitar perdas durante sua manipulação. Amostras líquidas devem estar contidas em frascos ou tubos selados. Produtos sólidos devem ser protegidos por capa de folha adesiva de acetato de celulose, ou outro material cuja massa por unidade de área seja desprezível para evitar a atenuação de quantidade significativa da radiação em estudo. A mesma fonte é medida em condições geométricas idênticas e em intervalos que correspondem usualmente à metade da meia-vida e pelo tempo correspondente a aproximadamente três meias-vidas. O funcionamento correto do equipamento é verificado por meio do uso de uma fonte permanente e as variações da contagem são corrigidas, se necessário, conforme descrito em Medida da radioatividade. Traça-se uma curva lançando-se o tempo no eixo das abscissas e no eixo das ordenadas, o logaritmo do número de contagens por unidade de tempo, ou a corrente elétrica, conforme o tipo do equipamento usado. A meia-vida calculada a partir dessa curva deve atender à especificação descrita na respectiva monografia. Determinação da natureza e da energia da radiação A natureza e a energia da radiação emitida podem ser determinadas por diversos procedimentos que incluem a elaboração da curva de atenuação e o uso de espectrometria. A curva de atenuação é usada geralmente para a determinação da energia da radiação beta e a espectrometria é usada principalmente para determinação da energia da radiação gama. A curva de atenuação é elaborada para emissores beta puros ou para emissores beta-gama quando não há disponibilidade de espectrômetro de raios gama. Esse método de determinação de energia máxima da radiação beta fornece apenas valores aproximados. A fonte, montada convenientemente para proporcionar condições geométricas constantes, é colocada em frente à janela delgada do contador Geiger-Müller e protegida conforme descrito em Medida do tempo de meia-vida. A contagem da fonte é, então, medida. Entre a fonte e o contador são colocados pelo menos seis absorvedores de alumínio, de massa crescente por unidade de área, até que a taxa de contagem não seja afetada pela adição de absorvedores adicionais. Os absorvedores são inseridos de modo tal que as condições geométricas sejam mantidas constantes. Constrói-se uma curva colocando em abscissas a massa por unidade de área do absorvedor expressa em mg cm -2 e, em ordenadas, o logaritmo do número de contagens por unidade de tempo para cada um dos absorvedores utilizados. Curva idêntica é elaborada utilizando-se o padrão. O coeficiente de atenuação de massa é calculado em relação à parte mediana, praticamente retilínea, das curvas. O coeficiente de atenuação da massa, expresso em cm 2 mg -1, depende da energia da emissão beta e das propriedades físicas e químicas do absorvedor. Isso possibilita a identificação de emissão beta e o coeficiente é calculado, a partir de curvas construídas como descrito anteriormente, pela expressão: ( ) em que: m 1 = massa por unidade de área, do absorvedor mais leve; m 2 = massa por unidade de área, do absorvedor mais pesado (medir m1 e m2 dentro da parte retilínea da curva); A 1 = taxa de contagem para massa por unidade de área ml;

10 A 2 = taxa de contagem para massa por unidade de área m 2. O coeficiente de atenuação assim calculado não deve diferir em mais de 10% do coeficiente obtido em condições idênticas com o padrão do mesmo radionuclídeo. A espectrometria gama é usada para identificar radionuclídeos pela energia e intensidade dos raios X ou gama. Baseia-se na propriedade que certas substâncias (cintiladores) têm de emitirem luz quando interagem com radiação eletromagnética. O número de fótons produzido é proporcional à energia absorvida pelo cintilador. A luz é transformada em impulsos elétricos de amplitude aproximadamente proporcional à energia dissipada pelos fótons gama. Com a análise dos impulsos de saída por porcentagem obtem-se, com auxilio do analisador de pulsos, o espectro de energia da fonte. Nos espectros de cintilação de raios gama há um ou mais picos característicos correspondentes às energias da radiação gama na fonte. Esses picos são acompanhados por outros, mais ou menos largos, devidos a efeitos secundários da radiação no cintilador ou ao material em torno dele. A forma do espectro varia de acordo com o equipamento utilizado, tornando-se necessário calibrá-lo com auxílio de padrão do radionuclídeo em questão. O espectro de raios gama do radionuclídeo que os emite é próprio dele, sendo caracterizado pelo número de raios gama de energia individualizada produzida por transformação. Essa propriedade pode ser utilizada para identificar quais radionuclídeos estão presentes na fonte e as quantidades de cada um deles. Possibilita, também, avaliar o grau de impurezas presentes, pela detecção dos picos estranhos àqueles esperados. O detector preferido para a espectrometria de raios gama é um detector semicondutor de germânio ativado com lítio. Os detectores de cintilação de iodeto de sódio ativados com tálio, embora apresentem resolução menor, também, podem ser usados. A saída de cada um desses detectores ocorre na forma de pulsos elétricos, cuja amplitude é proporcional à energia dos raios gama detectados. Após amplificação, esses pulsos são analisados em analisador multicanal, que fornece o espectro de energia gama da fonte. A relação entre energia gama e o número do canal pode ser facilmente estabelecida utilizando-se fontes de raios gama de energia conhecida. O sistema de detecção deve ser calibrado, pois a eficiência do detector é função da energia da radiação gama, da forma da fonte e da distância da fonte ao detector. A eficiência da detecção pode ser medida com auxílio de fonte calibrada do radionuclídeo em questão ou, para trabalho mais genérico, pode ser construída uma curva de eficiência versus energia gama a partir de uma série de fontes calibradas de vários radionuclídeos. A utilização de detector de baixa resolução poderá trazer alguma dificuldade em identificar as impurezas, pois, os picos no espectro podem não estar bem resolvidos. Nesse caso, é recomendável a determinação da meia-vida por medidas repetidas da amostra. Se, numa fonte, a impureza radioativa de meia-vida diferente estiver presente, ela é facilmente detectável pela identificação de picos característicos, cujas amplitudes decrescem em taxas diferentes daquelas do radionuclídeo esperado. A determinação da meia-vida de picos interferentes por medidas repetidas da amostra ajudará na identificação da impureza. É possível estabelecer a taxa de decaimento da radioatividade usando espectrometria gama desde que os picos diminuam em amplitude em função da meia-vida. Informações sobre as características físicas dos radionuclídeos de relevância na produção de radiofármacos são fornecidas na Tabela 2.

11 PUREZA RADIONUCLÍDICA Para estabelecer a pureza radionuclídica da preparação, a radioatividade e a identidade de cada radionuclídeo presente devem ser conhecidas. O método mais comumente utilizado para examinar a pureza radionuclídica é o da espectrometria gama. Não é um método totalmente preciso porque as impurezas alfa e beta-emissoras geralmente não são detectáveis e, quando são empregados detectores de iodeto de sódio, os picos devidos às impurezas são frequentemente encobertos pelo espectro do radionuclídeo principal. Na monografia estão estabelecidas as exigências gerais para a pureza radionuclídica (por exemplo, o espectro de raios gama não deve diferir significativamente daquele da fonte padrão) e pode estabelecer limites para impurezas radionuclídicas específicas (por exemplo, molibdênio-99 em tecnécio-99m). Essas exigências são necessárias embora elas por si só não sejam suficientes para assegurar que a pureza radionuclídica da preparação seja adequada para uso humano. O fabricante deve analisar seus produtos, especialmente as preparações de radionuclídeos de meia-vida curta, quanto à presença de impurezas de meia-vida longa, após período conveniente de decaimento. Dessa maneira, podem ser obtidas informações sobre a adequação dos processos de fabricação e dos procedimentos de controle. Devido às diferenças nas meias vidas dos diferentes radionuclídeos presentes na preparação farmacêutica, a pureza radionuclídica muda com o tempo. A especificação de pureza radionuclídica deve ser garantida durante todo o prazo de validade. Às vezes é difícil realizar esse teste antes da liberação para uso de um lote produzido, quando a meia-vida do radionuclídeo na preparação é curta. O teste constitui-se, nesse caso, um controle de qualidade de produção. PUREZA RADIOQUÍMICA A determinação da pureza radioquímica requer a separação das substâncias químicas diferentes contendo o radionuclídeo e a estimativa da porcentagem da radioatividade associada à substância química declarada. Na determinação da pureza radioquímica podem ser usados métodos analíticos de separação, tais como métodos cromatográficos (cromatografia em papel, em camada delgada, de exclusão molecular, cromatografia gasosa ou cromatografia a líquido de alta eficiência), eletroforese e extração por solventes. Na cromatografia, o volume da amostra a ser utilizado depende da técnica adotada. É preferível não diluir a preparação em análise, mas é importante utilizar quantidade de radioatividade tal que perdas de contagem por coincidência não venham a ocorrer durante a medida da radioatividade. Considerando as massas muito pequenas do material radioativo aplicado aos cromatogramas, o uso de carreadores é, às vezes, necessário e eles podem ser adicionados quando a monografia assim o prescrever. Após o desenvolvimento da cromatografia em papel ou em camada delgada, o suporte é seco e as posições das áreas radioativas são detectadas ou pela autorradiografia ou pela medida da radioatividade ao longo do cromatograma, com auxílio de contadores devidamente colimados, ou pelo corte das fitas e contagem de cada porção. As posições das manchas ou áreas permitem identificação química por comparação com soluções das mesmas substâncias químicas (não radioativas), visualizadas por reação de cor ou exame sob

12 luz ultravioleta. A visualização pela reação de cor direta da amostra radioativa nem sempre é possível ou desejável, já que a revelação pode causar difusão da substância radioativa para além das manchas ou áreas identificadas. Medidas de radioatividade podem ser feitas por integração, utilizando-se equipamento automático ou contador digital. As proporções das áreas abaixo dos picos fornecem as relações das concentrações radioativas das substâncias químicas. Quando as fitas são cortadas em porções, as razões das quantidades de radioatividade medidas fornecem as proporções das concentrações de espécies químicas radioativas. Como a pureza radioquímica pode mudar com o tempo, principalmente por causa da decomposição por radiação, o resultado do teste deve indicar que o produto apresenta valores especificados durante todo o prazo de validade do radiofármaco. ATIVIDADE ESPECÍFICA A atividade específica é calculada relacionando-se a concentração radioativa (radioatividade por unidade de volume) com a concentração da substância química em análise, após verificação de que a radioatividade é devida somente ao radionuclídeo (pureza radionuclídica) e à espécie química (pureza radioquímica) em questão. A atividade específica muda com o tempo, devendo ser expressa tendo como referência a data e, se necessário, a hora. A especificação deve ser garantida durante todo o período de validade do radiofármaco.

13

14

15

16

17

18

Decaimentos radioativos. FÍSICA DAS RADIAÇÕES I Paulo R. Costa

Decaimentos radioativos. FÍSICA DAS RADIAÇÕES I Paulo R. Costa Decaimentos radioativos FÍSICA DAS RADIAÇÕES I Paulo R. Costa Sumário Atividade de uma amostra radioativa Crescimento radioativo Decaimentos sucessivos Tipos de decaimento Radioisótopos na Medicina Radioproteção

Leia mais

CURSO DE RADIOPROTEÇÃO COM ÊNFASE NO USO, PREPARO E MANUSEIO DE FONTES RADIOATIVAS NÃO SELADAS

CURSO DE RADIOPROTEÇÃO COM ÊNFASE NO USO, PREPARO E MANUSEIO DE FONTES RADIOATIVAS NÃO SELADAS CURSO DE RADIOPROTEÇÃO COM ÊNFASE NO USO, PREPARO E MANUSEIO DE FONTES RADIOATIVAS NÃO SELADAS Walter Siqueira Paes DIVISÃO DE HIGIENE, SEGURANÇA E MEDICINA DO TRABALHO SETOR DE PROTEÇÃO RADIOLÓGICA PROGRAMAÇÃO

Leia mais

CURSO DE RADIOPROTEÇÃO COM ÊNFASE NO USO, PREPARO E MANUSEIO DE FONTES RADIOATIVAS NÃO SELADAS

CURSO DE RADIOPROTEÇÃO COM ÊNFASE NO USO, PREPARO E MANUSEIO DE FONTES RADIOATIVAS NÃO SELADAS CURSO DE RADIOPROTEÇÃO COM ÊNFASE NO USO, PREPARO E MANUSEIO DE FONTES RADIOATIVAS NÃO SELADAS COORDENADORIA DE ADMINISTRAÇÃO GERAL DIVISÃO DE SAÚDE OCUPACIONAL SEÇÃO TÉCNICA DE PROTEÇÃO RADIOLÓGICA PROGRAMAÇÃO

Leia mais

FÍSICA MÉDICA. Aula 04 Desintegração Nuclear. Prof. Me. Wangner Barbosa da Costa

FÍSICA MÉDICA. Aula 04 Desintegração Nuclear. Prof. Me. Wangner Barbosa da Costa FÍSICA MÉDICA Aula 04 Desintegração Nuclear Prof. Me. Wangner Barbosa da Costa Desintegração Nuclear Núcleos prótons e nêutrons. Elemento com diferentes nº de nêutrons são chamados de isótopos. Núcleos

Leia mais

Lista elaborado por coletânea de exercícios, traduzida e organizado por Emerson Itikawa sob supervisão do Prof. Eder R. Moraes

Lista elaborado por coletânea de exercícios, traduzida e organizado por Emerson Itikawa sob supervisão do Prof. Eder R. Moraes Física Nuclear e Decaimento 1) (HOBBIE, R.K.; Interm Phys Med Bio) Calcular a energia de ligação, e a energia de ligação por núcleon, a partir das massas dadas, para os nuclídeos (a) 6 Li, (b) 12 C, (c)

Leia mais

O ÂTOMO TIPOS DE RADIAÇÕES. TIPOS DE RADIAÇÕES As radiações podem ser classificadas da seguinte forma: Quanto à composição

O ÂTOMO TIPOS DE RADIAÇÕES. TIPOS DE RADIAÇÕES As radiações podem ser classificadas da seguinte forma: Quanto à composição O ÂTOMO Prof. André L. C. Conceição DAFIS Curitiba, 27 de março de 2015 TIPOS DE RADIAÇÕES Radiação é energia em trânsito (emitida e transferida por um espaço). Do mesmo jeito que o calor (energia térmica

Leia mais

AS RADIAÇÕES NUCLEARES 4 AULA

AS RADIAÇÕES NUCLEARES 4 AULA AS RADIAÇÕES NUCLEARES 4 AULA Nesta Aula: Caracterização das radiações Nucleares Caracterização das radiações Nucleares UM POUCO DE HISTÓRIA... O físico francês Henri Becquerel (1852-1908), em 1896, acidentalmente

Leia mais

Radioatividade. Prof. Fred

Radioatividade. Prof. Fred Radioatividade Prof. Fred Radioatividade, uma introdução Radioatividade O homem sempre conviveu com a radioatividade. Raios cósmicos Fótons, elétrons, múons,... Radioatividade natural: Primordiais urânio,

Leia mais

Como definir a estabilidade de um átomo? Depende. Eletrosfera. Núcleo. Radioatividade

Como definir a estabilidade de um átomo? Depende. Eletrosfera. Núcleo. Radioatividade Como definir a estabilidade de um átomo? Depende Eletrosfera Ligações Núcleo Radioatividade O que é radioatividade? Tem alguma ver com radiação? Modelos atômicos Átomo grego Átomo de Thomson Átomo de

Leia mais

Lista 1 - Radioatividade

Lista 1 - Radioatividade 1. Para cada um dos radionuclídeos mostrados a seguir, escreva a equação que representa a emissão radioativa. Consulte a tabela periódica. a) b) c) d) e) 222 86 Rn, um alfa emissor presente no ar. 235

Leia mais

Apostila de Química 03 Radioatividade

Apostila de Química 03 Radioatividade Apostila de Química 03 Radioatividade 1.0 Histórico Em 1896, acidentalmente, Becquerel descobriu a radioatividade natural, ao observar que o sulfato duplo de potássio e uranila: K2(UO2)(SO4)2 conseguia

Leia mais

Como definir a estabilidade de um átomo? Depende. Eletrosfera. Núcleo. Radioatividade

Como definir a estabilidade de um átomo? Depende. Eletrosfera. Núcleo. Radioatividade Como definir a estabilidade de um átomo? Depende Eletrosfera Ligações Núcleo Radioatividade O que é radioatividade? Tem alguma ver com radiação? Radiação eletromagnética Ampla faixa de frequência Modelos

Leia mais

18/Maio/2016 Aula 21. Introdução à Física Nuclear. Estrutura e propriedades do núcleo. 20/Maio/2016 Aula 22

18/Maio/2016 Aula 21. Introdução à Física Nuclear. Estrutura e propriedades do núcleo. 20/Maio/2016 Aula 22 18/Maio/2016 Aula 21 Introdução à Física Nuclear Estrutura e propriedades do núcleo 20/Maio/2016 Aula 22 Radioactividade: Poder de penetração. Regras de conservação. Actividade radioactiva. Tempo de meia

Leia mais

PROFESSOR: JURANDIR SOARES DISCIPLINA: QUÍMICA CONTEÚDO: RADIOTIVIDADE AULA: 01

PROFESSOR: JURANDIR SOARES DISCIPLINA: QUÍMICA CONTEÚDO: RADIOTIVIDADE AULA: 01 PROFESSOR: JURANDIR SOARES DISCIPLINA: QUÍMICA CONTEÚDO: RADIOTIVIDADE AULA: 01 RADIOATIVIDADE É a desintegração espontânea ou provocada da matéria com emissões de radiações como consequência de uma estabilidade

Leia mais

APRESENTAÇÃO. Professor: Augusto Sampaio. Conceitos Básicos Sobre Medicina Nuclear.

APRESENTAÇÃO. Professor: Augusto Sampaio. Conceitos Básicos Sobre Medicina Nuclear. MEDICINA NUCLEAR APRESENTAÇÃO Professor: Augusto Sampaio Conceitos Básicos Sobre Medicina Nuclear. O que é Medicina Nuclear? Medicina Nuclear é uma especialidade que emprega fontes abertas de materiais

Leia mais

Física das Radiações & Radioatividade. Tecnologia em Medicina Nuclear Prof. Leonardo

Física das Radiações & Radioatividade. Tecnologia em Medicina Nuclear Prof. Leonardo Física das Radiações & Radioatividade Tecnologia em Medicina Nuclear Prof. Leonardo ÁTOMO Menor porção da matéria que mantém as propriedades químicas do elemento químico correspondente. Possui um núcleo,

Leia mais

O Decaimento Radioativo (6 aula)

O Decaimento Radioativo (6 aula) O Decaimento Radioativo (6 aula) O decaimento Radioativo Famílias Radioativas Formação do Material Radioativo O Decaimento Radioativo Quando um átomo instável emite partículas a, b, ou radiação g, ele

Leia mais

Aula 21 Física Nuclear

Aula 21 Física Nuclear Aula 21 Física 4 Ref. Halliday Volume4 Sumário Descobrindo o Núcleo; Algumas Propriedades Nucleares; Decaimento Radioativo; Decaimento Alfa; Decaimento Beta; Radiação Ionizante; Analisando os dados, Rutherford

Leia mais

Física IV Poli Engenharia Elétrica: 20ª Aula (04/11/2014)

Física IV Poli Engenharia Elétrica: 20ª Aula (04/11/2014) Física IV Poli Engenharia Elétrica: ª Aula (4/11/14) Prof. Alvaro Vannucci a última aula vimos: Átomos multi-eletrônicos: as energias dos estados quânticos podem ser avaliadas através da expressão: 13,6

Leia mais

VALIDAÇÃO DE MÉTODOS ANALÍTICOS

VALIDAÇÃO DE MÉTODOS ANALÍTICOS VALIDAÇÃO DE MÉTODOS ANALÍTICOS RE nº 899, de 2003 da ANVISA - Guia para validação de métodos analíticos e bioanalíticos; Validation of analytical procedures - UNITED STATES PHARMACOPOEIA - última edição;

Leia mais

INSTRUMENTAÇÃO NUCLEAR INTERAÇÃO DA RADIAÇÃO COM A MATÉRIA. Claudio C. Conti

INSTRUMENTAÇÃO NUCLEAR INTERAÇÃO DA RADIAÇÃO COM A MATÉRIA. Claudio C. Conti INSTRUMENTAÇÃO NUCLEAR INTERAÇÃO DA RADIAÇÃO COM A MATÉRIA Claudio C. Conti 1 Interação da Radiação com a Matéria A operação de qualquer tipo de detector é baseada no tipo da interação da radiação com

Leia mais

Dosimetria e Proteção Radiológica

Dosimetria e Proteção Radiológica Dosimetria e Proteção Radiológica Prof. Dr. André L. C. Conceição Departamento Acadêmico de Física (DAFIS) Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial (CPGEI) Universidade

Leia mais

Raios-x. Proteção e higiene das Radiações Profª: Marina de Carvalho CETEA

Raios-x. Proteção e higiene das Radiações Profª: Marina de Carvalho CETEA Raios-x Proteção e higiene das Radiações Profª: Marina de Carvalho CETEA Materiais Radioativos 1896 o físico Francês Becquerel descobriu que sais de Urânio emitia radiação capaz de produzir sombras de

Leia mais

Desintegração Nuclear. Paulo R. Costa

Desintegração Nuclear. Paulo R. Costa Desintegração Nuclear Paulo R. Costa Sumário Introdução Massas atômicas e nucleares Razões para a desintegração nuclear Decaimento nuclear Introdução Unidades e SI Introdução Comprimento metro Tempo segundo

Leia mais

Eletromagnetismo: radiação eletromagnética

Eletromagnetismo: radiação eletromagnética 29 30 31 32 RADIAÇÕES NUCLEARES Como vimos nos textos anteriores, o interior da matéria no domínio atômico, inacessível ao toque e olhar humano, é percebido e analisado somente através das radiações eletromagnéticas

Leia mais

Instrumentação em Medicina Nuclear

Instrumentação em Medicina Nuclear Instrumentação em Medicina Nuclear Prof. Osvaldo Sampaio UCB - Medicina Objetivo Detectar a radiatividade emitida pelo paciente de forma a permitir uma localização espacial e temporal, necessária para

Leia mais

Física Nuclear: Radioatividade

Física Nuclear: Radioatividade Física Nuclear: Radioatividade Descoberta da Radioatividade Becquerel, estudando fenômenos de fluorescência e raios-x Observava fluorescência no Urânio quando exposto ao Sol. Becquerel protegia uma chapa

Leia mais

Física Nuclear: Radioatividade

Física Nuclear: Radioatividade Física Nuclear: Radioatividade Descoberta da Radioatividade Becquerel, estudando fenômenos de fluorescência e raios-x Observava fluorescência no Urânio quando exposto ao Sol. Becquerel protegia uma chapa

Leia mais

RADIOATIVIDADE DEFINIÇÃO

RADIOATIVIDADE DEFINIÇÃO RADIOATIVIDADE DEFINIÇÃO ATIVIDADE QUE CERTOS ÁTOMOS POSSUEM DE EMITIR RADIAÇÕES ELETROMAGNÉTICAS E PARTÍCULAS DE SEUS NÚCLEOS INSTÁVEIS COM O PROPÓSITO DE ADQUIRIR ESTABILIDADE ESTABILIDADE NUCLEAR ADMITE-SE

Leia mais

QUÍMICA. Transformações Químicas e Energia. Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos - Parte 4

QUÍMICA. Transformações Químicas e Energia. Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos - Parte 4 QUÍMICA Transformações Químicas e Energia Radioatividade: Reações de Fissão e Fusão Nuclear, - Parte 4 Prof ª. Giselle Blois Cinética da Radioatividade Quando um átomo emite radiação (energia) ele sofre

Leia mais

Cap. 42 Física Nuclear

Cap. 42 Física Nuclear Radiação Fukushima (2011) Cap. 42 Física Nuclear A descoberta do núcleo. Propriedades do núcleo: Núcleons; Carta de nuclídeos; Raio; Massa; Energia de ligação; Força forte. Decaimento radioativo: Decaimento

Leia mais

Química Fascículo 04 Elisabeth Pontes Araújo Elizabeth Loureiro Zink José Ricardo Lemes de Almeida

Química Fascículo 04 Elisabeth Pontes Araújo Elizabeth Loureiro Zink José Ricardo Lemes de Almeida Química Fascículo Elisabeth Pontes Araújo Elizabeth Loureiro Zink José Ricardo Lemes de Almeida Índice Radioatividade...1 Exercícios... Gabarito...3 Radioatividade É a emissão de Radiação de um núcleo

Leia mais

Física Experimental C. Coeficiente de Atenuação dos Raios Gama

Física Experimental C. Coeficiente de Atenuação dos Raios Gama Carlos Ramos (Poli USP)-2016/Andrius Poškus (Vilnius University) - 2012 4323301 Física Experimental C Coeficiente de Atenuação dos Raios Gama Grupo: Nome No. USP No. Turma OBJETIVOS - Medir curvas de atenuação

Leia mais

Efeitos Biológicos das Radiações Ionizantes e Não Ionizantes /IFUSP/2014

Efeitos Biológicos das Radiações Ionizantes e Não Ionizantes /IFUSP/2014 Efeitos Biológicos das Radiações Ionizantes e Não Ionizantes 4300436/IFUSP/2014 Lista de Exercícios 3 (Extraídos de Okuno e Yoshimura, 2010, capítulo 4) 1. Calcule o número de átomos de 198 Au que se desintegram

Leia mais

Introdução aos métodos instrumentais

Introdução aos métodos instrumentais Introdução aos métodos instrumentais Métodos instrumentais Métodos que dependem da medição de propriedades elétricas, e os que estão baseados na: determinação da absorção da radiação, na medida da intensidade

Leia mais

Física Moderna II Aula 10

Física Moderna II Aula 10 Física Moderna II Aula 10 Marcelo G. Munhoz munhoz@if.usp.br Lab. Pelletron, sala 245 ramal 6940 Como podemos descrever o núcleo de maneira mais detalhada? n Propriedades estáticas: q Tamanho, q Massa,

Leia mais

QUESTÕES DE FÍSICA MODERNA

QUESTÕES DE FÍSICA MODERNA QUESTÕES DE FÍSICA MODERNA 1) Em diodos emissores de luz, conhecidos como LEDs, a emissão de luz ocorre quando elétrons passam de um nível de maior energia para um outro de menor energia. Dois tipos comuns

Leia mais

Decaimento Radioativo

Decaimento Radioativo Unidade 3 Radioatividade Decaimento Radioativo Decaimentos Alfa, Beta, e Gama Nuclídeos Radioativos Datação Radioativa 14 C Medidas de Dose de Radiação Modelos Nucleares Marie e Pierre Curie Marie Curie

Leia mais

Átomos. Retrospectiva do átomo de hidrogênio Estrutura eletrônica do átomo neutro Estrutura nuclear do átomo RMN

Átomos. Retrospectiva do átomo de hidrogênio Estrutura eletrônica do átomo neutro Estrutura nuclear do átomo RMN Átomos Retrospectiva do átomo de hidrogênio Estrutura eletrônica do átomo neutro Estrutura nuclear do átomo RMN Átomo neutro O átomo é constituido de um núcleo positivo com Z próton que definem o confinamento

Leia mais

Descoberta do núcleo. Forças nucleares. Nuclídeos experimento de Rutherford Núcleo pequeno e positivo

Descoberta do núcleo. Forças nucleares. Nuclídeos experimento de Rutherford Núcleo pequeno e positivo Descoberta do núcleo 1911- experimento de Rutherford Núcleo pequeno e positivo Raio nuclear: fentometro (1 fm = 10-15 m) Razão entre os raios (r): r núcleo / r átomo = 10-4 Forças nucleares Prótons muito

Leia mais

Descoberta do Núcleo

Descoberta do Núcleo Unidade 2: Aula 4 (1a. Parte) Núcleo Atômico Descoberta do Núcleo Propriedades dos Núcleos Forças Nucleares Estabilidade Nuclear Ressonância Magnética Nuclear Consultas http://hyperphysics.phy-astr.gsu.edu/hbase/nuccon.html#nuccon

Leia mais

Física Moderna II Aula 14

Física Moderna II Aula 14 Física Moderna II Aula 14 Marcelo G. Munhoz munhoz@if.usp.br Lab. Pelletron, sala 245 ramal 6940 Como podemos descrever o núcleo de maneira mais detalhada? n Propriedades estáticas: q Tamanho, q Massa,

Leia mais

FOLHA DE CONTROLE DE DOCUMENTOS

FOLHA DE CONTROLE DE DOCUMENTOS FOLHA DE CONTROLE DE DOCUMENTOS 1) IDENTIFICAÇÃO Código do documento PE-LD-010 Revisão 01 Data 28/06/2018 Título Protocolo de Estudo de Estabilidade de Longa Duração para PUL-TEC Classificação Restrito

Leia mais

Definições de Estabilidade

Definições de Estabilidade Radioquímica Definições de Estabilidade 1. Não se deteta radioatividade. Não há transformação em outro nuclídeo.. Sistema nuclear é estável em relação a outro quando a diferença de energia é negativa:

Leia mais

FOLHA DE CONTROLE DE DOCUMENTOS

FOLHA DE CONTROLE DE DOCUMENTOS FOLHA DE CONTROLE DE DOCUMENTOS 1) IDENTIFICAÇÃO Código do documento PE-LD-001 Revisão 00 Data 09/08/2017 Título Classificação Restrito n o de páginas 05 n o de anexos 00 2) ELABORAÇÃO, ANÁLISE E APROVAÇÃO

Leia mais

Leonnardo Cruvinel Furquim PROCESSOS NUCLEARES

Leonnardo Cruvinel Furquim PROCESSOS NUCLEARES Leonnardo Cruvinel Furquim PROCESSOS NUCLEARES Radioatividade Três espécies de emissões radioativas naturais foram identificadas e caracterizadas e foi demonstrado que todas são emitidas pelo núcleo atomico,

Leia mais

SOS QUÍMICA - O SITE DO PROFESSOR SAUL SANTANA.

SOS QUÍMICA - O SITE DO PROFESSOR SAUL SANTANA. SOS QUÍMICA - O SITE DO PROFESSOR SAUL SANTANA. QUESTÕES Exercícios de Radiatividade 01) O que acontece com o número atômico (Z) e o número de massa (A) de um núcleo radiativo quando ele emite uma partícula

Leia mais

META Apresentar os principais fenômenos da radioatividade e as propriedades físicas das radiações ionizantes.

META Apresentar os principais fenômenos da radioatividade e as propriedades físicas das radiações ionizantes. BIOFÍSICA DAS RADIAÇÕES IONIZANTES Aula 6 META Apresentar os principais fenômenos da radioatividade e as propriedades físicas das radiações ionizantes. OBJETIVOS Ao final desta aula, o aluno deverá: descrever

Leia mais

ENSAIO RADIOGRÁFICO Princípios e Tendências

ENSAIO RADIOGRÁFICO Princípios e Tendências Princípios e Tendências Princípio do ensaio Esta baseado: Capacidade dos Raios X e penetrar em sólidos Absorção da radiação Impressionar filmes radiográficos Princípio do ensaio fonte peça descontinuidade

Leia mais

a) Escrever a equação nuclear balanceada que representa a reação que leva à emissão do positrão.

a) Escrever a equação nuclear balanceada que representa a reação que leva à emissão do positrão. A PET permite obter imagens com maiores detalhes, e menor exposição à radiação do que outras técnicas tomográficas. A técnica de PET pode utilizar compostos marcados com 6 C 11. Este isótopo emite um positrão,

Leia mais

Resolução RDC nº 63, de 18 de dezembro de 2009

Resolução RDC nº 63, de 18 de dezembro de 2009 Resolução RDC nº 63, de 18 de dezembro de 2009 A Diretoria Colegiada da Agência Nacional de Vigilância Sanitária, no uso da atribuição que lhe confere o inciso IV do art. 11 do Regulamento aprovado pelo

Leia mais

FICHA DE DISCIPLINA. UNIDADE ACADÊMICA: Instituto de Física PRÉ-REQUISITOS: CÓ-REQUISITOS: OBJETIVOS

FICHA DE DISCIPLINA. UNIDADE ACADÊMICA: Instituto de Física PRÉ-REQUISITOS: CÓ-REQUISITOS: OBJETIVOS 173 UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE FÍSICA CURSO DE LICENCIATURA EM FÍSICA DISCIPLINA: Física das Radiações FICHA DE DISCIPLINA CÓDIGO: GFC101 PERÍODO/SÉRIE: UNIDADE ACADÊMICA: Instituto

Leia mais

Figura 1: Fotos dos cogumelos formados após a explosão das bombas nucleares Little Boy (à esquerda Hiroshima) e Fat Man (à direita Nagasaki).

Figura 1: Fotos dos cogumelos formados após a explosão das bombas nucleares Little Boy (à esquerda Hiroshima) e Fat Man (à direita Nagasaki). O Núcleo Atômico É do conhecimento de todos o enorme poder energético contido no núcleo dos átomos! Quem nunca ouviu falar sobre as bombas nucleares que foram lançadas, no final da II Guerra Mundial, nas

Leia mais

Aula 25 Radioatividade

Aula 25 Radioatividade Aula 25 Radioatividade A radioatividade foi descoberta pelo físico francês Antonie Henri Becquerel, ele havia descoberto um minério de urânio que, ao ser colocado sobre uma chapa fotográfica envolta em

Leia mais

26/03/2015 VALIDAÇÃO CONTROLE FÍSICO-QUÍMICO DA QUALIDADE RDC 899/2003. Por que validar? OBJETIVO DA VALIDAÇÃO:

26/03/2015 VALIDAÇÃO CONTROLE FÍSICO-QUÍMICO DA QUALIDADE RDC 899/2003. Por que validar? OBJETIVO DA VALIDAÇÃO: VALIDAÇÃO CONTROLE FÍSICO-QUÍMICO DA QUALIDADE RDC 899/2003 VALIDAÇÃO: ato documentado que atesta que qualquer procedimento, processo, equipamento, material, operação ou sistema realmente conduza aos resultados

Leia mais

RADIOATIVIDADE. É o fenômeno onde núcleos instáveis emitem partículas e radiação, transformando-se em outros átomos.

RADIOATIVIDADE. É o fenômeno onde núcleos instáveis emitem partículas e radiação, transformando-se em outros átomos. RADIOATIVIDADE É o fenômeno onde núcleos instáveis emitem partículas e radiação, transformando-se em outros átomos. Marie Curie Descobriu a Radioatividade com Pierre Curie e Becquerel. Descobriu dois

Leia mais

FOLHA DE CONTROLE DE DOCUMENTOS

FOLHA DE CONTROLE DE DOCUMENTOS FOLHA DE CONTROLE DE DOCUMENTOS 1) IDENTIFICAÇÃO Número do documento NA Revisão NA Data 11/01/2017 Título RELATÓRIO DE ESTABILIDADE DE LONGA DURAÇÃO DE GUAN-IPEN-131 JSC Classificação Restrito n o de páginas

Leia mais

Detectores de Radiação. Tecnologia em Medicina Nuclear Prof. Leonardo

Detectores de Radiação. Tecnologia em Medicina Nuclear Prof. Leonardo Detectores de Radiação Tecnologia em Medicina Nuclear Prof. Leonardo DETECTOR DE RADIAÇÃO Conceito o Dispositivo que indica a presença da radiação. Constituição o o Material sensível à radiação; Sistema

Leia mais

Decaimento radioativo

Decaimento radioativo Decaimento radioativo Processo pelo qual um nuclídeo instável transforma-se em outro, tendendo a uma configuração energeticamente mais favorável. Tipos de decaimento: (Z, A) * (Z, A) (Z, A) (Z, A)! γ!

Leia mais

Química A Extensivo V. 8

Química A Extensivo V. 8 Química A Extensivo V. Exercícios 0) A α 90 Th3 Ra 9 Ac 90 Th α Ra Número de massa: Prótons: Neutons: 36 0) 90 Th 3 α Ra α 6 Rn α Po 0 5 At 0 03) B 0) C Prótons: 5 Elétons: 5 Neutons: 00 5 = 35 6X O elemento

Leia mais

FOLHA DE CONTROLE DE DOCUMENTOS

FOLHA DE CONTROLE DE DOCUMENTOS FOLHA DE CONTROLE DE DOCUMENTOS 1) IDENTIFICAÇÃO Número do documento NA Revisão NA Data 06/07/2016 Título Classificação Restrito n o de páginas 04 n o de anexos 00 2) ELABORAÇÃO, ANÁLISE E APROVAÇÃO Nome

Leia mais

SÓ EU SEI O QUE VAI CAIR NA PROVA! RADIOATIVIDADE. Prof. Gabriel P. Machado

SÓ EU SEI O QUE VAI CAIR NA PROVA! RADIOATIVIDADE. Prof. Gabriel P. Machado RADIOATIVIDADE Prof. Gabriel P. Machado DEFINIÇÃO Propriedade de núcleos instáveis, que emitem partículas e radiação de modo a atingir estabilidade. HISTÓRICO 1895: Wilhelm Konrad Roentgen conseguiu produzir

Leia mais

FOLHA DE CONTROLE DE DOCUMENTOS

FOLHA DE CONTROLE DE DOCUMENTOS FOLHA DE CONTROLE DE DOCUMENTOS 1) IDENTIFICAÇÃO Código do documento PE-ES-010 Revisão 02 Data 07/12/2018 Título Classificação Restrito n o de páginas 06 n o de anexos 00 2) ELABORAÇÃO, ANÁLISE E APROVAÇÃO

Leia mais

FARMACOPEIA MERCOSUL: PREPARAÇÕES RADIOFARMACÊUTICAS

FARMACOPEIA MERCOSUL: PREPARAÇÕES RADIOFARMACÊUTICAS MERCOSUL/XLIII SGT Nº 11/P.RES. Nº FARMACOPEIA MERCOSUL: PREPARAÇÕES RADIOFARMACÊUTICAS TENDO EM VISTA: O Tratado de Assunção, o Protocolo de Ouro Preto e as Resoluções Nº 31/11 e 22/14 do Grupo Mercado

Leia mais

FOLHA DE CONTROLE DE DOCUMENTOS

FOLHA DE CONTROLE DE DOCUMENTOS FOLHA DE CONTROLE DE DOCUMENTOS 1) IDENTIFICAÇÃO Código do documento PE-ES-008 Revisão 00 Data: 09/12/2017 Título Classificação Restrito n o de páginas 05 n o de anexos 00 2) ELABORAÇÃO, ANÁLISE E APROVAÇÃO

Leia mais

QUÍMICA. Transformações Químicas e Energia. Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos - Parte 1

QUÍMICA. Transformações Químicas e Energia. Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos - Parte 1 QUÍMICA Transformações Químicas e Energia Radioatividade: Reações de Fissão e Fusão Nuclear, - Parte 1 Prof ª. Giselle Blois Reação nuclear: é aquela que altera os núcleos atômicos. * Importante lembrar

Leia mais

A descoberta da radioatividade

A descoberta da radioatividade 10. Radioatividade Sumário Histórico da radioatividade Lei do decaimento radioativo Decaimentos alfa, beta e gama Séries radioativas Datação pelo Carbono-14 Fissão nuclear Fusão nuclear A descoberta da

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 16 PROCESSOS E REAÇÕES NUCLEARES Edição Agosto de 2007 CAPÍTULO 08 PROCESSOS E REAÇÕES NUCLEARES ÍNDICE 16.1- Introdução 16.2- Radioatividade

Leia mais

Detecção e Medida de Radiações Ionizantes

Detecção e Medida de Radiações Ionizantes Detecção e Medida de Radiações Ionizantes Luis Portugal portugal@ctn.ist.utl.pt 1 Resumo Dosimetros individuais Monitores de radiação Espectrometria gama Cintilação líquida Espectrometria alfa RPM s Técnicas

Leia mais

Mas, se tem uma meia vida tão curta, de onde vem o 99 Tc usado nos hospitais?

Mas, se tem uma meia vida tão curta, de onde vem o 99 Tc usado nos hospitais? 99 Tc : o radionuclídeo mais usado em medicina nuclear RADIAÇÃO γ NA IMAGIOLOGIA MÉDICA SPECT (Single Photon Emission Computed Tomography) - Com raios gama emitidos de dentro do corpo humano pode obter-se

Leia mais

FOLHA DE CONTROLE DE DOCUMENTOS

FOLHA DE CONTROLE DE DOCUMENTOS FOLHA DE CONTROLE DE DOCUMENTOS 1) IDENTIFICAÇÃO Código do documento PV-C-089 Revisão 00 26/08/2014 Título Protocolo de Validação de Método Analítico Físico-Químico do MDP-TEC Classificação Restrito n

Leia mais

QUÍMICA. Transformações Químicas e Energia. Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos - Parte 2

QUÍMICA. Transformações Químicas e Energia. Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos - Parte 2 QUÍMICA Transformações Químicas e Energia Radioatividade: Reações de Fissão e Fusão Nuclear, - Parte 2 Prof ª. Giselle Blois As emissões gama, na verdade, não são partículas e sim ondas eletromagnéticas

Leia mais

Os fundamentos da Física Volume 3 1. Resumo do capítulo

Os fundamentos da Física Volume 3 1. Resumo do capítulo Os fundamentos da Física Volume 1 Capítulo 0 Física Nuclear AS FORÇAS FUNDAMENTAIS DA NATUREZA Força nuclear forte Mantém a coesão do núcleo atômico. Intensidade 10 8 vezes maior do que a força gravitacional.

Leia mais

1896, : K2(UO2)(SO4)2,

1896, : K2(UO2)(SO4)2, RADIOATIVIDADE Radioatividade Histórico: Em 1896, acidentalmente, Becquerel descobriu a radioatividade natural, ao observar que o sulfato duplo de potássio e uranila : K 2 (UO 2 )(SO 4 ) 2, conseguia impressionar

Leia mais

ESPECTROMETRIA DE RAIOS X

ESPECTROMETRIA DE RAIOS X ESPECTROMETRIA DE RAIOS X 1. Resumo Neste trabalho pretende se estudar o espectro de baixa energia essencialmente constituído por raios X de vários isótopos recorrendo a um detector para baixas energias

Leia mais

Colégio FAAT Ensino Fundamental e Médio

Colégio FAAT Ensino Fundamental e Médio Colégio FAAT Ensino Fundamental e Médio Lista de exercícios de Química - 2º Bimestre Nome: Ano: 9ºA/B/C Prof. Marcos Miranda N.: / /17 Constituição da matéria Elementos químicos e a representação atômica

Leia mais

FOLHA DE CONTROLE DE DOCUMENTOS

FOLHA DE CONTROLE DE DOCUMENTOS FOLHA DE CONTROLE DE DOCUMENTOS 1) IDENTIFICAÇÃO Código do documento PE-ES-008 Revisão 02 Data 07/12/2018 Título Classificação Restrito n o de páginas 06 n o de anexos 00 2) ELABORAÇÃO, ANÁLISE E APROVAÇÃO

Leia mais

Espectrometria de luminescência molecular

Espectrometria de luminescência molecular Espectrometria de luminescência molecular Luminescência molecular Fotoluminescência Quimiluminescência fluorescência fosforescência Espectrometria de luminescência molecular Luminescência molecular Fotoluminescência

Leia mais

15/08/2017. É a propriedade que os núcleos instáveis possuem de emitir partículas e radiações eletromagnéticas, para se tornarem estáveis.

15/08/2017. É a propriedade que os núcleos instáveis possuem de emitir partículas e radiações eletromagnéticas, para se tornarem estáveis. É a propriedade que os núcleos instáveis possuem de emitir partículas e radiações eletromagnéticas, para se tornarem estáveis. 1 Descoberta dos raios X No final do século XIX, o físico alemão Wilheim Konrad

Leia mais

CURSO DE RADIOPROTEÇÃO COM ÊNFASE NO USO, PREPARO E MANUSEIO DE FONTES RADIOATIVAS NÃO SELADAS

CURSO DE RADIOPROTEÇÃO COM ÊNFASE NO USO, PREPARO E MANUSEIO DE FONTES RADIOATIVAS NÃO SELADAS CURSO DE RADIOPROTEÇÃO COM ÊNFASE NO USO, PREPARO E MANUSEIO DE FONTES RADIOATIVAS NÃO SELADAS Walter Siqueira Paes Tel: (19) 3429-4836 walterpaes@gmail.com gtprusp@gmail.com www.usp.br/protecaoradiologica

Leia mais

Padronização do 57 Co por diferentes métodos do LNMRI

Padronização do 57 Co por diferentes métodos do LNMRI Padronização do 57 Co por diferentes métodos do LNMRI E A Rezende 1,2, C J da Silva 3, R Poledna 3, R L da Silva 3, L Tauhata 3, R T Lopes 2 1 Instituto Federal do Rio de Janeiro - Campus Volta Redonda

Leia mais

Aula 7 INTERAÇÃO DA RADIAÇÃO COM A MATÉRIA

Aula 7 INTERAÇÃO DA RADIAÇÃO COM A MATÉRIA INTERAÇÃO DA RADIAÇÃO COM A MATÉRIA Aula 7 META Neta aula o aluno aprenderá os mecanismos envolvidos quando a radiação eletromagnética ou corpuscular interage com a matéria. Os conceitos contidos nesta

Leia mais

MEDIDA ABSOLUTA DA ATIVIDADE E DETERMINAÇÃO DA PROBABILIDADE DE EMISSÃO GAMA POR DECAIMENTO DO 177 Lu FABRÍCIO FERNANDES VAZ DA SILVA

MEDIDA ABSOLUTA DA ATIVIDADE E DETERMINAÇÃO DA PROBABILIDADE DE EMISSÃO GAMA POR DECAIMENTO DO 177 Lu FABRÍCIO FERNANDES VAZ DA SILVA AUTARQUIA ASSOCIADA À UNIVERSIDADE DE SÃO PAULO MEDIDA ABSOLUTA DA ATIVIDADE E DETERMINAÇÃO DA PROBABILIDADE DE EMISSÃO GAMA POR DECAIMENTO DO 177 Lu FABRÍCIO FERNANDES VAZ DA SILVA Dissertação Apresentada

Leia mais

Radioactividade. Instabilidade dos núcleos:

Radioactividade. Instabilidade dos núcleos: Radioactividade Instabilidade dos núcleos: Radioactividade Carácter aleatório do decaimento: N ( t) = N 0 e t/τ τ é o tempo de vida média. O período de semidesintegração T1/2 (ou seja o tempo que leva

Leia mais

Aula 1 Conceitos Básicos sobre Radiação. F 107 Física para Biologia 1º Semestre de 2010 Prof.Dr. Edmilson JT Manganote

Aula 1 Conceitos Básicos sobre Radiação. F 107 Física para Biologia 1º Semestre de 2010 Prof.Dr. Edmilson JT Manganote Aula 1 Conceitos Básicos sobre Radiação Introdução O que vamos discutir? Tipos e características das radiações Teoria dos quanta Dualidade onda-partícula Microscópio eletrônico A radiação é a propagação

Leia mais

Universidade Federal do Rio Grande do Sul. Instituto de Física Departamento de Física. FIS01184 Física IV-C Área 3 Lista 2

Universidade Federal do Rio Grande do Sul. Instituto de Física Departamento de Física. FIS01184 Física IV-C Área 3 Lista 2 Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Física FIS01184 Física IV-C Área 3 Lista 2 1.Calcule a distância máxima de aproximação para uma colisão frontal entre uma partícula

Leia mais

FÍSICA NUCLEAR E PARTÍCULAS

FÍSICA NUCLEAR E PARTÍCULAS FÍSICA NUCLEAR E PARTÍCULAS DETERMINAÇÃO DA ABUNDÂNCIA NATURAL DO 40 K O potássio natural é fracamente radioactivo, contendo uma parte em 10 4 de 40 K, um isótopo de potássio emissor de electrões. Conhecendo

Leia mais

HISTÓRICO 1895 WILHEM ROENTGEN

HISTÓRICO 1895 WILHEM ROENTGEN Prof. Edson Cruz HISTÓRICO 1895 WILHEM ROENTGEN Investiga o fenômeno da luminescência; (emissão de luz por uma substância excitada por uma radiação eletromagnética). Tubo de raios catódicos emitiam uma

Leia mais

Seção Técnica de Proteção Radiológica CENA/USP & SESMT/USP

Seção Técnica de Proteção Radiológica CENA/USP & SESMT/USP Seção Técnica de Proteção Radiológica CENA/USP & SESMT/USP Curso de Atualização e Conhecimento em Proteção Radiológica Liz Mary Bueno de Moraes Utilização da Espectrometria de Cintilação Líquida na Pesquisa

Leia mais

Capítulo 1 Radiação Ionizante

Capítulo 1 Radiação Ionizante Física das Radiações e Dosimetria Capítulo 1 Radiação Ionizante Dra. Luciana Tourinho Campos Programa Nacional de Formação em Radioterapia Introdução Tipos e fontes de radiação ionizante Descrição de campos

Leia mais

Observe a equação química que corresponde ao processo de obtenção descrito no texto.

Observe a equação química que corresponde ao processo de obtenção descrito no texto. Utilize o texto abaixo para responder às questões de números 01 e 02. Uma das experiências realizadas em aulas práticas de Química é a obtenção do 2-cloro 2-metil propano, usualmente denominado cloreto

Leia mais

LISTA 1 PARA ENTREGAR. Raios ultravioletas

LISTA 1 PARA ENTREGAR. Raios ultravioletas LISTA 1 PARA ENTREGAR 1) a) Radiação é energia em trânsito. É uma forma de energia emitida por uma fonte e transmitida por meio do vácuo, do ar ou de meios materiais. b) Radiações ionizantes são partículas

Leia mais

Análise de Alimentos. Prof. Tânia Maria Leite da Silveira

Análise de Alimentos. Prof. Tânia Maria Leite da Silveira Análise de Alimentos Prof. Tânia Maria Leite da Silveira Análise de alimentos Indústria de alimentos: controle da qualidade, fabricação e armazenamento do produto acabado; Universidades e institutos de

Leia mais

Aula 21 Física Nuclear

Aula 21 Física Nuclear Aula 21 Física 4 Ref. Halliday Volume4 Sumário Descobrindo o Núcleo; Algumas Propriedades Nucleares; Decaimento Radioativo; Decaimento Alfa; Decaimento Beta; Radiação Ionizante; Analisando os dados, Rutherford

Leia mais

Instituto de Física USP. Física V - Aula 16. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 16. Professora: Mazé Bechara Instituto de Física USP Física V - Aula 16 Professora: Mazé Bechara Aula 16 Criação e aniquilação de matéria (e antimatéria) 1. Processos (impensáveis na concepção de matéria na Física Clássica!) a) O

Leia mais

Demócrito. Demócrito a.c. Filósofo grego. A matéria é formada por partículas indivisíveis chamadas átomos.

Demócrito. Demócrito a.c. Filósofo grego. A matéria é formada por partículas indivisíveis chamadas átomos. Atomística Demócrito Demócrito 460-370 a.c. Filósofo grego. A matéria é formada por partículas indivisíveis chamadas átomos. Lavoisier NADA SE PERDE NADA SE CRIA TUDO SE TRANSFORMA Dalton BASEADO NA LEI

Leia mais

RADIOATIVIDADE E FÍSICA NUCLEAR

RADIOATIVIDADE E FÍSICA NUCLEAR RADIOATIVIDADE E FÍSICA NUCLEAR O começo... 1895 Wilhelm Conrad Roengten descobre a radiação X 1896 Antoine Henri Bequerel descobriu que determinado material emitia radiações espontâneas radioatividade

Leia mais

Interação da radiação com a matéria

Interação da radiação com a matéria Interação da radiação com a matéria 8 a aula/9 ª aula i - INTRODUÇÃO ii - IONIZAÇÃO, EXCITAÇÃO, ATIVAÇÃO E RADIAÇÃO DE FRENAGEM iii RADIAÇÕES DIRETAMENTE IONIZANTES iv RADIAÇOES INDIRETAMENTE IONIZANTES

Leia mais

Noções Básicas de Radioproteção e Gerenciamento de Rejeitos Radioativos

Noções Básicas de Radioproteção e Gerenciamento de Rejeitos Radioativos Noções Básicas de Radioproteção e Gerenciamento de Rejeitos Radioativos Curso de Extensão Universitária Instituto Butantan 25/05/2016 Dra. Mônica Spadafora Ferreira Pesquisadora Científica Laboratório

Leia mais

Descoberta do Núcleo

Descoberta do Núcleo Unidade 3 Núcleo Atômico Descoberta do Núcleo Propriedades dos Núcleos Forças Nucleares Estabilidade Nuclear Ressonância Magnética Nuclear Consultas http://hyperphysics.phy-astr.gsu.edu/hbase/nuccon.html#nuccon

Leia mais