BETÃO REFORÇADO COM FIBRAS DE AÇO



Documentos relacionados
BETÃO COM FIBRAS. O emprego de fibras de vidro no betão foi feito pela primeira vez, em 1950, na U.R.S.S..

Aços Longos. Soluções Pisos

Propriedades do Concreto

Conceitos de Projeto e Execução

Pré-esforço Aderente

- Pisos e revestimentos Industriais (pinturas especiais, autonivelantes, uretânicas, vernizes...);

Departamento de Engenharia Civil, Materiais de Construção I 3º Ano 1º Relatório INDÍCE

Para pisos mais resistentes, escolha Dramix. Dramix : marca registrada N. V. Bekaert.

Dramix Dramix : marca registrada da N.V. Bekaert

Índice. Página Redes de Segurança Guarda-corpos Andaimes metálicos Bailéus... 5

N.25 Fevereiro 2006 BETÃO COM VARÕES DE FIBRA DE VIDRO PROCESSOS DE CONSTRUÇÃO. Fernando Oliveira Marcelo Rodrigues Inês Santos João Dias

Doutorando do Departamento de Construção Civil PCC/USP, São Paulo, SP 2

Os procedimentos para determinar a resistência do condutor são:

Aula 3: Forjamento e Estampagem Conceitos de Forjamento Conceitos de Estampagem

MÓDULO 2 PROPRIEDADES E DOSAGEM DO CONCRETO

a) 0:1:3; b) 1:0:4; c) 1:0,5:5; d) 1:1,5:7; e) 1:2:9; f) 1:2,5:10

BLOCOS, ARGAMASSAS E IMPORTÂNCIA DOS BLOCOS CARACTERÍSTICAS DA PRODUÇÃO CARACTERÍSTICAS DA PRODUÇÃO. Prof. Dr. Luiz Sérgio Franco 1

PISOS EM CONCRETO ARMADO

Critérios para selecção e Instalação de Equipamentos Eléctricos. Apresentado por Eng.º José Barão

DEPARTAMENTO DE CIÊNCIA E TECNOLOGIA DOS MATERIAIS SETOR DE MATERIAIS

ÁREA DE ENSAIOS ALVENARIA ESTRUTURAL RELATÓRIO DE ENSAIO N O 36555

Concreto Definições. Concreto Durabilidade. Concreto Definições. Concreto Definições. Produção do concreto ANGELO JUST.

MÉTODO DE DOSAGEM EPUSP/IPT

2 Reforço Estrutural com Compósitos de Fibra de Carbono

Manual Soluções Pisos

Ficha Técnica de Produto

Telas Soldadas Nervuradas

MATERIAIS DE CONSTRUÇÃO II TECNOLOGIA DA ARGAMASSA E DO CONCRETO

Materiais de Construção AGREGADOS NA CONSTRUÇÃO CIVIL

CURSO DE AQUITETURA E URBANISMO

ANÁLISE NUMÉRICA DE VIGAS DE CONCRETO ARMADAS COM BARRAS DE FIBRA DE VIDRO (GFRP) E AÇO. Rafael dos Santos Lima 1 ; Fábio Selleio Prado 2

Nº2 JUNHO 2002 PAREDES DIVISÓRIAS DE PAINÉIS LEVES

N.14 Abril 2003 PAREDES DIVISÓRIAS PAINEIS PRÉFABRICADOS DE ALVENARIA DE TIJOLO REVESTIDA A GESSO. Estudo Comparativo.

Concretos de retração controlada e de pós reativos: características, aplicações e desafios.

Curso Piloto de Informação para Operários e Encarregados Módulo: Estruturas de Concreto Armado Aula: Armaduras

LAJES EM CONCRETO ARMADO

ESTADO DE MATO GROSSO SECRETARIA DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP DEPARTAMENTO DE

DEPARTAMENTO DE CIÊNCIA E TECNOLOGIA DOS MATERIAIS SETOR DE MATERIAIS

uma marca diferente.

2 Materiais e Métodos

Aço é uma liga metálica composta principalmente de ferro e de pequenas quantidades de carbono (em torno de 0,002% até 2%).

Universidade Federal de Itajubá Instituto de Recursos Naturais DOSAGEM DO CONCRETO EHD 804 MÉTODOS DE CONSTRUÇÃO. Profa.

CONTROLE DE QUALIDADE DO CONCRETO REFORÇADO COM FIBRAS PARA TÚNEIS

ESPECIFICAÇÃO TÉCNICA DISTRIBUIÇÃO

FICHA TÉCNICA - MASSA LEVE -

Descritivo Portas (Kit)

Compósitos. Os materiais compostos são formados apenas por duas fases: MATRIZ, que é contínua e envolve a outra fase, denominada FASE DISPERSA,

2.1. Considerações Gerais de Lajes Empregadas em Estruturas de Aço

Análise de diferentes ligantes na formulação de argamassas industriais de reabilitação

localizadas em ambientes agressivos Casos de estudo - Pontes localizadas em ambiente marítimo

RELATÓRIO DE ENSAIOS ENSAIO DE RESISTÊNCIA AO FOGO BRICKA SISTEMAS CONSTRUTIVOS AGOSTO DE 2014

Fabricação de um cabo elétrico

Escola de Engenharia de São Carlos - Universidade de São Paulo Departamento de Engenharia de Estruturas. Alvenaria Estrutural.

Construction. Peças em fibras de carbono para reforço estrutural ao corte. Descrição do produto

MANUAL PASSO A PASSO DE APLICAÇÃO: GS-SUPER

1.1 Conceitos fundamentais Vantagens e desvantagens do concreto armado Concreto fresco...30

SUPORTES DE SOLO SUPORTE DE SOLO PARA EXTINTOR EM ALUMINIO POLIDO MODELO AP E PQS

IMPORTÂNCIA DA CURA NO DESEMPENHO DAS ARGAMASSAS IMPORTÂNCIA DA CURA NO DESEMPENHO DAS ARGAMASSAS

ESCADAS DESMONTÁVEIS

CEMIG DISTRIBUIÇÃO. Autores. Alex Antonio Costa Carlos Miguel Trevisan Noal Eustáquio do Nascimento Amorim Jorge Pereira de Souza Renato Claro Martins

Faculdade de Tecnologia e Ciências Curso de Engenharia Civil Materiais de Construção Civil II. Dosagem de concreto. Prof.ª: Rebeca Bastos Silva

SOLIDIFICAÇÃO/ESTABILIZAÇÃO DE LODO GALVÂNICO EM BLOCOS DE CONCRETO PARA PAVIMENTAÇÃO (PAVERS)

MATERIAIS DE CONSTRUÇÃO II TECNOLOGIA DA ARGAMASSA E DO CONCRETO

Curso de Engenharia de Produção. Processos de Fabricação

Exercícios Terceira Prova de FTR

CONSTRUÇÕES RURAIS: MATERIAIS DE CONSTRUÇÃO. Vandoir Holtz 1

JATEAMENTO - INTRODUÇÃO APLICAÇÃO

Impermeabilização de Tabuleiros de Pontes. CEPSA Portuguesa/Teresa Carvalho

Identificação DAHER Tecnologia

Estaleiros de Equipamentos e Obras

Excelente aderência quando aplicado sobre superfícies de concreto ou argamassa;

CAPACITORES IMPREGNADOS X CAPACITORES IMERSOS (PPM) EM BT

E 373 Inertes para Argamassa e Betões. Características e verificação da conformidade. Especificação LNEC 1993.

3. Programa Experimental

Chapas de gesso acartonado

A importância do projeto de paredes de concreto para os projetistas estruturais Arnoldo Augusto Wendler Filho

FCTA 4 TROCAS TÉRMICAS ENTRE O MEIO E AS EDIFICAÇÕES 4.1 FECHAMENTOS TRANSPARENTES

MATERIAIS COMPÓSITOS. Prof. Roberto Monteiro de Barros Filho. Prof. Roberto Monteiro de Barros Filho

Composição. Paredes. Cobertura. Parafusos. Fundo. Betonagem da base. Juntas

Tubos de Concreto. Tubos de concreto com fibras para águas pluviais e esgoto. Antonio D. de Figueiredo

XXXV ENCONTRO NACIONAL DE ENGENHARIA DE PRODUCAO

CORREIAS TRANSPORTADORAS. Composição Carcaça Revestimento. As correias transportadoras são compostas por dois elementos.

CONGRESSO NACIONAL DA

REQUISITOS E CONSIDERAÇÕES GERAIS REF. NBR DA ABNT

ETICS, REBOCO REDE DE FIBRA DE VIDRO - CAPOTTO/ETICS - ETAG 004 REDE DE REBOCO/ GESSO REDE DE PINTURA VÉU DE NOIVA.

& CHIMICA EDILE DO BRASIL. apresenta: DRY D1 NG

O conhecimento das dimensões permite determinar os vãos equivalentes e as rigidezes, necessários no cálculo das ligações entre os elementos.

Concreto de Cimento Portland

ISOLANTES TÉRMICOS. Isolantes Térmicos e Refratários LTDA. catalogofinal25.05.indd 1 25/5/ :56:00

NBR 7480/1996. Barras e fios de aço destinados a armaduras para concreto armado

Tensão para a qual ocorre a deformação de 0,2%

CONTROLE TECNOLÓGICO DO CONCRETO MCC2001 AULA 6 (parte 1)

DOSAGEM DE CONCRETO AUTO- ADENSÁVEL PARA APLICAÇÃO EM PAREDES DE CONCRETO MOLDADAS NA OBRA

Informações Gerais Trocadores de Calor / Chiller de Placas

Catálogo de Tubos. Soluções em aço

TIJOLOS CRUS COM SOLO ESTABILIZADO

Tubos cladeados. Tubos resistentes à corrosão. Tubos cladeados

Comprovação ao Fogo Tricalc 7.2 realiza a comprovação completa ao fogo das estruturas de betão, aço, madeira e alvenarias

Argamassa colante para assentamento de porcelanato em fachadas externas ARGAMASSA COLANTE PARA ASSENTAMENTO DE PORCELANATO EM FACHADAS EXTERNAS

Transcrição:

Nº11 Janeiro 2003 BETÃO REFORÇADO COM FIBRAS DE AÇO APLICAÇÃO EM PAVIMENTOS INDUSTRIAIS Luís Manuel Rocha Evangelista

EDIÇÃO: Construlink, SA Tagus Park, - Edifício Eastecníca 2780-920 Porto Salvo, Oeiras A monografia apresentada foi realizada na cadeira de Tecnologia de Construção de Edifícios do Mestrado em Construção Tel. +351 214 229 970 apoio@construlink.com Coordenador: Pedro Vaz Paulo Editor: Tiago Relvão Jorge Sequeira

Índice 1. INTRODUÇÃO 1 2. O BRFA COMO MATERIAL DE CONSTRUÇÃO 2 2.1. BETÃO 2 2.2. FIBRAS 5 2.3. CARACTERÍSTICAS MECÂNICAS DO BRFA 8 2.3.1. TRABALHABILIDADE 8 2.3.2. RESISTÊNCIA À COMPRESSÃO 8 2.3.3. RESISTÊNCIA À TRACÇÃO 10 2.3.4. RESISTÊNCIA À FLEXÃO 10 2.3.5. RESISTÊNCIA AO CORTE 11 2.3.6. RETRACÇÃO E FLUÊNCIA 12 2.3.7. RESISTÊNCIA À FADIGA E IMPACTO 12 2.3.8. DURABILIDADE 13 2.4. APLICAÇÕES CORRENTES E FUTURAS 14 2.5. ENQUADRAMENTO NORMATIVO 15 3. O BRFA APLICADO EM PAVIMENTOS INDUSTRIAIS 17 3.1. PROCESSO CONSTRUTIVO 17 3.1.1. COMPOSIÇÃO PREFERENCIAL 17 3.1.2. PROCESSO DE FABRICO 18 3.1.3. PREPARAÇÃO DA BASE 19 3.1.4. APLICAÇÃO DO BRFA NO PAVIMENTO 21 3.2. CONTROLO DE QUALIDADE 25 3.3. PORMENORES CONSTRUTIVOS 26 3.3.1. JUNTAS 26 4. CONCLUSÕES 32

5. BIBLIOGRAFIA 33 Índice de Figuras Figura 1 - Mecanismo de funcionamento das fibras 2 Figura 2 - Ábaco apresentado por Hanna [4] para ajuste da composição de um BRFA 3 Figura 3 - Proporções recomendadas pelo comité ACI544 4 Figura 4 Alguns dos diferentes tipos de fibras 6 Figura 5 Fibras agrupadas em plaquetas do tipo Dramix 7 Figura 6 Resistência à compressão de BRFA [1] 9 Figura 7 Influência da quantidade de fibras na resistência à tracção [1] 11 Figura 8 - Diagramas de distribuição de tensões em betões reforçados com fibras (Reinhardt 1979) [2] 11 Figura 9 Índices de tenacidade I 5 e I 10 de acordo com a ASTM C1018 [6] 13 Figura 10 Esquema de corte de juntas de retracção 27 Figura 11 Pormenor da Junta isolante 28 Figura 12 Junta de dilatação 29 Figura 13 - Junta de dilatação com protecção dos bordos 29 Figura 14 Juntas construtivas tipo 30 Figura 15 - Junta construtiva, com reforço da ligação entre fases 30 Figura 16 - Junta construtiva: preparação para a nova betonagem 30 Figura 17 - Curvas de retracção para diferentes espessuras de BRFA 31 Índice de Fotos Foto 1 Passadeira de aplicação de fibras na betoneira 19 Foto 2 Preparando a base 20 Foto 3 Ensaio de placa em decurso 20 Foto 4 - Colocação da tela plástica 21 Foto 5 - Colocação do betão por betoneira e nivelamento (atrás) 22 Foto 6 - Nivelador Laser 22 Foto 7 - Colocação de endurecedor de superfície mecanicamente 23 Foto 8 - Afagamento do pavimento 24 Foto 9 - Execução de uma junta de retracção 24 Foto 10 - Processo de cura 25 Foto 11 Pormenor de reforço junto a um canto reentrante 27 Foto 12 Junta isolante em torno de um pilar 28

1. Introdução A presente monografia, inserida na cadeira de Mestrado Tecnologia da Construção de Edificios, tem como objectivo fazer uma breve abordagem aos betões reforçados com fibras de aço (BRFA) e à sua aplicação em pavimentos térreos. A utilização de materiais de matriz frágil à qual são adicionadas fibras é imemorial. O relato mais antigo que existe acerca dessa técnica data de 3500 A.C., quando terá sido feita uma colina de 57m de altura em tijolo de barro cozido ao sol, ao quais teria sido adicionada palha. Os Romanos introduziam crinas de cavalo nas suas argamassas. A construção de adobe é uma das técnicas ancestrais que chegou aos nossos dias que utiliza o mesmo principio. O inicio da utilização de fibras no betão é incerto. Várias referências apontam para o fim do sec. XIX / início do sec. XX como sendo a altura dos primeiros passos do BRF. Contudo, é consensual que o grande desenvolvimento se deu após a I Guerra Mundial, através da procura, por parte das instituições militares, de um material que absorvesse os impactos das explosões com baixa destruição do mesmo. Do meio militar para o meio civil foi um pequeno passo, e desde os anos 60 que se tem investigado continuamente os BRF. O primeiro material a ser usado para fibras foi o aço (a primeira tentativa terá sido a introdução de pregos no betão). Contudo, a evolução constante a que se assiste nos materiais sintéticos conduziu à utilização de outros tipos de fibras, dos quais se poderão destacar as fibras de vidro, fibras de polipropileno, amianto ou fibras naturais 1. O Fibrocimento é um exemplo destes materiais, com reconhecidas qualidades (e defeitos). Neste trabalho falar-se-á apenas dos primeiros (BRFA). 1 Um relatório da British Press (1981) afirma que se pode usar cabelo humano para reforçar betão. 1

2. O BRFA como material de construção O BRFA é um material de matriz cimentícia, no qual são adicionadas pequenas fibras de aço, discretas, dispersas e aleatoriamente distribuídas. A principal função das fibras é absorver as forças libertadas na ocorrência de microfissuração do betão, transferindo as tensões entre as duas faces agora separadas. Assim, as fibras mantêm o material coeso, impedindo que as microfissuras se transformem em macrofissuras. macrofibras "cozendo" uma macrofenda microfibras "cozendo" microfendas Figura 1 - Mecanismo de funcionamento das fibras A primeira conclusão que se obtém, é que este material para funcionar plenamente tem de existir fissuração da matriz [1] [2]. 2.1. BETÃO O betão que normalmente se fabrica poderá não ser adequado à utilização em BRFA. Segundo alguns autores, o betão deve ser composto por uma dosagem de inertes finos superior à normal, devendo-se também aumentar a dosagem de cimento. Esta correcção deve-se à necessidade de aumentar a trabalhabilidade do betão (reduzida com a incorporação de fibras), e com a necessidade de envolver as fibras com pasta de matéria fina. As referências anteriores também indicam que a máxima dimensão dos inertes não deve ser superior a 20 mm, sendo preferível não ultrapassar os 10 mm de diâmetro [1][5]. Outros 2

estudos apontam para dimensões máximas dos inertes valores superiores, existindo trabalhos realizados com sucesso para betões com inertes de 1½ (39 mm) de diâmetro [3]. Segundo Hanna [4], pode-se fazer uma correlação, em termos de composição, entre um betão corrente para reforçar com armaduras ordinárias, e o mesmo betão no qual serão introduzidas fibras. A representa um ábaco elaborado para a incorporação de fibras lisas. Figura 2 - Ábaco apresentado por Hanna [4] para ajuste da composição de um BRFA O comité 544 da American Concrete Institute apresenta em [3], um quadro de composições tipo a usar em BRFA, dada a maior dimensão do inerte (Figura 3). 3

Figura 3 - Proporções recomendadas pelo comité ACI544 Uma vez que é tradicional em Portugal utilização da curva de referência de Faury, desenvolveram-se estudos no nosso país que apontam para o parâmetro A de Faury se situar entre 24 e 34, tendo sido obtidos os melhores resultados com A=32 [5]. Alguns fabricantes de fibras de aço afirmam que, até percentagens do volume de 1% em fibras, o betão a aplicar poderá ser o mesmo que aplicado com reforço ordinário. A composição do betão também pode ser obtida por ensaios. O Laboratoire Central des Ponts et Chaussés afirma que a composição de inertes que melhor optimiza a compacidade do BRFA é aquela que tiver menor tempo de escoamento no maneabilímetro LCL [5]. Caso não possua a trabalhabilidade suficiente deverão ser utilizados superplastificantes. Apesar das divergências existentes na escolha da curva granolométrica a utilizar, não existem dúvidas que a relação água cimento (A/C) nunca deverá ser superior a 0,55, sendo de todo em todo preferível usar valores de A/C inferiores a 0,50. Pelo atrás exposto, não deixa de ser obvio que a composição da matriz a aplicar em BRFA está longe de ser padronizada, dependendo do tipo de inerte e do tipo de fibras a aplicar. 4

2.2. FIBRAS As fibras de aço utilizadas na confecção de BRFA estão longe dos pregos que originalmente se introduziram, havendo hoje desenvolvimentos constantes nas fibras de aço, facilmente perceptíveis pelas inúmeras patentes existentes. Estas variam, quer em processo de fabrico, quer em termos das características do aço usado, quer na sua forma. As fibras de aço podem ser feitas a frio, por corte de chapas ou por corte de fios, ou podem ser feitas a quente. Este último método, particularmente curioso, consiste em fazer rodar um disco que toca ligeiramente no metal derretido, conseguindo extrair deste um fio que solidifica imediatamente. Naturalmente, cada um deste métodos de execução conduz a fibras completamente distintas: enrugadas e retorcidas no primeiro, lisas e direitas (com ou sem sistema de ancoragem) no segundo, e finalmente irregulares com secção variável no último. No que diz respeito ao aço usado, este é variado existindo fibras com tensões de cedência a variar entre os 500 MPa e os 2000 MPa [5]. Dada a dispersão das caarcterísticas do material usado, as normas existentes definem valores mínimos a obter para a tensão de cedência das fibras de aço: ASTM A820 345 MPa; JSCE-E 131-1995 552 MPa. Também o processo de fabrico afecta as características do aço. Fibras feitas a frio, por corte de chapas possuem aço com grande dispersão de tensão de cedência, inerente ao processo de fabrico que altera as características do material. O corte de fios produz fibras com características pouco variáveis A norma Americana ASTM A820 classifica o aço a aplicar em fibras em dois tipos diferentes: Tipo I fibras obtidas por corte de fios. 5

Tipo II fibras obtidas por corte de chapas. Quanto à forma, existem tipos variados de fibras de aço a serem fabricados correntemente. As fibras podem ter secção circular, semicircular, rectangular ou totalmente irregular. O corpo das fibras pode ser liso ou rugoso (estando este factor altamente ligado ao processo de fabrico). As extremidades das fibras podem ser lisas ou possuir ancoragens de vários tipos. Na figura seguinte, apresentam-se vários tipos de fibras correntemente no mercado. Em anexo, apresentam-se algumas fichas técnicas de fibras em comercialização. Figura 4 Alguns dos diferentes tipos de fibras O comprimento das fibras influencia a forma como estas interagem com a matriz na medida que, quanto maior for o seu comprimento, maior será a área de contacto com o betão, e consequentemente melhor será a aderência entre ambos. Por outro lado, a aderência melhora com a diminuição do diâmetro, uma vez que se aumenta a superfície específica. Assim, é habitual caracterizar as fibras de aço através do seu coeficiente de forma (aspect ratio na literatura anglo-saxónica) que é traduzido pela relação lf / df, em que: l f = comprimento da fibra; d f = diâmetro da fibra 2. 2 Em casos em que as fibras não possuam secção circular, df traduz o diâmetro equivalente dado por 4A π 6