Sociedade de Abastecimento de Água e Saneamento S/A

Documentos relacionados
O processo de tratamento da ETE-CARIOBA é composto das seguintes unidades principais:

AEROTEC SANEAMENTO BÁSICO LTDA.

Sumário. manua_pratic_05a_(1-8)_2014_cs4_01.indd 9 26/05/ :40:32

Localização: margem esquerda do ribeirão Arrudas (região outrora conhecida como Marzagânia) Tratamento preliminar: perímetro urbano de Belo Horizonte

LODOS ATIVADOS. Profa. Margarita María Dueñas O.

Química das Águas - parte 3

NÍVEIS DE TRATAMENTO DE ESGOTO

3.9 VISCONDE DE RIO BRANCO

MANUAL Sanitizador Profissional

O que é filtragem? Técnicas de filtragem para irrigação. Porque utilizar a filtragem? Distribuição das partículas sólidas

Saneamento I Tratamento de água. Eduardo Cohim edcohim@gmail.com

Introdução ao Tratamento de Efluentes LíquidosL. Aspectos Legais. Usos da Água e Geração de Efluentes. Abastecimento Doméstico

ETAPAS DE UM TRATAMENTO DE EFLUENTE

Um pouco da nossa história

APOIO PARCEIROS ESTRATÉGICOS

SISTEMA DE LODOS ATIVADOS SISTEMA DE LODOS ATIVADOS SISTEMA DE LODOS ATIVADOS SISTEMA DE LODOS ATIVADOS

Gerenciamento e Tratamento de Águas Residuárias - GTAR

FUNCIONAMENTO DE UM MONITOR CONTÍNUO DE OZÔNIO

DIRETRIZES PARA ELABORAÇÃO

ManualdeInstruções einformaçõestécnicas ESTERILIZADORDEAR AKR-EARD/C-36W UVC. lâmpadasequipamentosespeciais

MANUAL DE INSTRUÇÕES UMIDIFICADOR DE AR FGUA-03AZ-0 SAC: GDE. SÃO PAULO (11)

SOCIEDADE DE ABASTECIMENTO DE ÁGUA E SANEAMENTO S/A

Numa fossa séptica não ocorre a decomposição aeróbia e somente ocorre a decomposição anaeróbia devido a ausência quase total de oxigênio.

Manual de Operação e Instalação

2 1) INTRODUÇÃO 3 2) PEÇAS 3 3) INSTRUÇÕES DE USO 3 4) MANUTENÇÃO 5 5) ESPECIFICAÇÕES 6 6) GARANTIA 6 7) CONTATO 6

O sistema ora descrito apresenta as seguintes unidades operacionais: O sistema conta com dois mananciais, ambos com captações superficiais:

READEQUAÇÃO DA ETE EXISTENTE Hipótese de Re-enquadramento do Corpo Receptor na Classe 3

Controle de Qualidade do Efluente e Monitoramento da ETE

3.5 SANTOS DUMONT. Quanto ao sistema de esgotamento sanitário, sua operação e manutenção cabe a Prefeitura local, através da Secretaria de Obras.

Eficiência de remoção de DBO dos principais processos de tratamento de esgotos adotados no Brasil

1ª Oficina de Trabalho sobre Operação de Sistemas de Tratamento de Esgotos Sanitários. Tratamento de Esgoto da ABES Nacional Apoio: Seção São Paulo

REUSO DE ÁGUA A PARTIR DE EFLUENTE TRATADO TÉCNICAS E INOVAÇÕES

CÂMARA TEMÁTICA DE TRATAMENTO DE ESGOTOS NBR ABNT

DZ-1314.R-0 - DIRETRIZ PARA LICENCIAMENTO DE PROCESSOS DE DESTRUIÇÃO TÉRMICA DE RESÍDUOS

Sociedade de Abastecimento de Água e Saneamento S/A Diretoria Técnica Gerência de Produção e Operação

Simone Cristina de Oliveira Núcleo Gestor de Araraquara DAAE CESCAR Coletivo Educador de São Carlos, Araraquara, Jaboticabal e Região HISTÓRICO

Introdução ao Tratamento de Resíduos Industriais

RELATÓRIO ANUAL DO SISTEMA DE TRATAMENTO DE ESGOTOS

TRATAMENTO ÁGUA PEQUENAS COMUNIDADES CÂMARA TÉCNICA DE SANEAMENTO-CBHLN ABRIL-2OO9

Elevatórias de Esgoto Sanitário. Profª Gersina N.R.C. Junior

PORTEIRO ELETRÔNICO. Modelo: EG-PRL002. Manual do Usuário

02/08/2015. Padrões de potabilidade TRATAMENTO DA ÁGUA. Tratamento da água. Tratamento da água. Tratamento da água

TERMO DE COOPERAÇÃO TÉCNICA. Nº. 016/ 2012 CREA/MG E FUNASA Setembro/2013

SISTEMA DE LODOS ATIVADOS

PALAVRAS-CHAVE: Desafios operacionais, reator UASB, Filtro Biológico Percolador, geração de odor.

NORMA TÉCNICA CONTROLE DE CARGA ORGÂNICA NÃO INDUSTRIAL CPRH N 2.002

DISPOSIÇÃO DE RESÍDUOS DE ESTAÇÃO DE TRATAMENTO DE ÁGUA EM LAGOA FACULTATIVA DE ESGOTO: CARACTERIZAÇÃO DA ETA

ESTUDO DO TEMPO DE DETENÇÃO HIDRÁULICO (TDH) EM REATORES UASB E SUA RELAÇÃO COM A EFICIÊNCIA DE REMOÇÃO DE DBO

ESGOTAMENTO. Conceitos básicosb

Erro! ROTEIRO PARA INSPEÇÃO SISTEMAS E SOLUÇÕES ALTERNATIVAS COLETIVAS DE ABASTECIMENTO DE ÁGUA COM REDE DE DISTRIBUIÇÃO

CET 303 Química Aplicada. Relatório: Visita técnica Estação de tratamento de água ETA 3 Capim Fino, em Piracicaba. Data da visita:

Análise Técnica. 1. Introdução

TRATAMENTO DA ÁGUA. Professora: Raquel Malta Química 3ª série - Ensino Médio

PARÂMETROS QUALITATIVOS DA ÁGUA EM CORPO HÍDRICO LOCALIZADO NA ZONA URBANA DE SANTA MARIA RS 1

Sistemas de desinfecção/oxidação por Ozônio Série C - Lasky

ESTAÇÃO DE PRODUÇÃO DE ÁGUA DE REÚSO EPAR CAPIVARI II SANASA - CAMPINAS 5º ENCONTRO NACIONAL DE ÁGUAS ABIMAQ SÃO PAULO - SP 14 DE AGOSTO DE 2014

MARETE INDUSTRIAL APLICAÇÕES

CM 60. Manual de Instruções. CHAVE DE FLUXO Conexões de Rosca DN 1/2, 3/4, 1, 1.1/4, 1.1/2 e 2 TECNOFLUID

SISTEMAS DE TRATAMENTO DE EFLUENTES INDUSTRIAIS. Engº Ricardo de Gouveia

GERAÇÃO DE CLORO A PARTIR DO CLORETO DE SÓDIO (SAL DE COZINHA)

GARRAFEIRA. Modelo RV 8. Manual de Instruções

ETE do Baldo - Natal/RN

MANUAL DA ESTAÇÃO DE TESTE DE VAZÃO

Tratamento de Água para Abastecimento

Lâmpada UV-C de Imersão L Favor ler atentamente as instruções de uso abaixo antes da instalação do dispositivo.

ESTAÇÃO DE PRODUÇÃO DE ÁGUA DE REÚSO CAPIVARI II CAMPINAS - SP

UM OLHAR SOBRE O COMPRESSOR NOS CONSULTÓRIOS E CLÍNICAS ODONTOLÓGICAS

RELATÓRIO ANUAL DE QUALIDADE DAS ÁGUAS DE ABASTECIMENTO

5 Montagem Circuítos

AV. Herminio Gimenez RC - RUC: COR: CIUDAD DEL ESTE-PY TEL: contato@options-sa.net -

INFLUÊNCIA DAS CONDIÇÕES OPERACIONAIS DE UMA ESTAÇÃO DE TRATAMENTO DE ESGOTO NA ANÁLISE DE FÓSFORO TOTAL

INSTRUÇÕES PARA INSTALAÇÃO DE FOSSA SÉPTICA E SUMIDOURO EM SUA CASA

ETEs COMPACTAS VERTICAIS BIOFIBER

Tratamento de Água. Numa estação de tratamento de água, o processo ocorre em etapas:

Sistemas Compactos de Tratamento de Esgotos Sanitários para Pequenos Municípios

Gerenciamento e Tratamento de Águas Residuárias - GTAR

CORRELAÇÃO ENTRE OS VALORES DE DBO E DQO NO AFLUENTE E EFLUENTE DE DUAS ETEs DA CIDADE DE ARARAQUARA

REUSO PLANEJADO DA ÁGUA: UMA QUESTÃO DE INTELIGÊNCIA...

II-109 PÓS-TRATAMENTO DE EFLUENTE DE EMBALAGENS METÁLICAS UTILIZANDO REATOR DE BATELADA SEQUENCIAL (RBS) PARA REMOÇÃO DA DEMANDA QUÍMICA DE OXIGÊNIO

ETAR de Ermesinde e Alfena. Capacidade de Tratamento: Breve descrição do tratamento:

AVALIAÇÃO DA EFICIÊNCIA DO TRATAMENTO DA ÁGUA NA ETA JOSÉ LOUREIRO DA SILVA ATRAVÉS DE PARÂMETROS BACTERIOLÓGICOS.

2-Instalação da cuba. 1-Apresentação. Cuba de Ionização Abraçadeira s. Cano. Mangote

GA-2 Dispositivo de Alarme de Separador de Massa Lubrificante com dois sensores Instruções de instalação e funcionamento

OBSERVAÇÃO: O USUÁRIO É RESPONSÁVEL PELA ELIMINAÇÃO DAS REVISÕES ULTRAPASSADAS DESTE DOCUMENTO

DISCIPLINA: SISTEMA SANITÁRIO (2/7)

SUMARIO 1 INTRODUÇÃO, 1

ESTAÇÃO TRATAMENTO DE ÁGUA - ETA

CATÁLOGO Aquah Cisternas Verticais PLUVIAIS E POTÁVEIS

A experiência da Estação de Tratamento de Esgoto de Itabira e sua contribuição em pesquisa e monitoramento e aprimoramento em parceria com UFMG

3 Modelo Evolucionário para Sustentabilidade Inteligente

3.3 CATAGUASES. Quanto ao sistema de esgotamento sanitário, a responsabilidade pela sua operação e manutenção cabe a Prefeitura local.

Parâmetros de qualidade da água. Variáveis Físicas Variáveis Químicas Variáveis Microbiológicas Variáveis Hidrobiológicas Variáveis Ecotoxicológicas

INÍCIO DE OPERAÇÃO DO SISTEMA: A primeira etapa entrou em operação em 1975 e a segunda, em 1982.

Licenciamento e Controle Ambiental em Abatedouros de Frangos

ENSAIOS FÍSICO-QUÍMICOS PARA O TRATAMENTO DOS EFLUENTES DO TRANSPORTE HIDRÁULICO DAS CINZAS PESADAS DA USINA TERMELÉTRICA CHARQUEADAS

Instruções Técnicas para Apresentação de Projetos de Sistemas de Tratamento de Efluentes Líquidos Industriais

Reunião Técnica Plano de Segurança da Água. 23 de novembro de OPAS

bambozzi Manual de Instruções NM 250 TURBO +55 (16) 3383 S.A.B. (Serviço de Atendimento Bambozzi)

Tecnologia em Água de Reuso e potencial de aplicação em processos industriais.

4ª aula Compressores (complemento) e Sistemas de Tratamento do Ar Comprimido

Transcrição:

TÍTULO: Avaliação de desempenho de equipamento de desinfecção por radiação ultra violeta (UV) Nome do Autor: Uildson Carlos Alberto de Oliveira Formação: Técnico em Saneamento, formado pelo Serviço Nacional da Indústria SENAI, cursando Química Tecnológica na Pontifícia Universidade Católica de Campinas - PUCC Cargo Atual: Técnico em Saneamento Jr. Renato Rossetto Formação: Tecnólogo em Saneamento, formado pela Universidade Estadual de Campinas UNICAMP, cursando especialização em Gestão Ambiental na Universidade Estadual de Campinas UNICAMP Cargo atual: Coordenador de Operação de Esgoto e Tratamento Endereço para Correspondência: Av. da Saudade, 500 Bairro: Ponte Preta Campinas São Paulo CEP: 13041-670 Fone: 0XX19 3294.0835 0XX19 9612.4940 / FAX: 0XX19 3735.5080 End. Eletrônico: ete.samambaia@sanasa.com.br Material de apoio para a apresentação: Projetor multimídia com computador Programa Power Point Quadro Branco 1

1. INTRODUÇÃO Os esgotos de origem doméstica apresentam grande variedade de microrganismos patogênicos, sendo que diversas infecções adquiridas pelos seres humanos têm origem na contaminação por esgotos sanitários de mananciais de água para o consumo ou para recreação. A implantação de um sistema de desinfecção dos efluentes tratados é fundamental para atender os padrões de qualidade do corpo receptor (ribeirão Samambaia) após o ponto de lançamento da ETE e, conseqüentemente, reduzir os riscos de transmissão de doenças infecciosas e preservar as águas da bacia do rio Atibaia, que se constitui no principal manancial de abastecimento da cidade de Campinas/SP. O objetivo específico deste trabalho foi avaliar o desempenho do equipamento piloto de desinfecção do efluente tratado por Radiação Ultra Violeta (UV) de uma Estação de Tratamento de Esgoto Doméstico pelo processo biológico denominado Lodos Ativados com capacidade para tratar uma vazão média de 150 L/s, mais especificamente da Estação de Tratamento de Esgotos Samambaia, cujo projeto visa principalmente a remoção de matéria orgânica e sólidos, não alcançando uma remoção satisfatória de microrganismos patogênicos. Características dos efluentes líquidos a serem desinfetados Tipo de efluente: Esgotos sanitários predominantemente domésticos Nível de tratamento antes da desinfecção: Os esgotos sanitários passam através de uma ETE de médio porte com tratamento preliminar e biológico aeróbio a nível secundário por processo de lodos ativados, com nitrificação parcial do efluente. A ETE Samambaia é composta basicamente pelas seguintes unidades: Gradeamento Grosseiro; Estação Elevatória de esgoto bruto tipo poço seco; Gradeamento Fino (duas grades; Calha Parshall; Caixa de Areia Aerada (duas); Tanques de Aeração (duas unidades em série) implantados em diques no solo escavado e impermeabilizado e com aeradores superficiais e submersos; Decantador de alta taxa com placas lamelares (três unidades em paralelo com estrutura de concreto anexa ao segundo tanque de aeração); Estação Elevatória de recirculação do lodo; Digestor Aeróbio de lodo (um na primeira etapa e dois na segunda); Adensador de Lodo por gravidade (com três poços de lodo); Desidratação do lodo por centrífuga; Calha Parshall Final. Corpos receptores dos efluentes tratados: Os efluentes são lançados diretamente no ribeiro Samambaia, afluente da margem esquerda do ribeirão Pinheiros, que por sua vez deságua no rio Atibaia, acerca de 2,25 km da captação de água da SANASA, utilizada para abastecimento de cerca de 90% da população de Campinas. Conforme Decreto Estadual nº 10.755 de 22/11/1977 o ribeirão Samambaia e o rio Atibaia são enquadrados na classe 02. Na classificação prevista no Decreto nº 8468 e 08/09/1976 as águas de classe 02 destinam-se ao abastecimento doméstico após tratamento convencional, à irrigação de hortaliças ou plantas frutíferas e à recreação de contato primário. 2

Qualidade requerida para o efluente tratado: Conforme a Legislação Estadual de Controle da Poluição Ambiental, vigente no Estado de São Paulo (regulamento da Lei 997 de 31/05/1976 aprovado pelo Decreto 8468 de 08/09/1976 e suas alterações), o efluente tratado deverá atender aos padrões de emissão do artigo 18, e aos padrões de qualidade do artigo 11 para cursos d água de classe 02, sendo que, dado ao pequeno porte do Ribeirão Samambaia, não deverá ser considerado qualquer redução dos limites estabelecidos na legislação devido à diluição dos despejos. Desinfecção A desinfecção de esgotos é tradicionalmente realizada através da cloração, cujos principais compostos utilizados são o cloro gasoso (Cl 2 ), o hipoclorito de sódio (NaOCl), e o hipoclorito de cálcio [Ca(OCl 2 )]. Essa alternativa é desaconselhada para a ETE Samambaia, cujos efluentes finais apresentam níveis relativamente elevados de matéria orgânica remanescente que poderiam reagir com o cloro, formando como subprodutos, substâncias organocloradas que apresentam potencial cancerígeno, entre eles trihalometanos (THM). A previsão de unidades de descloração, utilizando dióxido de enxofre, metabisulfito de sódio ou bisulfito de sódio, ou por adsorção em carvão ativado, objetivando reduzir os teores de cloro residual no efluente final a valores mínimos e eliminar os riscos dos subprodutos, eleva os custos de implantação e operação. O dióxido de cloro (ClO 2 ) é uma alternativa ao cloro gasoso, com a vantagem de não apresentar potencialidade de geração de subprodutos halogenados que são comuns na cloração, mas que por outro lado gera outros subprodutos nocivos à saúde humana, entre eles cloritos e cloratos, suspeitos de produzir anemia hemolítica e outros efeitos. Além disso, o custo de geração de dióxido de cloro in loco, a partir do clorito de sódio, clorato de sódio, ou do ácido clorídrico, é elevado e pode apresentar dificuldades de operação. O ozônio (O 3 ) é um excelente desinfetante e oxidante sendo uma alternativa com eficiência comparável à do cloro e, ainda como vantagem, não apresenta potencialidade de geração de trihalometanos. Entretanto, há outros subprodutos prejudiciais gerados, entre eles bromatos, e outros que ainda têm sido pouco estudados. Os custos envolvidos, nesse caso, são muito superiores àqueles correspondentes ao uso do cloro. A desinfecção com a aplicação de radiação ultravioleta (UV) mostra-se como uma alternativa competitiva economicamente se comparada à cloração/descloração, e tecnicamente adequada para o caso em questão, devido ao fato de não gerar subprodutos indesejáveis, prejudiciais à vida aquática e à saúde humana, fator relevante considerando que o rio Atibaia logo a jusante do lançamento constitui-se de manancial explorado para o abastecimento público. Essa preocupação é inclusive manifestada na Portaria 1.469 de 29 de dezembro de 2000 do Ministério da Saúde que estabelece os padrões de potabilidade para água de abastecimento (saída da ETA), e fixa valores máximos permissíveis em miligrama por litro (mg/l) para os seguintes parâmetros relacionados com os desinfetantes e seus subprodutos: Bromato (0,025); Clorito (0,2); Cloro livre (5); Monocloramina (3); 2,4,6 triclorofenol (0,2); Trihalometanos (0,1). Outro aspecto importante a ser ressaltado, é o nível de segurança necessário no caso de instalações de desinfecção com cloro gasoso, quando comparado às instalações de desinfecção por ultravioleta. Certamente, o 3

manuseio de cloro gasoso envolve riscos aos operadores e moradores das regiões próximas infinitamente superiores aos riscos do manuseio das lâmpadas de ultravioleta. Instalações de cloro gasoso demandam a instalação de sistemas e equipamentos de segurança relativamente complexos e requerem manutenção periódica, bem como freqüentes programas de treinamento dos operadores, fatores que dificultam e oneram a operação do sistema de tratamento como um todo. A radiação ultravioleta é uma energia na forma de onda eletromagnética, produzida em lâmpadas germicidas especiais de vapor de mercúrio ionizado, que ficam protegidas individualmente por tubos de quartzo de alta pureza e transparência, e imersas em canais abertos ou reatores fechados, com o efluente a ser desinfetado em escoamento contínuo, fazendo com que os microrganismos fiquem expostos a uma dose letal de radiação, sendo esta dose definida como o produto entre a intensidade de radiação (potência das lâmpadas) e o tempo de exposição à mesma (tempo de duração do escoamento através das lâmpadas). A radiação ultravioleta é efetiva para grande variedade de bactérias é vírus, usando doses relativamente pequenas, alcançadas em poucos segundos. O comprimento de onda de maior efeito bactericida é o de 254 nm (nanômetros). A absorção máxima de radiação UV ocorre em 260 nm. O intervalo de comprimento de onda compreendido entre 245 e 285 nm (inserido na faixa UV-C) é considerado a faixa ótima germicida para a inativação de microrganismos. A radiação ultravioleta atua por meio físico, provocando alterações estruturais do material genético dos microrganismos, principalmente nos ácidos nucléicos (DNA e RNA), produzindo dímeros em sua maioria de timina, que impedem o processo de duplicação normal do DNA. Dessa forma as bactérias, vírus e demais microrganismos podem manter temporariamente as atividades metabólicas mas perdem sua capacidade de reprodução, sendo impedidos de contaminar o meio, ocorrendo a inativação e consequentemente a eliminação dos mesmos no meio líquido. 2. MATERIAL E MÉTODO A unidade piloto foi implantada a jusante do sistema de tratamento aeróbio (Lodos Ativados) mais precisamente após a calha Parshall de medição de vazão do efluente tratado, sendo alimentada por gravidade através de uma tubulação de pvc de 150 mm de diâmetro. O equipamento de desinfecção consiste dos seguintes componentes (ver figura 1): Câmara A câmara é o principal componente do sistema UV. As conexões de entrada e saída do líquido estão em linha um com o outro. Duas tampas de ponta são colocadas a 90º da direção do fluxo do líquido. Estes seguram as lâmpadas, o mecanismo de limpeza e o sensor de temperatura. Os acessórios instalados são cobertos em ambos os lados com uma capa, que também contém a caixa dos cabos. A câmara também contém características padrão para ventilação e drenagem do sistema. Lâmpadas UV As lâmpadas são colocadas dentro de um tubo de quartzo para que não entrem em contato direto com o líquido. Elas podem ser instaladas por ambas as bordas. 4

Sensor UV O sensor UV mede a intensidade UV na lâmpada em uma posição fixa. Conforme a intensidade da lâmpada decresce, o tubo de quartzo se torna sujo ou a qualidade do líquido mude, o sensor passa a informação para o controle do sistema, de forma que o nível de potência da lâmpada possa ser ajustado. O sensor UV trabalha dentro de uma faixa de 240 a 300 nm. Sensor de Temperatura As lâmpadas UV produzem uma considerável quantidade de calor que é removida se a taxa do fluxo do líquido passando através do sistema é suficientemente alto. Para monitorar a temperatura do líquido, um detector de temperatura (tipo PI-100) é instalado no sistema UV de forma que situações não seguras causadas por possíveis colapsos possam ser evitadas. Tão logo a temperatura do líquido exceda o valor pré estabelecido (45ºC), um alarme é dado e o sistema se fecha. Limpeza automática Depósitos de substâncias orgânicas presentes no líquido, podem fixar-se nos tubos de quartzo que contém as lâmpadas UV. Isto pode bloquear a radiação UV e portanto, reduzir a eficácia do processo de desinfecção. O mostrador irá registrar um valor UV mais baixo. O mecanismo de limpeza manual ou automática pode ser usado para remover estes depósitos sem que o sistema tenha que ser desligado e os tubos de quartzo retirados. No caso do equipamento instalado a limpeza é feita automaticamente. Uma rosca sem fim e um motor elétrico operam o conjunto de limpeza com os anéis do limpador. Dois sensores localizados do lado de fora da câmara sinalizam a posição final do conjunto do limpador. O motor elétrico é montado no final da câmara com diversos pinos e coberto com uma capa protetora. O intervalo entre as limpezas é determinado pela operação, podendo variar de 10 a 120 minutos. Alimentação elétrica e controle O sistema de desinfecção é conectado a um painel de comando e uma unidade de controle com os seguintes componentes: Interruptor principal: Este liga e desliga todo o sistema Ventiladores do painel de comando: Estes removem o calor produzido pelos transformadores das lâmpadas Horímetro: Este indica o número total de horas que o sistema ficou ligado e também o número limpezas efetuadas nos tubos de quartzo. Mostrador: O mostrador da unidade é colocado na frente do painel de comando de controle. O mostrador exibe o status do sistema, através de LED s, ou seja: Ligado (power on): O LED acende quando o interruptor principal está ligado Alarme UV (UV alarm): Se a intensidade UV da lâmpada cair abaixo de um valor mínimo pré-estabelecido, este LED irá acender. 5

Alarme de temperatura da água (water temp. alarm): Se a temperatura do líquido, que é medido pelo sensor de temperatura, eleva-se acima de um valor pré-estabelecido, este LED irá acender e as lâmpadas serão automaticamente desligadas. Alarme de temperatura do painel de comando (cabinet temp. alarm): Se a temperatura no painel de comando de força elevar-se acima de um valor mínimo pré-estabelecido, este LED irá acender e a lâmpada irá automaticamente desligar-se. Aviso de temperatura do painel de comando (cabinet temp. warning): Este LED acende tão logo a temperatura do painel de comando esteja em perigo de ficar alta. Saída do UV (UV-output): O LED que acende com o valor maior indica o nível de intensidade UV atual. Tão logo a intensidade caia para abaixo do valor pré-estabelecido, o LED vermelho do alarme UV irá acender. Lâmpada UV (UV lamp): Os LED s numerados acendem quando a lâmpada correspondente está ligada. Desta forma, chama-se a atenção para lâmpadas defeituosas. Interruptor de nível de força Com este interruptor, a força das lâmpadas pode ser ajustada em várias etapas, para gerar suficiente emissão de luz em lâmpadas velhas, tubos de quartzo sujos ou mudanças na composição do líquido. Tabela 1 Principais características do sistema de desinfecção CÂMARA UV Material: Inox. 316L Dimensões: - comprimento: 350 mm - largura: 780 mm Peso: - seco: 63 Kg Índice de proteção: IP54 (Nema 12) - com água: 86 kg Temperatura da Água (operação): 0 45ºC Tipo de Lâmpada UV: alta pressão Vida útil da lâmpada UV: 8000 hs Voltagem da lâmpada: 235 VAC Amperagem da lâmpada (máx.): 11A Quantidade de Lâmpadas: 2 Lâmpadas protegidas da água por: tubos de quartzo de Sensor UV: sim alta pureza e transparência UV para cada lâmpada Detetor de temperatura: sim Pressão de operação: 7 bar (100 psi) Dosagem UV: 30 mw.s.cm -2 ao final da vida útil da Tempo de desinfecção: 0,5 a 5 segundos Lâmpada PAINEL DE COMANDO Dimensões: - altura: 701 mm Peso: 63 kg - largura: 701 mm - profundidade: 340 mm Índice de proteção: IP54 (NEMA 12) Temperatura de operação: 0 35ºC Lâmpadas potência: - nível 1: 1500w Alimentação: - voltagem: 480v - nível 2: 1880w - fase: 3 - nível 3: 2240w - freqüência: 60 Hz Monitoramento da unidade piloto A unidade piloto foi monitorada no período de 04/12/2002 à 14/07/2003, com a avaliação dos seguintes parâmetros físico-químicos e microbiológicos: turbidez, sólidos suspensos totais e coliformes fecais. Todas as análises, foram realizadas de acordo com os procedimentos descritos no Standard Methods for the Examination of Water and Wastewater, 20ª. ed. (AWWA/APHA/WEF, 1998). Para as análises de coliformes fecais, foi empregada a técnica de Tubos Múltiplos. 6

Condições operacionais da unidade piloto Para avaliar a eficácia da radiação ultravioleta aplicada, foram realizados testes variando-se a vazão de alimentação da unidade entre 5 e 15 l/s, cuja medição de vazão foi feita utilizando-se uma calha Parshall a jusante da unidade com medidor ultrasônico de vazão acoplado. Foram coletadas amostras do esgoto tratado antes e após o sistema de desinfecção para análises físicoquímicas e microbiológicas. A periodicidade das coletas foi de 03 (três) vezes por semana, sendo uma amostra às 08:00 hs e outra às 13:30 hs. 3. RESULTADOS E DISCUSSÃO Tabela 2 Resultados médios de turbidez, coliformes fecais e sólidos suspensos nas diferentes vazões e horários Vazão Parâmetros Concentrações no esgoto tratado Eficiência de (L/s) Antes do UV Após o UV Inativação (%) 08:00 hs 13:30 hs 08:00 hs 13:30 hs 08:00 hs 13:30 hs Turbidez (NTU) 3 5 - - 5 SST (mg/l) 3 6 - - CF (NMP/100 ml) 7,5 x 10 5 2,7 x 10 6 1,4 x 10 2 5,7 x 10 1 99,9813 99,9979 Turbidez (NTU) 2 4 - - 10 SST (mg/l) 4 6 - - CF (NMP/100 ml) 3,8 x 10 5 4,9 x 10 6 4,0 x 10 1 1,6 x 10 2 99,9895 99,9967 Turbidez (NTU) 2 5 - - 12 SST (mg/l) 3 7 - - CF (NMP/100 ml) 1,3 x 10 5 2,3 x 10 6 3,0 x 10 1 4,0 x 10 2 99,9769 99,9826 Turbidez (NTU) 3 6 - - 15 SST (mg/l) 5 8 - - CF (NMP/100 ml) 7,0 x 10 4 5,5 x 10 5 2,2 x 10 2 4,7 x 10 2 99,6857 99,9145 Quando da aquisição do equipamento, em função das características físico-químicas do efluente tratado, estimou-se uma vazão de 12 L/s, porém, devido a baixa turbidez e teor de sólidos suspensos no efluente, foi possível manter o alto nível de inativação, mesmo aplicando-se uma vazão superior, conforme pode ser verificado na Tabela 2 acima. 4. CONCLUSÃO - O desempenho da desinfecção por radiação ultravioleta é extremamente dependente das características qualitativas do efluente a ser desinfetado, principalmente no que se relaciona com a matéria em suspensão, pois os sólidos em suspensão impedem que a radiação ultravioleta atinja os microrganismos de forma eficiente. Diante disto, podemos concluir que os resultados obtidos na presente pesquisa, demonstram a aplicabilidade do sistema para a desinfecção dos esgotos tratados da ETE Samambaia. - Por sugestão do fabricante, foi instalado a montante do equipamento, um filtro composto por uma tela perfurada com orifícios de 6mm de diâmetro para evitar a entrada de objetos estranhos que possam danificar o equipamento, porém, notamos que além de ocasionar perda de carga, houve a necessidade de limpeza constante desta tela, tornando-se operacionalmente inviável. - Observamos que o equipamento precisa de calibração freqüente da placa de circuito impresso (mostrador de emissão de UV), necessitando de um eletricista para sua execução. 7

REFERÊNCIAS BIBLIOGRÁFICAS Sociedade de Abastecimento de Água e Saneamento S/A Catálogos técnicos de fabricantes: Trojan (Aquamec), US Filter (Ultragard), Germetec (Aquionics) CHERNICHARO, C. A. de L.; DANIEL, L. A.; CORAUCCI FILHO, B. Pós-tratamento de efluentes de reatores anaeróbios por sistemas de desinfecção. In: CHERNICHARO, C. A. (Coord.). Pós-tratamento de efluentes de reatores anaeróbios. Belo Horizonte, 2001. p. 377-454. CHERNICHARO, C. A. de L.; DANIEL, L. A.; CORAUCCI FILHO, B. Pós-tratamento de efluentes de reatores anaeróbios: coletânea de trabalhos técnicos. In: CHERNICHARO, C. A. (Coord.). Belo Horizonte, 2001. v.2. p. 229-240. GERMETEC UV & IR Technology Ltda; Desinfecção UV Unidade Piloto, Manual de instruções. Rio de Janeiro. Laboratório de Análise e Controle da SANASA Campinas - Laudo de Análises Físico-Químicas e Bacteriológicas. Legislação Estadual de Controle da Poluição Ambiental, Regulamento da Lei 997 de 31/05/1976 aprovado pelo Decreto 8468 de 08/09/1976 e suas alterações. Legislação Estadual de Controle da Poluição Ambiental, Decreto 10755 de 22/11/1977. SANASA, Sociedade de Abastecimento de Água e Saneamento S/A; ETE Samambaia, Manual de operação. Campinas. SANASA, Sociedade de Abastecimento de Água e Saneamento S/A; ETE Samambaia, Termo de referência - Sistema de desinfecção por radiação ultravioleta. Campinas, 2004. GERMETEC UV & IR Technology Ltda; Desinfecção UV Unidade Piloto, Detalhes Técnicos. Rio de Janeiro, 2002. GERMETEC UV & IR Technology Ltda; Desinfecção UV Unidade Piloto, Manual de instruções. Rio de Janeiro. Laboratório de Análise e Controle da SANASA Campinas - Laudo de Análises Físico-Químicas e Bacteriológicas. Legislação Estadual de Controle da Poluição Ambiental, Regulamento da Lei 997 de 31/05/1976 aprovado pelo Decreto 8468 de 08/09/1976 e suas alterações. 8

Legislação Estadual de Controle da Poluição Ambiental, Decreto 10755 de 22/11/1977. SANASA, Sociedade de Abastecimento de Água e Saneamento S/A; ETE Samambaia, Manual de operação. Campinas FIGURAS Figura 1 Vista geral da unidade UV Reator UV 9