OPERAÇÕES UNITÁRIAS II AULA 9: EVAPORAÇÃO EM SIMPLES EFEITO. Profa. Dra. Milena Martelli Tosi

Documentos relacionados
OPERAÇÕES UNITÁRIAS II AULA 13: EVAPORADORES E CONGELAMENTO. Profa. Dra. Milena Martelli Tosi

EVAPORAÇÃO. Profa. Marianne Ayumi Shirai EVAPORAÇÃO

Prof. Dr. Félix Monteiro Pereira

Evolução na tecnologia de concentração do tomate. Evolução e análise das técnicas de concentração

) (8.20) Equipamentos de Troca Térmica - 221

ETAL TECNOLOGIA DE ALIMENTOS

Classificação de Trocadores de Calor

Modelagem de equipamentos térmicos Trocadores de calor

Ronaldo Guimarães Corrêa. Aula #3: Configurações de Controle

Condensação

EFICIÊNCIA ENERGÉTICA EM SISTEMAS E INSTALAÇÕES

ÁREA DE ESTUDO: CÓDIGO 16 TERMODINÂMICA APLICADA, MECÂNICA DOS FLUIDOS E OPERAÇÕES UNITÁRIAS

Figura Refervedor tipo caldeira.

Refrigeração e Ar Condicionado

29/11/2010 DEFINIÇÃO:

OPERAÇÕES UNITÁRIAS II AULA 10: ESTERILIZAÇÃO. Profa. Dra. Milena Martelli Tosi

Refrigeração e Ar Condicionado

Classificaçã. ção o dos trocadores de vaporizaçã. ção. Trocadores de vaporização com circulação forçada. Vaporização na carcaça. Vaporização nos tubos

SISTEMAS TÉRMICOS DE POTÊNCIA

Operações Unitárias II Lista de Exercícios 1 Profa. Dra. Milena Martelli Tosi

Lista de Exercícios Solução em Sala

Refrigeração e Ar Condicionado

TRANSFERÊNCIA DE CALOR

Curso de Farmácia. Operações Unitárias em Indústria Prof.a: Msd Érica Muniz 6 /7 Período DESTILAÇÃO Parte 2

PME 3344 Exercícios - Ciclos

Faculdade de Engenharia Química (FEQUI) Operações Unitárias 2 2ª Lista de Exercícios (parte A) Profº Carlos Henrique Ataíde (julho de 2013)

EN 2411 Aula 13 Trocadores de calor Método MLDT

Lista de problemas número 1. Exercícios de Refrigeração e Psicrometria A) REFRIGERAÇÃO

564 E V A P O R A Ç Ã O

Evaporadores Falling Film Funcionam?

Universidade Tecnológica Federal do Paraná Campus Londrina Operações Unitárias na Indústria de Alimentos. Profa. Marianne Ayumi Shirai

4 SISTEMAS DE ABSORÇÃO

Operações Unitárias Parte II

Evaporador modelo Robert

ESZO Fenômenos de Transporte

Evaporador modelo Robert

MOTORES TÉRMICOS AULA 3-7 SISTEMAS DE POTÊNCIA A VAPOR PROF.: KAIO DUTRA

Lista de exercícios Caps. 7 e 8 TMEC-030 Transferência de Calor e Massa Período especial 2017/2

OPERAÇÕES UNITÁRIAS II AULA 4: - DIMENSIONAMENTO DE TROCADORES DE CALOR A

Refrigeração e Ar Condicionado

Sistemas térmicos. Engenharia Mecânica. Profa. Jacqueline Copetti Sala C02-239

EVAPORADORES. Este capítulo é uma introdução ao tema do projeto termo-hidráulico de trocadores de calor envolvendo a vaporização de substâncias puras.

OPERAÇÕES UNITÁRIAS II AULA 1: REVISÃO TRANSFERÊNCIA DE CALOR. Profa. Dra. Milena Martelli Tosi

SISTEMAS TÉRMICOS DE POTÊNCIA

4.2. Separação dos componentes de misturas homogéneas

Maquinas Termicas - Fornalha

DESTILAÇÃO. Prof.: Dr. Joel Gustavo Teleken

Transferência de Calor e Massa 1

Curso Técnico em Eletromecânica CALDEIRAS A VAPOR. Disciplina: Instalações Industriais 4º Módulo. Prof. Matheus Fontanelle Pereira

Caldeiras. Notas das aulas da disciplina de EQUIPAMENTOS INDUSTRIAIS. Equipamentos Industriais 1

MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS

SISTEMAS TÉRMICOS DE POTÊNCIA

Exercícios e exemplos de sala de aula Parte 1

Refrigeração e Ar Condicionado

Colégio Técnico de Lorena (COTEL)

Operações Unitárias II Evaporação Professor Paul Fernand Milcent Monitora em Iniciação à Docência Patrícia Carrano Moreira Pereira

Caldeiras Industriais

DESTILAÇÃO FRACIONADA OPERAÇÕES UNITÁRIAS 2. Profa. Roberta S. Leone

Lista de Exercícios para P2

3. CONVECÇÃO FORÇADA INTERNA

OPERAÇÕES UNITÁRIAS II AULA 4: - DIMENSIONAMENTO DE TROCADORES DE CALOR A

Cap. 4: Análise de Volume de Controle

FLUIDIZAÇÃO DE SÓLIDOS

Exercício. Questão 48 Engenheiro de Processamento Petrobras 02/2010

PME 3344 Exercícios - Ciclos

1. DESCRIÇÃO DO PROCESSO PLANTA PILOTO

MODELAGEM E SIMULAÇÃO DO SISTEMA ACETONA- METANOL PARA OBTENÇÃO DE METANOL EM COLUNAS DE DESTILAÇÃO

Distribuição de vapor. Dilatação térmica. Junta de expansão. Desvio em U 1/10/2010

Aula 7 Refrigeração e bombeamento de calor

Destilação Binária por Estágios

RECUPERAÇÃO DE INSUMOS E SUBPRODUTOS DA PRODUÇÃO DE BIODIESEL. Processo de recuperação do Metanol e da Glicerina.

Disciplina: Sistemas Térmicos

Exame de Admissão 2016/1 Prova da área de termo fluidos Conhecimentos específicos

Capítulo 5: Análise através de volume de controle

Convecção (natural e forçada) Prof. Dr. Edval Rodrigues de Viveiros

UNIVERSIDADE DE SÃO PAULO ENGENHARIA QUÍMICA LOQ 4017 OPERAÇÕES UNITÁRIAS EXPERIMENTAL II

Profa. Dra. Milena Araújo Tonon Corrêa

Para o desenvolvimento do projeto de uma caldeira flamotubular os requisitos de projeto deverão estar definidos conforme a Tabela 1.

Universidade Federal do ABC. EN 2411 Aula 10 Convecção Livre

Professora Vanessa Bernardelli

EQUIPAMENTOS EQUIPAMENTOS

EQUIPAMENTOS EQUIPAMENTOS EQUIPAMENTOS OPERAÇÕES UNITÁRIAS TECNOLOGIA DE PROCESSOS QUÍMICOS II MECÂNICA DOS FLUÍDOS TRANSMISSÃO DE CALOR

ESCOLA DE ENGENHARIA DE LORENA - USP DEPARTAMENTO DE ENGENHARIA QUÍMICA DESTILAÇÃO DIFERENCIAL PROF. DR. FÉLIX MONTEIRO PEREIRA

Sistemas de Refrigeração Parte I

U = 1.5 m/s T m,e = 20 o C T p < 200 o C

3. Um gás ideal passa por dois processos em um arranjo pistão-cilindro, conforme segue:

Curso de Engenharia Química. Prof. Rodolfo Rodrigues

Trocadores de Calor Método MLDT. Prof. Simões

Aula: Processo de Filtração

CLIMATIZAÇÃO AULA 02 CONFORTO AMBIENTAL Faculdade Independente do Nordeste - FAINOR Colegiado de Arquitetura e Urbanismo Prof. Philipe do Prado Santos

Exemplo 19: A reação catalítica:

HIDROMETALURGIA E ELETROMETALURGIA

MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS

SIMULAÇÃO NUMÉRICA DE UM CONDENSADOR A AR

Dispositivos com escoamento em regime permanente

TUBULAÇÕES INDUSTRIAS AULA 4 Prof. Clélio AULA 4. Volume I do Livro Texto CONTEÚDO: Capítulo 7. Purgadores de Vapor, Separadores Diversos e Filtros.

Operações Unitárias II Prof a. Dr a. Simone de Fátima Medeiros. 2 Semestre

Ebulição e Condensação. Profa. Jacqueline Copetti. LETEF Laboratório de Estudos Térmicos e Energéticos

7 TORRES DE RESFRIAMENTO E CONDENSADORES EVAPORATIVOS

Produção de Açúcar. Processos Químicos Industriais II

Transcrição:

OPERAÇÕES UNITÁRIAS II AULA 9: EVAPORAÇÃO EM SIMPLES EFEITO Profa. Dra. Milena Martelli Tosi

EVAPORAÇÃO EM SIMPLES EFEITO Características da evaporação e do líquido a ser evaporado Principais tipos de evaporadores Elevação do ponto de ebulição (concentração e altura do líquido) Balanços de Massa e Energia / Coef. Global de troca térmica

EVAPORAÇÃO Operação de concentração de uma solução por evaporação de um solvente Uma das mais antigas operações de separação empregadas em escala industrial Ex: produção de açúcar de cana: solução de sacarose é concentrada de maneira a permitir a cristalização Produção de celulose: lixívia (licro negro oriundo do tratamento da madeira) é concentrada até permitir sua queima nas caldeiras (recuperação dos sais de sódio)

BATELADA: FORMAS DE TC Características do líquido a ser evaporado Características se modificam no decorrer do processo: - Densidade e viscosidade: aumentam, reduzindo a eficiência; - Solução torna-se saturada: com respeito ao equilíbrio sólidolíquido dos compostos dissolvidos, provocando a formação de cristais que devem ser removidos para evitar danos nos tubos; - Ponto de ebulição: pode subir consideravelmente com a concentração, diminuindo o potencial térmico e, consequentemente, a capacidade de transferência de calor. Alimentos: as exigências de qualidade do produto podem requerer um tempo de residência e temperaturas baixos

EVAPORAÇÃO EM SIMPLES EFEITO Características da evaporação e do líquido a ser evaporado Principais tipos de evaporadores Elevação do ponto de ebulição (concentração e altura do líquido) Balanços de Massa e Energia / Coef. Global de troca térmica

PRINCIPAIS TIPOS DE EVAPORADORES Podem ser classificados em (Green & Perry, 2008): Aqueles em que o meio de aquecimento é separado da solução a ser evaporada por superfícies tubulares (tubos) Aqueles em que o meio de aquecimento está confinado em camisas, serpentinas e placas planas Aqueles em que o meio de aquecimento entra em contato direto com a solução de evaporação Aqueles que utilizando aquecimento por meio de radiação solar Grande maioria: emprega tubos para aquecimento da solução a ser evaporada

PRINCIPAIS TIPOS DE EVAPORADORES : CLASSIFICAÇÃO (1) Fonte de calor: vapor, fogo direto, solar, etc. (2) Posição dos tubos: horizontal, vertical ou inclinado; (3) Métodos de circulação do produto: forçado ou natural; (4) Comprimento dos tubos: longo, médio ou curto; (5) Direção do fluxo de produto: ascendente ou descendente; (6) Número de passes do produto: 1, 2, ou mais; (7) Formato dos tubos: espiral, reto, etc. (8) Localização do vapor: interno ou externo ao tubo, ou ambos; (9) Localização dos tubos: interno ou externo.

PRINCIPAIS TIPOS DE EVAPORADORES : COMPONENTES BÁSICOS Trocador de calor (calor sensível e latente) Separador de vapor (da fase líquida em concentração) Condensador (dos vapores do produto) Acessórios - Bomba de vácuo - Válvulas reguladoras de pressão - Válvulas de segurança - Purgadores - Registros diversos

PRINCIPAIS TIPOS DE EVAPORADORES : EQUIPAMENTOS Tachos abertos e à vácuo Evaporadores de tubo vertical ou horizontal com circulação natural Evaporadores de circulação forçada Evaporadores de filme ascendente Evaporadores de filme descendente Evaporadores de placas

Evaporador de Tubo Horizontal -Tubo horizontal 1100<U<2300 W/m²k 10

Evaporador de Tubo Horizontal Tubos de 3/4 a 1 1/4 dispostos no fundo de uma câmara cilíndrica de 1 a 3 m de diâmetro e de 2,5 a 4,5 m de altura Unidade simples. Convecção natural

EVAPORADOR DE TUBO VERTICAL CURTO -Tubo vertical 1100<U<2800 W/m²k 12

EVAPORADOR DE TUBO VERTICAL CURTO CALANDRIA (USA) ROBERTS (EUROPA) Conhecidos como Calandria: solução circula no interior dos tubos e retorna ao fundo do evaporador pela parte central (TC afetada pelo nível do líquido no interior) grande área, alto tempo de residência, baixa TC para soluções viscosas Tubos com vapor estão na vertical no fundo da câmara cilíndrica (mais fácil de higienizar que o horizontal) Há um espaço no centro para o líquido circular, para cima nas serpentinas sendo aquecido, e para baixo pelo centro (mais frio) Fonte: Leninger & Beverloo, 1975

EVAPORADOR DE TUBO VERTICAL CURTO CALANDRIA (USA) ROBERTS (EUROPA) Com agitação

EVAPORADOR DE TUBO VERTICAL LONGO -Tubo longo vertical 1100<U<4500 W/m²k 15

EVAPORADOR DE TUBO VERTICAL LONGO -Circulação forçada 1100<U<7000 W/m²k 16

EVAPORADOR DE TUBO VERTICAL LONGO Filme Ascendente Rising film Circulação natural com fluxo ascendente A - Produto B Vapor C Concentrado D Vapor de Aquecimento E - Condensado Tubos de 1 1/4 a 2 de diâmetro e 3,5 a 5,5 m de comprimento para movimentar o líquido dentro dos tubos, aquecimento é com vapor por fora do tubo Fonte: www.niro.com Prato defletor está no topo do feixe de tubos para evitar o arraste de líquido e reduzir perdas

EVAPORADOR DE TUBO VERTICAL LONGO Filme descendente Falling film Reduz a quantidade de tratamento ou exposição do produto ao calor A - Produto B - Vapor C - Concentrado D - Vapor de Aquec. E - Condensado 1 - Cabeça 2 - Calandria 3 - Calandria (baixa) 4 - Canal de mistura 5 - Separador de vapor Tubos de 1 1/2 a 2 de diâmetro e acima de 9 m de comprimento. Fonte: www.niro.com

EVAPORADOR DE TUBO VERTICAL LONGO Filme descendente Falling film Esse tipo de evaporador elimina o problema de aumento de temperatura da solução no interior dos tubos em razão da altura hidrostática. Operam com filme delgado de solução, permitindo rápida evaporação com pequeno tempo de residência e com baixo superaquecimento da solução. Ex: soluções termicamente sensíveis (suco de laranja) Problema: garantir boa distribuição do líquido ao longo de todo o perímetro dos tubos

EVAPORADOR DE CIRCULAÇÃO FORÇADA A - Produto B Vapor C Concentrado D Vapor de Aquecimento E - Condensado Evaporadores em convecção natural velocidade do fluido < 1 a 1,2 m/s difícil aquecer material viscoso em circulação natural Circulação forçada velocidade do fluido = 4,5 a 4,8 m/s Tubo vertical ou horizontal 1 - Calandria 2 - Separador (Flash Cooler) 3 - Bomba de circulação 4 - Bomba do concentrado Fonte: www.niro.com

TIPOS DE EVAPORADORES: VERTICAIS DE TUBO LONGO Adequado para maioria das aplicações (menos econômicos) garantia de circulação por meio de uma bomba - Maiores coef. TC são obtidos quando solução entra em eb. nos tubos. Circulação forçada CF com tubo submerso (+ usado)

EVAPORADORES DE PLACAS Trocador de calor de placas com vapor de baixa pressão entre as placas com produto em posições alternadas Fonte: www.niro.com O vapor é alimentado pelo topo O produto se move da base para o topo entre as placas, como no evaporador de filme ascendente Evaporação pode ocorrer no interior dos canais das placas ou na câmara A - Produto de separação B - Vapor de concentrado e vapor. 1 - Calandria Vantagens: C - Concentrado facilidade e flexibilidade na operação, altos coef. TC, operação D - Vapor de Aquec. 2 - Separador com líquidos de alta viscosidade, baixo tempo de residência, baixa E Condensado incrustação qdo operado a altas velocidades de circulação F - Vapor Desvantagens: custo do investimento e alta perda de carga no trocador Ex: concentração de suco de frutas

Evaporadores de Placas Fonte: www.apv.com

Escolha do tipo de evaporador Fonte: www.apv.com

Comparação de tempo de residência e coeficientes de transferência de calor nos evaporadores Tipo de evaporador Número de estágios Tempo de residência Baixa viscosidade U (W m -2 K -1 ) Alta viscosidade Tachos à vácuo Simples > 30 min 500-1000 <500 Tubo curto vertical Simples -- 570-2800 -- Filme ascendente Simples 10-60 s 2250-6000 <300 Filme descendente Simples 5-30 s 2000-3000 -- Placas Triplo 2-30 s 2000-3000 -- Superfície cônica Duplo 0,5-30s 2500 -- Superfície raspada Simples 20-30 s 2000-3000 1700

EVAPORAÇÃO EM SIMPLES EFEITO Características da evaporação e do líquido a ser evaporado Principais tipos de evaporadores Elevação do ponto de ebulição (concentração e altura do líquido) Balanços de Massa e Energia / Coef. Global de troca térmica

ELEVAÇÃO DO PONTO DE EBULIÇÃO PELO EFEITO DA CONCENTRAÇÃO DO LÍQUIDO A T de ebulição de uma solução é maior que a do solvente puro (EPE: elevação do ponto de ebulição) EPE: função da concentração e do tipo de soluto Regra prática útil para o cálculo de evaporadores é a regra de Duhring A T eb de uma dada solução a dada concentração é uma função linear da T eb do solvente puro na mesma pressão

ELEVAÇÃO DO PONTO DE EBULIÇÃO PELO EFEITO DA CONCENTRAÇÃO DO LÍQUIDO Regra de Duhring:

T ELEVAÇÃO DO PONTO DE EBULIÇÃO PELO EFEITO DA CONCENTRAÇÃO DO LÍQUIDO Regra de Duhring: eb 1 No caso de soluções diluídas em situações compatíveis com a Lei de Raoult, a T eb (K) da solução T pode ser calculada pela expressão: solução T eb 1 R.ln x ˆ H solvente. puro vap Soluções diluídas: pode ser expressa em termos de concentração de soluto EPE R T 2. ebsolvente. vap Hˆ puro x 2 1 1 vap H 1 :Entalpia molar de vaporização do solvente puro x 1 : fração molar de solvente na solução x 2 : fração molar de soluto na solução

USO DE EQUAÇÕES PARA DETERMINAR A ELEVAÇÃO DO PONTO DE EBULIÇÃO Elevação do ponto de ebulição: C: concentração ( o Brix) P: pressão (mbar) 30

ELEVAÇÃO DO PONTO DE EBULIÇÃO PELO EFEITO DA ALTURA DE LÍQUIDO (CARGA HIDROSTÁTICA) Denomina-se EH: a Teb em um ponto situado abaixo da superfície do líquido se maior do que aquele da superfície. Esse efeito será mais pronunciado quanto maior a profundidade e quanto maior a velocidade no tubo. Dessa maneira, tem-se a diminuição da diferença de temperatura entre o vapor e a solução, reduzindo assim a capacidade de evaporação

EVAPORAÇÃO EM SIMPLES EFEITO Características da evaporação e do líquido a ser evaporado Principais tipos de evaporadores Elevação do ponto de ebulição (concentração e altura do líquido) Balanços de Massa e Energia / Coef. Global de troca térmica

BALANÇOS DE MASSA E DE ENERGIA

EXERCÍCIO 1 AULA 9 Uma solução aquosa a 5% em sólido é concentrada até 25% de sólidos em um evaporador empregandose vapor saturado a 1,5 bar. A solução é alimentada a 40 o C e com vazão de 6000 kg.h -1. A pressão absoluta no espaço de evaporação é de 27kPa. As perdas térmicas correspondem a 5% do calor total transferido. Os calores específicos das soluções podem ser admitidos como independentes da temperatura e iguais a 3,56 kj.kg -1.K -1, e a EPE pode ser desconsiderada. Calcular a taxa de evaporação e o consumo de vapor.

EXERCÍCIO 2 AULA 9 Concentram-se 10000 kg.h -1 de uma solução a 10% em açúcar até 30% em um evaporador, empregando-se vapor saturado 1,5 bar. A pressão absoluta no espaço de evaporação é de 0,132 bar. O coeficiente global de transferência de calor é estimado em 2000 W.m -2.K -1. A temperatura de alimentação é 30 o C. Os calores específicos das soluções podem ser admitidos como independentes da temperatura e expressos por: C F = 4,186 0,025B, sendo B a concentração da solução em o Brix e C F em kj.kg -1.K -1. Calcular o consumo de vapor e a área de transferência de calor necessária.

Alternativas para economia de energia na evaporação Múltiplos efeitos Recompressão de vapor (mecânica ou térmica) Pré-aquecimento do produto Aproveitamento da energia do concentrado