Análise experimental de da mecânica da formação de aneurismas

Documentos relacionados
3 Análise experimental

Análise experimental de aneurismas em artérias humanas

3 Análise experimental

DEPARTAMENTO DE ENGENHARIA CIVIL LABORATÓRIO DE BIOMEMBRANAS ANÁLISE EXPERIMELTAL DA MECÂNICA DE ANEURISMAS

Investigações numéricas e experimentais da mecânica dos aneurismas em tubos isotrópicos de borracha

Análise numérica e experimental da mecânica de formação de aneurismas da aorta abdominal

5 Análise numérica realizada com as características da parede arterial

6. Resumo dos resultados finais e discussão

ANÁLISE EXPERIMELTAL DA MECÂNICA DE ANEURISMAS. Aluno: Luciano de Almeida Ferreira Orientadora: Djenane C. Pamplona

Os carregamentos envolvidos na análise numérica são os mesmos envolvidos na análise experimental, e são descritos abaixo:

Análise experimental da endentação de membranas hiperelásticas com e sem atrito.

Análise numérica e experimental da mecânica de formação de aneurismas da aorta abdominal

7 RESULTADOS EXPERIMENTAIS

4 Análise experimental

ENDENTAÇÃO E PENETRAÇÃO DE MEMBRANAS HIPERELÁSTICAS COM E SEM CONSIDERAÇÃO DE CONTATO

5 Análise experimental e numérica de membranas cilíndricas hiperelásticas

UNIDADE 9 Propriedades Mecânicas I

6 Comparação, avaliação e discussão dos resultados

ESTUDO NUMÉRICO E EXPERIMENTAL DE TUBOS DE CONCRETO ARMADO SUBMETIDOS À COMPRESSÃO DIAMETRAL

UNIVERSIDADE FEDERAL DO ABC MATERIAIS E SUAS PROPRIEDADES (BC 1105) ENSAIOS MECÂNICOS ENSAIOS DE TRAÇÃO E FLEXÃO

2 Fundamentos para a avaliação de integridade de dutos com perdas de espessura e reparados com materiais compósitos

a) Os três materiais têm módulos de elasticidade idênticos. ( ) Introdução à Ciência dos Materiais para Engenharia PMT 3110

UNIVERSIDADE FEDERAL DO ABC CENTRO DE ENGENHARIA, MODELAGEM E CIÊNCIAS SOCIAIS APLICADAS MATERIAIS E SUAS PROPRIEDADES (BC 1105)

3. MODELOS MATEMÁTICOS PARA FORÇAS DE CONTATO E DE REMOÇÃO

MÉTODO DE RUNGE-KUTTA APLICADO À DEFLEXÃO DE VIGA 1 RUNGE-KUTTA METHOD APPLIED TO BEAM DEFLECTION

Estabilidade. Marcio Varela

3 Programa Experimental

4 Determinação Experimental das Propriedades Estatísticas das Fibras de Carbono

6 Análise Dinâmica. 6.1 Modelagem computacional

Estudo e desenvolvimento de processo não convencional de conformação de junção

AVALIAÇÃO DA COMPRESSÃO DE UMA LIGA DE ALUMÍNIO: EXPERIMENTAL X NUMÉRICO

ANÁLISE COMPARATIVA ENTRE MODELOS DE ASA CONVENCIONL E GEODÉSICA

Tabela 1 Características gerais dos corpos de prova escolhidos. RI=Rocha intacta; ZD=Zona de dano; NF=Núcleo da falha

5 Resultados Experimentais

UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II

DETERMINAÇÃO DA FORÇA CRÍTICA DE FLAMBAGEM DE TUBOS CILÍNDRICOS DE PAREDES FINAS

Figura 4.1: a)elemento Sólido Tetraédrico Parabólico. b)elemento Sólido Tetraédrico Linear.

3 Equipamento de Cisalhamento Direto com Sucção Controlada da PUC-Rio

7. APLICAÇÃO DE MODELOS PARA PREVISAO DA FORÇA DE CONTATO PIG / TUBO E COMPARAÇÃO COM RESULTADOS EXPERIMENTAIS

4 AVALIAÇÃO DA PRESSÃO DE RUPTURA DE MOSSAS SIMPLES

ESTUDO DA TRANSIÇÃO ENTRE ESCOAMENTO LAMINAR E TURBULENTO EM TUBO CAPILAR

Capítulo 3 Propriedades Mecânicas dos Materiais

DETERMINAÇÃO DA CONTRAÇÃO LATERAL DO DIÂMETRO EM LIGAS METÁLICAS UTILIZANDO- SE O SCILAB

Prof. Willyan Machado Giufrida Curso de Engenharia Química. Ciências dos Materiais. Propriedades Mecânicas dos Materiais

Biopdi. Equipamentos para ensaio de materiais. Descrição MÁQUINA UNIVERSAL DE ENSAIO HIDRÁULICA 20kN VERSÃO DIDÁTICA

MÁQUINA UNIVERSAL DE ENSAIO HIDRÁULICA

Diagrama Tensão Deformação 0,0000 0,0005 0,0010 0,0015 0,0020 0,0025

UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II

A UTILIZAÇÃO DE FERRAMENTAS DE SIMULAÇÃO NUMÉRICA NA OTIMIZAÇÃO DE PROJETOS DE MECANISMOS DE VÁLVULA GAVETA*

ANÁLISE TEÓRICA E EXPERIMENTAL DE BARRAS EM DUPLA CANTONEIRA DE AÇO FORMADAS A FRIO SUBMETIDAS À COMPRESSÃO

Resultados 6.1. Teste de Deformação

Avaliação do Retorno Elástico em Chapas de Aço Bifásicos através do Processo de Dobramento

4 Modelo analítico 84

Figura Elemento Solid 187 3D [20].

Prof. Alfredo Gay Neto Prof. Miguel Bucalem PEF 5716

MÉTODO NUMÉRICO PARA A DETERMINAÇÃO DO MÓDULO DE TENACIDADE DE MATERIAIS A PARTIR DE ENSAIOS DE TRAÇÃO

Propriedades mecânicas dos materiais

Prof. Dr. Evandro Leonardo Silva Teixeira Faculdade UnB Gama

EFEITO DAS TENSÕES TÉRMICAS RESIDUAIS DE CURA NO COMPORTAMENTO MECÂNICO DE LAMINADOS CARBONO/EPÓXI

3 Estudo experimental

PROPRIEDADES MECÂNICAS II

% % 40

MONITORAMENTO DE RISERS FLEXÍVEIS: FERRAMENTA MANDRIL VENTURI

Relações entre tensões e deformações

Pressão Interna + Momento Fletor e Esforço Axial.

PMR 2202 Projeto 2 - Estampagem

AULA 12: DEFORMAÇÕES DEVIDAS A CARREGAMENTOS VERTICAIS E A TEORIA DO ADENSAMENTO. Prof. Augusto Montor Mecânica dos Solos

Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013

ENSAIOS DE APLICAÇÃO RESISTÊNCIA À FLEXÃO

3 PROGRAMA EXPERIMENTAL

3 Programa Experimental

4 Modelo Constitutivo de Drucker-Prager para materiais rochosos

5 Abordagem experimental

4 Modelo Numérico Computacional

Programa de Pós-graduação em Engenharia Mecânica da UFABC. Disciplina: Fundamentos de Mecânica dos Sólidos II. Lista 2

1. Introdução 1.1. Considerações Gerais

6. Conclusões e Sugestões

CIV 1111 Sistemas Estruturais na Arquitetura I

Professor: José Junio Lopes

AVALIAÇÃO DO MÉTODO DE ENSAIO BRASILEIRO PARA MEDIDA DA RESISTÊNCIA DE ADERÊNCIA À TRACÇÃO DE REVESTIMENTOS DE ARGAMASSA

MÓDULO 2: Propriedades mecânicas dos metais. Deformação elástica, Deformação plástica

Quarta Lista de Exercícios

UN ALGORITMO DE PUNTO INTERIOR PARA LA RESOLUCIÓN DE PROBLEMAS DE CONTACTO

3. Materiais e Métodos

PROPRIEDADES MECÂNICAS DE

Carga axial. Princípio de Saint-Venant

CARACTERIZAÇÃO REOLÓGICA INTERFACIAL DE EMULSÕES DE ÓLEOS PESADOS

7 Simulação numérica de prova de carga em placa sobre solo residual

Capítulo 3: Propriedades mecânicas dos materiais

CURVAS LIMITES DE RESISTÊNCIA PARA AVALIAÇÃO DA INTEGRIDADE ESTRUTURAL DE CHAPAS PLANAS COM COMPORTAMENTO ANISOTRÓPICO

MEMÓRIA DE CÁLCULO. Figura 1 - Dimensões e eixos considerados no provete submetido a ensaio.

4 Ensaios Principais: Descrição e Apresentação dos Resultados

Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE. Experimento de ensino baseado em problemas. Módulo 01: Análise estrutural de vigas

DERTERMINAÇÃO DA CURVA DE ENCRUAMENTO DE CHAPAS METÁLICAS COM O ENSAIO HIDRÁULICO DE EXPANSÃO BIAXIAL

ANÁLISE NÃO LINEAR GEOMÉTRICA DE SÓLIDOS ELÁSTICOS COM GRADAÇÃO FUNCIONAL VIA MEF-P

Título: Comportamento mecânico de materiais compósitos FRP a temperatura elevada. Orientador: João Ramôa Correia

Capítulo 1 Introdução 13

Transcrição:

Departamento de Engenharia Civil Análise experimental de da mecânica da formação de aneurismas Aluno: Guilherme R. de Paula Orientadora: Djenane Pamplona Introdução: Esta pesquisa abrange as análises numérica e experimental da mecânica da formação de aneurismas na aorta abdominal. A análise experimental iniciou-se em tubos de látex cilíndricos. Atualmente ela é realizada em tubos de silicone com a geometria da aorta. Após ser aplicada tração no tubo, aumenta-se a pressão interna através do bombeamento suave de água até que o bulbo se forme, o volume do bulbo e a pressão interna aumentam até atingir uma pressão limite, que denominamos crítica. Essas simulações permitiram a análise mecânica dos aneurismas relacionando a pressão crítica, volume, posicionamento e dimensões para diferentes cargas de tração e pré-condicionamento. Realizamos esses mesmos ensaios em tubos de látex com imperfeições locais e algumas artérias animais. Está sendo implantado um sistema da National Instruments de aquisição de dados para obtenção de maior precisão a fim de avançar nas pesquisas obtendo resultados de maior confiabilidade. Esta pesquisa tem recebido reconhecimento da parte das agências financiadoras, tendo sido contemplada no Cientista do Estado e Edital Universal. Metodologia: Apesar de um crescente número de artigos publicados sobre aneurismas nos últimos anos, encontrar as propriedades físicas e mecânicas do material da aorta tem se mostrado uma tarefa árdua. Até o presente momento, para a realização da análise experimental foram obtidas da revisão bibliográfica duas geometrias para a aorta. A primeira geometria foi obtida através de Simão da Silva e outros (1999) e a segunda geometria foi obtida do artigo de D. P. Sokolis (2007). A geometria obtida através de Simão da Silva e outros (1999) está descrita abaixo: Comprimento inicial: 20 cm. Raio superior externo: 9,5 mm. Raio superior interno: 7,0 mm. Raio inferior externo: 7,3 mm. Raio inferior interno: 5,9 mm.

Por falta de informações mais precisas foi considerado que a variação da espessura e do raio ao longo do comprimento arterial se da de forma linear. A geometria obtida através de D. P. Sokolis (2007) apresenta algumas diferenças em relação à de Simão da Silva, principalmente no que se refere a variação da espessura ao longo do comprimento e aos valores dos raios inferiores. Os dados abaixo são referentes à D. P. Sokolis. Na figura 1 podemos observar o gráfico que representa a variação da espessura da parede arterial em função do seu comprimento (representado pela subdivisão da aorta). Figura 1 - Variação da espessura da parede arterial Na figura 2 podemos observar o gráfico que representa a variação do diâmetro interno e externo da parede arterial em função do seu comprimento. Figura 2 - Variação do diâmetro interno e externo da parede arterial Para a confecção do tubo de silicone foi realizada uma mudança de escala das medidas obtidas, pelo fato da espessura real na parte inferior da aorta abdominal ser muito pequena. Isso faria com que um pequeno erro na confecção do tubo provocasse a inutilidade do molde e uma grande imperfeição.

Utilizamos para a fabricação das artérias um molde confeccionado em gesso e madeira já utilzado nas pesquisas anteriores por se mostrar satisfatório. As artérias são confecionadas em látex. A cada artéria feita são feitos também três corpos de prova para ensaios de tração a fim de obter as constantes elásticas do latex utilizado para posterior comparação com modelos matemáticos e modelos testados em computadores atravéz do método de elementos finitos. As artérias são presas em um aparato de testes na vertical. Atravéz de um equipamento apropriado inserimos água sob pressão na artéria a fim de observar a formação dos aneurismas. Aparato utilizado na análise experimental: Para realizar a análise experimental foram utilizados os equipamentos descritos abaixo: Um tubo de silicone, confeccionando no laboratório de Biomembranas da PUC - Rio com as geometrias parametrizadas da aorta humana. Um aparato metálico, com finalidade de prender o tubo de silicone e tracioná-lo quando necessário, apresentado na figura 3.3(b). Um vaso de pressão primário com um manômetro acoplado, apresentado na figura 3.3(a). Um vaso de pressão secundário com um sensor de pressão acoplado, apresentado na figura 3.3(b). Uma válvula de ligação entre o vaso primário e o vaso secundário, apresentado na figura 3.3(a). Um compressor de ar ligado ao vaso primário, apresentado na figura 3.3(a). Um sistema de aquisição de dados que realiza a medição instantânea da pressão interna do vaso secundário, que é a mesma no tubo de silicone. Na figura 3 podemos observar os equipamentos descritos acima.

(a) (b) Figura 3 - Equipamentos utilizados na análise experimental Sistema de aquisição de dados: Rack cdaq 9172 Módulo de aquisição de dados NI 9206 Módulo de aquisição de dados NI 9237 Módulo de aquisição de dados NI 9485 Módulo de aquisição de dados NI 9401 (Fotos ) Além dos acessórios específicos. Todos os equipamentos de aquisição de dados foram adiquiridos da National Instuments Brazil LTDA. Sensor de pressão modelo P8AP produzido pela HBM.

Figura 4: Sensor de pressão HBM modelo P8 AP

Figura 5: Hardware de aquisição de dados. Descrição do procedimento realizado na análise experimental: Para a realização da análise experimental foram realizados os procedimentos listados abaixo, na ordem apresentada, e tem como objetivo obter a pressão critica: 1) Fixação do tubo de silicone no aparato metálico com o auxilio de braçadeiras plásticas. Existe uma abertura no aparato metálico, através da qual o tubo de silicone é ligado ao vaso secundário por meio de uma mangueira. 2) Aferição do comprimento entre as braçadeiras. 3) Retirada de todo o ar contido no interior do tubo de silicone. 4) O vaso primário contêm apenas ar e o vaso secundário contêm ¾ de água e ¼ de ar. O vaso primário e o vaso secundário são ligados por uma válvula. 5) Pressurização do vaso primário, mantendo-se a válvula de ligação entre o vaso primário e o vaso secundário fechada, até a pressão de 0,08MPa; com o auxilio do pressurizador.

6) Realiza-se uma abertura controlada da válvula de ligação do vaso primário e do vaso secundário, aumentando-se assim a pressão no interior do vaso secundário e do tubo de silicone, que está cheio de água. 7) Através o sensor de pressão acoplado no vaso secundário e ligado ao sistema de aquisição de dados é realizado a leitura da pressão interna do vaso secundário. 8) O ensaio estende-se até ser alcançada a pressão crítica. Essa fase do ensaio é chamada de fase A. 9) Após a pressão crítica ser alcançada promove-se a despressurização do aparato. 10) O procedimento é repetido a partir do item 5 (utilizando-se a mesma artéria) até a determinação da nova pressão crítica. Essa fase do ensaio é chamada de B. Escolha do material: O material escolhido para a confecção dos moldes representativos da aorta foi o silicone, matéria prima que tem um manuseio relativamente simples. Para a determinação da concentração de catalisador a ser empregada na confecção dos tubos de silicone foram confeccionados corpos de prova com diferentes concentrações de catalisador. De acordo com os testes verificamos que a quantidade de catalisador empregada muda às propriedades elásticas do silicone. Na figura 6 podemos observar os corpos de prova confeccionados. Figura 6 - Corpos de prova para determinação da concentração de catalisador Os corpos de prova apresentavam concentrações de 0,5%, 1%, 1,5%, 2% e 2,5%, de catalisador.

Após realizarmos testes mecânico com os corpos de prova citados acima, optamos por empregar a concentração de 0,5% de catalisador, em relação à massa de silicone empregada. Para a experiência da formação dos aneurismas era importante utilizar um material que apresentasse elasticidade suficiente para que pudéssemos observar a formação dos bulbos, pois se o material fosse muito rígido, este se romperia antes que fosse observado o aneurisma, e se fosse muito flexível sofreria deformação como um todo e o bulbo do aneurisma não ficaria caracterizado. Confecção do tubo de silicone: O tubo de silicone foi confeccionado com o auxilio de um molde de gesso e um núcleo central de madeira onde a massa de silicone era despejada e permanecia por 48 horas, o silicone utilizado após a mistura com o catalisador e colocado em uma bomba de vácuo para retirada das bolhas de ar incorporadas a massa devido à mistura. O molde de gesso e o núcleo central de madeira apresentam seção variável ao longo de seu comprimento para simular a geometria arterial proposta por Simão da Silva e outros (1999). Na figura 7 podemos observar a mistura de silicone e catalisador passando pelo processo de retirada de bolhas de ar. Figura 7 Processo para retirada de bolhas da mistura Na figura 8 podemos observar o molde de gesso e o núcleo central de madeira utilizados na confecção dos tubos de silicone.

Figura 8 - Detalhes do molde de gesso utilizado na confecção do tubo de silicone Para centralização do núcleo central de madeira é colocada uma tampa. A imagem apresentada na figura 8 é meramente ilustrativa do ponto de vista da centralização do núcleo central de madeira. Obtenção das propriedades do silicone: Foram realizados testes de tração no ITUC. Com corpos de prova moldados com o mesmo material e no mesmo instante em que foram confeccionados os moldes das artérias a serem ensaiadas. Os corpos de prova eram ensaiados no mesmo dia em que se realizava o ensaio das artérias. Os moldes das artérias e os corpos de prova eram ensaiados uma semana após serem confeccionados. Este intervalo de tempo foi rigorosamente obedecido, pelo fato das propriedades elásticas do material mudarem com o passar do tempo. Na figura 9 podemos observar o detalhe da garra utilizada no ensaio de tração.

Figura 9 - Detalhe da garra utilizada no ensaio de tração do corpo de prova Na 10 podemos observar o ensaio de tração realizado no ITUC.

Figura 10 - Detalhe do ensaio de tração O ensaio de tração tem por objetivo determinar a relação tensão-deformação do material estudado. Esta relação é utilizada para se chegar as constantes elásticas dos funcionais de energia a serem modelados na análise numérica do material por meio do programa de elementos finitos ABAQUS. Corpo de prova: O corpo de prova utilizado no ensaio era confeccionado no interior de tubos de ensaio de vidro e apresentava geometria descrita abaixo: Comprimento: 12,5cm. Raio: 0,67cm. Os corpos de prova são confeccionados com o mesmo material utilizado da confecção das artérias. Na figura 11 estão representados dois corpos de prova e uma artéria.

11 - Representação dos corpos de prova e da artéria Figura Pré-condicionamento: Antes de ser instalado no aparato metálico e de se realizar o teste de tração, o tubo de silicone e os corpos de prova foram submetidos a um pré-condicionamento. O pré-condicionamento consistia em tracionar o tubo de silicone em 30% de deu comprimento inicial em um único ciclo de 15 repetições. Somente após este procedimento realizavam-se os ensaios. Resultados dos ensaios com tubos de silicone: Foram realizados ensaios com diferentes níveis de alongamento nos tubo de silicone para que se observasse o comportamento da pressão crítica. O primeiro conjunto de ensaios apresenta a geometria obtida através de Simão da Silva e outros (1999). A geometria é descrita abaixo: Comprimento inicial: 40 cm. Raio superior externo: 1,9 cm. Raio superior interno: 1,4 cm. Raio inferior externo: 1,46 cm. Raio inferior interno: 1,18 cm. Esta geometria foi parametrizada a partir da geometria descrita no inicio do capitulo, isso foi necessário pois a espessura na parte inferior é muito delgada. Mesmo após a parametrização a parte inferior apresenta ainda muitas imperfeições. Para uma melhor

padronização do ensaio foi retirada uma porção da parte inferior, com isso o comprimento inicial reduziu-se para 36 cm. O segundo conjunto de ensaios apresenta a geometria obtida através do artigo de D. P. Sokolis, esta geometria será utilizada na análise numérica, e os resultados comparados com a geometria de Simão da Silva e outros. Estudo da convergência da pressão: Para o conjunto de ensaios anteriores foi realizado um estudo da variação da pressão interna da aorta ao longo de todo o ciclo de carga. Para este estudo foram realizados dois ciclos de carga e descarga aferindo-se a pressão interna correspondente. Através dos gráficos podemos observar a variação da pressão (mmhg) em função do tempo (s). O estudo de aferição da pressão interna ao longo do tempo tem como objetivo demonstrar à estabilização da pressão, sendo esta pressão estabilizada considerada a pressão crítica do ensaio experimental. Apesar de o bulbo formado continuar a crescer com o passar do tempo, a pressão permanece constante. Estudo da variação volumétrica: Para o conjunto de ensaios anteriores foi realizado um estudo da variação do volume interno da aorta ao longo de todo o ciclo de carga. Para este estudo foram realizados dois ciclos de carga e descarga aferindo-se o volume interno correspondente. 3 Através dos gráficos podemos observar a variação do volume ( cm ) em função da pressão interna (mmhg). Ensaios experimentais: Ensaio 1 No ensaio 1 o tubo de silicone não estava tracionado. Para este conjunto de ensaio as pressões críticas encontradas foram: Ensaio 1 Pressão Crítica (mmhg) Ensaio 1A 108,8 Ensaio 1B 119,2 Tabela 1 Pressões críticas do ensaio 1 Na figura 12 podemos observar a seqüência de imagens obtidas ao longo do ensaio.

12,5 22 42 62 82 92 102 108,8 Figura 12 Seqüência de fotos ao longo do ensaio (pressões em mmhg)

Pressão (mmhg) Tensão (Pa) Abaixo segue o gráfico tensão deformação obtido com os corpos de prova do ensaio 1 para a caracterização do material. Ensaio 1 600000.00 500000.00 400000.00 300000.00 Ensaio 1 200000.00 100000.00 0.00 0.000 1.000 2.000 3.000 4.000 5.000 Deformação Figura 13 Gráfico de caracterização do ensaio 1 Abaixo podemos observar a variação da pressão interna (mmhg) ao longo do tempo para o ensaio 1. Ensaio 1 140 120 100 80 60 Ensaio 1A Ensaio 1B 40 20 0 0 100 200 300 400 500 600 Tempo (s) Figura 14 Variação da pressão do ensaio 1 3 Abaixo podemos observar a variação do volume interno ( cm ) ao longo do tempo para o ensaio 1.

Pressão (mmhg) Avaliação do volume no ensaio 1 140 120 100 80 60 Ensaio 1A Ensaio 1B 40 20 0 0 100 200 300 400 500 600 700 800 Volume Figura 15 Variação do volume do ensaio 1 Padronização das pressões críticas: Para a caracterização das pressões obtidas nos ensaios anteriores adotou-se a pressão média dos ensaios como a pressão de referencia para os diferentes níveis de alongamentos adotados. Na tabela 2 podemos observar as pressões de referências obtidas. Nível de alongamento Pressão de referencia (mmhg) Sem alongamento 117,6 Alongamento de 10% do comprimento 110,9 Alongamento de 20% do comprimento 95,7 Tabela 2 Pressões de referências A seguir segue a representação gráfica dos dados apresentados na tabela anterior.

Pressão (mmhg) Análise da variação da pressão 120 110 100 Pressões 90 80 0 5 10 15 20 25 Alongamento (%) Figura 16 Análise da variação da pressão Pela análise do gráfico anterior percebemos uma variação não linear com o incremento no nível de alongamento do tubo de silicone. Padronização da análise do volume: Para a caracterização dos volumes obtidos nos ensaios anteriores adotou-se o volume médio dos ensaios como o volume de referencia para os diferentes níveis de alongamento adotados. Na tabela 3 podemos observar os volumes de referência obtidos. Nível de alongamento 3 Volume ( cm ) Sem alongamento 615 Alongamento de 10% do comprimento 619 Alongamento de 20% do comprimento 543 Tabela 3 Volumes de referência Podemos observar pela análise da tabela 3 que com o incremento de 10% de alongamento no comprimento inicial a variação do volume interno não foi perceptível, sendo notada apenas quando foi aplicada um alongamento de 20% do comprimento inicial. Podemos observar na figura 17 que o bulbo não sofre grande alteração de formato com 10% de alongamento em relação a estrutura sem alongamento e também que com um alongamento de 20% o bulbo torna-se menor e a flambagem do material não é tão acentuada devido ao nível de alongamento.

Sem alongamento Alongamento de 10% Alongamento de 20% Figura 17 Análise da variação do volume Causas da variação da pressão crítica: A variação observada na pressão crítica dos ensaios anteriores deve-se basicamente a dois fatores, a saber: 1) Pequenas diferenças, porem muito importantes, nas propriedades mecânicas dos materiais confeccionados. Diferenças essas que podem ser observadas no gráfico tensão-deformação plotado para todos os espécimes ensaiados. 2) Devido ao processo de fabricação da artéria, a mesma apresentava em alguns casos uma imperfeição inicial. Devido ao posicionamento do molde, às vezes a artéria apresentava uma porção da parede mais fina do que o lado oposto, influenciando assim no valor da pressão crítica. Podemos observar essas imperfeições nas imagens abaixo.

(1) (2) (3) (1) Grande imperfeição (2) Média imperfeição (3) Pequena imperfeição Figura 18 Imperfeições Conlusão: Este sistema e método de ensaios se mostra eficiente e eficaz. Nos primeiros ensaios já foi observado uma melhora considerável nos corpos de prova evidenciada pela significativa redução na formação de bolhas no látex. O hardware e software providos pela National Insruments se mostraram igualmente satisfatórios, o que em conjunto com o transdutor de pressão melhorará muito o resultado da pesquisa. Agradecimentos: Os autores deste trabalho gostariam de agradecer ao CNPq pelo seu apoio financeiro.

Referências Bibliográficas: [1] Alexander, H., 1970, The Tensile Instability of Inflated Cylindrical Membrane as Effected by an Axial Load, International Journal of Engineering Science, Vol.5, pp. 177-193. [2] A. Delfino, N. Stergiopulos, J.E. Moore and J.-J. Meister, Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J. Biomech. 30 (1997) 777-786. [3] C.G. Stephanis, D.E. Mourmouras, D. G. Tsagadopoulos, 2003, On the elastic properties of arteries, Journal of Biomechanics, Vol.36, pp. 1727-1731. [4] Chen, Y., 1995, Stability and Bifurcation of Inflated Cylindrical Elastic Membranes, In: Corneliussen, A.H., Shield, R.T., 1961, Finite Deformation of Elastic Membranes with Application to the Stability of an Inflated and Extended Tube, Archive for Rational Mechanics and Analysis, Vol.7, pp. 273-304. [5] D. P. Sokolis, 2007, Passive mechanical properties and structure of the aorta: segmental analysis, Acta Physiol, Vol.190, pp. 277-289. [6] Dimitrios P. Sokolis, Harisios Boudoulas, Panayotis E. Karayannacos, 2002, Assessment of the aortic stress-strain relation in uniaxial tension, Journal of Biomechanics, Vol.35, pp. 1213-1223. [7] Dimitrios P. Sokolis, Harisios Boudoulas, Panayotis E. Karayannacos, Evangelos Marinos, Emmanuel M. Kefaloyannis, 2006, A structural basis for the aortic stressstrain relation in uniaxial tension, Journal of Biomechanics, Vol.35, pp. 1651-1662. [8] Erasmo Simão da Silva, Aldo Junqueira Rodrigues, Erasmo Magalhães Castro de Tolosa, Paulo Roberto Bueno Pereira, Arnaldo Zanoto, Juliana Martins, 1999, Variation of infrarenal aortic diameter: A necropsy study, Journal of Vascular Surgery, Vol.29, pp. 920-927. [9] Gent, A.N., 2004, Elastic instabilities in rubber, International Journal of Non- Linear Mechanics. [10] Gerhard A. Holzapfel, Thomas C. Gasser., 2000, A new constitutive framework for arterial wall mechanics and a comparative study of material models, Journal of Elasticity, Vol. 66, pp. 1-48. [11] Godoy, L.A., Idelshon, S.R., Laura, P.A.A., Mook, D.T. (Eds.). Applied Mechanics in the Americas, Vol.1, pp. 404-409. [12] Green, A.E., Adkins, J.E., 1960, Large Elastic Deformations and Non-Linear Continuum Mechanics, Clarendon Press, Oxford. [13] Haseganu, E.M., Steigmann, D.J., 1994, Theoretical Flexure of a Pressurized Cylindrical Membrane, International Journal of Solids and Structures, Vol.31, pp. 27-50. [14] Haughton, D.M., 1996, Axially elastic membranes subjected to fluid loads, IMA Journal of Applied Mathematics, Vol.56, pp. 303-320.