Mapeamento do uso do solo

Documentos relacionados
Mapeamento do uso do solo

Sensoriamento Remoto I Engenharia Cartográfica. Prof. Enner Alcântara Departamento de Cartografia Universidade Estadual Paulista

Sensoriamento Remoto. Prof. Enoque Pereira da Silva

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE GEOCIÊNCIAS FUNDAMENTOS DO SENSORIAMENTO REMOTO

O resultado é uma série de "fatias" da superfície, que juntas produzem a imagem final. (Exemplo: o radiômetro dos satélites NOAA gira a uma

SENSORIAMENTO REMOTO INTRODUÇÃO E ÍNDICES DE VEGETAÇÃO

Radiometria e Princípios de Sensoriamento Remoto Hiperespectral

Classificação e Exemplos de Sistemas Sensores. Disciplina: Sensoriamento Remoto Prof. Dr. Raoni W. D. Bosquilia

Sensoriamento Remoto I Engenharia Cartográfica. Prof. Enner Alcântara Departamento de Cartografia Universidade Estadual Paulista

Mapeamento do uso do solo

FUNDAMENTOS DE SENSORIAMENTO REMOTO

Avaliação Parcial 01 - GABARITO Questões Bate Pronto. As questões 1 a 23 possuem apenas uma alternativa correta. Marque-a.

Sensoriamento Remoto: Imagens orbitais e resoluções. Patricia M. P. Trindade; Douglas S. Facco; Waterloo Pereira Filho.

O resultado é uma série de "fatias" da superfície, que juntas produzem a imagem final. (Exemplo: o radiômetro dos satélites NOAA gira a uma

Mapeamento do uso do solo para manejo de propriedades rurais

Sensoriamento Remoto: Sistemas de imageamento e níveis de aquisição de dados. Patricia M. P. Trindade; Douglas S. Facco; Waterloo Pereira Filho.

PMI 3331 GEOMÁTICA APLICADA À ENGENHARIA DE PETRÓLEO

Sensoriamento remoto 1. Prof. Dr. Jorge Antonio Silva Centeno Universidade Federal do Paraná 2016

Flávia da Fonseca Feitosa

GEOPROCESSAMENTO. Sensoriamento Remoto. Prof. Luiz Rotta

Sensoriamento Remoto Aplicado à Geografia Características das Imagens

Definição de sensoriamento remoto. Professor: Enoque Pereira da Silva

SENSORIAMENTO REMOTO: CONCEITOS, TENDÊNCIAS E APLICAÇÕES. Imagens de Satélites Orbitais

FACULDADE DE ENGENHARIA DE MINAS GERAIS SENSORIAMENTO REMOTO E AEROFOTOGRAMETRIA REVISÃO DE CONTEÚDO. Prof. Marckleuber

Radiômetros imageadores

INTRODUÇÃO AO SENSORIAMENTO REMOTO

Fundamentos de Sensoriamento Remoto

Fundamentos do Sensoriamento Remoto. Disciplina: Sensoriamento Remoto Prof. Dr. Raoni W. D. Bosquilia

Aula 1 - Sensoriamento Remoto: evolução histórica e princípios físicos. Patricia M. P. Trindade; Douglas S. Facco; Waterloo Pereira Filho.

Prof o. Ti T a i go B adr d e r Mar a ino n Geoprocessamento D pa p rtam a ent n o de d Ge G oc o iê i nc n ias Instituto de Agronomia - UFRRJ

COMPORTAMENTO ESPECTRAL DE ALVOS

Tecnologias de sensoriamento remoto para a identificação e monitoramento das mudanças no uso e ocupação dos solos urbanos

CONCEITOS RADIOMÉTRICOS

Curso de Extensão: Noções de Sensoriamento

Detecção Remota. Aquisição de dados. Sistema Modelo de Detecção Remota ICIST. Energia Electromagnética. Interacções com a Atmosfera

Resoluções das Imagens fotogramétricas e digitais. Fotogrametria e Fotointerpretação Prof. Dr. Raoni W. D. Bosquilia

processos de formação e suas inter-relações com o ambiente. As diversas combinações de fatores (clima, relevo,

SENSOREAMENTO REMOTO AULA1

Qualidade Radiométrica das Imagens Sensor ADS40

Satélites e Sensores Orbitais

Sensoriamento Remoto Aplicado à Geografia

Geoprocessamento e sensoriamento remoto como ferramentas para o estudo da cobertura vegetal. Iêdo Bezerra Sá

Uso de Imagens de Satélite para o Estudo do Uso da Terra e Sua Dinâmica

REVISÃO SENSORIAMENTO REMOTO AULA ZERO. Daniel C. Zanotta 14/03/2018

09/03/2017. O que é Sensoriamento Remoto? Tipos de Sensoriamento Remoto REVISÃO SENSORIAMENTO REMOTO AULA ZERO. Satélites.

Universidade Federal de Campina Grande Centro de Ciências e Tecnologia Agroalimentar Unidade Acadêmica de Agronomia

SISTEMA DE COLETA. Fonte de. Trajetória. ria PRODUTOS INTERAÇÃO SISTEMA TRATAMENTO. Produto final AÇÕES

1. Introdução: um breve histórico

Bacharelado em Engenharia Agronômica AGROMETEOROLOGIA E CLIMATOLOGIA. Prof. Samuel Silva. Radiação Solar. IFAL/Piranhas

Sensoriamento remoto 1. Prof. Dr. Jorge Antonio Silva Centeno Universidade Federal do Paraná 2016

PROCESSAMENTO DIGITAL DE IMAGENS. Thales Sehn Körting

Sensoriamento remoto x uso do solo x transportes

Aula 2 - Sensoriamento Remoto: Espectro eletromagnético; principais sensores. Patricia M. P. Trindade; Douglas S. Facco; Waterloo Pereira Filho.

José Alberto Quintanilha Mariana Giannotti

Aula 1. Princípios Físicos de Sensoriamento Remoto. Prof: Alexandre Cigagna Wiefels

Satélites e Sensores. Profa. Ligia Flávia Antunes Batista

Fundamentos de Sensoriamento Remoto. Elisabete Caria Moraes

Sensoriamento Remoto Aplicado à Geografia. Prof. Dr. Reinaldo Paul Pérez Machado

SUBSISTEMA ESPACIAL 1

PROCESSAMENTO DIGITAL DE IMAGENS (SERP11) CONCEITOS BÁSICOS DE SR REPRESENTAÇÃO DAS IMAGENS DIGITAIS CALIBRÃÇÃO RADIOMÉTRICA. Daniel C.

TERMOGRAFIA TERMINOLOGIA PR-134. Este procedimento define os termos utilizados no método de ensaio não destrutivo de Termografia.

CAPÍTULO 1 INTRODUÇÃO AO SENSORIAMENTO REMOTO

Instituto Nacional de Pesquisas Espaciais - INPE Divisão de Sensoriamento Remoto

Fundamentos de Sensoriamento Remoto. Elisabete Caria Moraes (INPE) Peterson Ricardo Fiorio

Sensoriamento Remoto no Estudo das Cidades

Processamento Digital de Imagens - PDI

CLIMATOLOGIA. Radiação solar. Professor: D. Sc. João Paulo Bestete de Oliveira

Mapeamento do uso do solo

Definições: Sistemas Sensores

Satélites e Sensores. Bruno Silva Oliveira

Carlos Fernando Quartaroli Luiz Eduardo Vicente Luciana Spinelli de Araújo

RADIAÇÃO INFORMAÇÃO DO COSMOS COMO SE EXTRAI A INFORMAÇÃO VINDA DA LUZ EMITIDA POR OBJETOS ASTRONOMICOS

INTRODUÇÃO AO SENSORIAMENTO REMOTO. Daniel C. Zanotta

Sensoriamento Remoto I Engenharia Cartográfica. Prof. Enner Alcântara Departamento de Cartografia Universidade Estadual Paulista

Sensoriamento Remoto Hiperespectral PPGCC. Enner Alcântara Departamento de Cartografia Universidade Estadual Paulista Presidente Prudente

O CLIMA DA TERRA: Processos, Mudanças e Impactos

Mapeamento do uso do solo para manejo de propriedades rurais

Ferramentas de sensoriamento remoto e SIG aplicadas ao Novo Código Florestal

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO SUL CAMPUS RIO GRANDE INSTRUMENTAÇÃO INDUSTRIAL

ENERGIA SOLAR: CONCEITOS BASICOS

O ESPECTRO ELETROMAGNÉTICO

Processamento Digital de Imagens

Sensoriamento Remoto I Engenharia Cartográfica. Prof. Enner Alcântara Departamento de Cartografia Universidade Estadual Paulista Presidente Prudente

APÊNDICE F SENSORES HIPERESPECTRAIS

UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE CIÊNCIAS NATURAIS E EXTAS CURSO DE GRADUAÇÃO EM GEOGRAFIA Disciplina: Climatologia Geográfica I

Satélites e Sensores. Bruno Silva Oliveira

Sensoriamento Remoto Aplicado à Geografia. Prof. Dr. Reinaldo Paul Pérez Machado

ENERGIA SOLAR: CONCEITOS BASICOS

CAP4 parte 1 RADIAÇÃO ELETROMAGNÉTICA E SUA INTERAÇÃO COM A MATÉRIA. Alguns slides de P. Armitage, G. Djorgovski e Elisabete Dal Pino

AULA 21 INTRODUÇÃO À RADIAÇÃO TÉRMICA

PLANO DE ENSINO ANO 2016

Formação de Imagens de SAR

INTRODUÇÃO AO SENSORIAMENTO REMOTO

SENSORES REMOTO UMA ABORDAGEM PRÁTICA NO LEVANTAMENTO FLORESTAL

Sensoriamento Remoto: Radiometria espectral e técnicas de análise de espectros. Patricia M. P. Trindade; Douglas S. Facco; Waterloo Pereira Filho.

O DESAFIO DOS SENSORES REMOTOS NO INVENTÁRIO DE BIOMASSA SÓLIDA. José Rafael M. Silva; Adélia Sousa; e Paulo Mesquita

TEMA 2: Discorra como a atmosfera terrestre pode interferir na irradiância solar espectral incidente na superfície terrestre.

SENSORIAMENTO REMOTO SISTEMAS SENSORES

Transcrição:

Multidisciplinar Mapeamento do uso do solo para manejo de propriedades rurais Allan Arnesen Frederico T. Genofre Marcelo Pedroso Curtarelli

CAPÍTULO 2 Fundamentos de Sensoriamento Remoto O sensoriamento remoto pode ser definido como um conjunto de técnicas empregadas para adquirir dados e informações relativas aos recursos naturais da Terra, por meio do registro e análise da interação da Radiação Eletromagnética (REM) com os objetos/alvos da superfície terrestre, sem que haja contato direto com os mesmos (SLATER, 1980; NOVO, 1992; JENSEN, 2007). Os princípios físicos do sensoriamento remoto estão fundamentados nas teorias ondulatória e quântica, ambas utilizadas para explicar a propagação da REM através do vácuo ou de um determinado meio (p.ex. líquido ou gasoso). A teoria ondulatória postula que a propagação da energia se faz através de movimentos ondulatórios, enquanto que, a teoria corpuscular preconiza que a REM se comporta como um fluxo de partículas (fótons) que se movem à velocidade da luz no vácuo(slater, 1980). Em sensoriamento remoto, alguns fenômenos podem ser explicados melhor através da teoria ondulatória e outros através da teoria corpuscular. A aquisição de dados por sensoriamento remoto pode ser realizada em diferentes níveis, de acordo com a altitude do sensor em relação ao alvo, podendo ser em nível orbital, nível de aeronave ou nível de campo/laboratório (NOVO, 1992).

Mapeamento do uso do solo para manejo de propriedades rurais Os diferentes níveis de aquisição implicam em modificações na área observada, diferenças na forma de analisar o dado coletado e consequentemente no detalhamento da informação derivada. A grande vantagem do sensoriamento remoto orbital é a possibilidade de coleta de dados de grandes áreas em curto espaço de tempo, com grande repetitividade, a um custo relativamente baixo por dado coletado (JENSEN, 2007). Por outro lado, este nível de aquisição apresenta como desvantagem menor resolução espacial quando comparado aos níveis de aeronave e campo/laboratório (NOVO, 1992). A Figura 6 apresenta os principais componentes de um sistema de coleta de dados por sensoriamento remoto: (A) representa as fontes de REM; (B) representa as trajetórias da REM na atmosfera; (C) representa os alvos na superfície terrestre; (D) representa os sensores e as plataformas de coleta de dados; (E) representa a transmissão dos dados coletados; (F) representa a etapa de pré- -processamento de dados; e (G) representa os produtos finais gerados a partir dos dados coletados. Figura 6. Principais elementos de um sistema de coleta de dados por sensoriamento remoto. 24 IEPEC

Capítulo 2 Fundamentos de Sensoriamento Remoto 3.1. Fonte - Alvo - Sensor Dentre todos os componentes de um sistema de sensoriamento remoto (apresentados na Figura 7), podemos destacar a fonte de REM, o alvo e o sensor. O conhecimento das características básicas destes três componentes é de suma importância para os usuários de imagens de satélite, pois propicia uma melhor escolha das imagens a serem utilizadas em serviços de mapeamento. A seguir cada um destes componentes são descritos em mais detalhes. 3.1.1. Fontede REM A REM é emitida por qualquer corpo que possua temperatura acima de zero grau absoluto (0 Kelvin). Desta maneira, todo corpo com uma temperatura absoluta acima de zero pode ser considerado como uma fonte de energia eletromagnética. O Sol e a Terra são as duas principais fontes naturais de REM utilizadas no sensoriamento remoto da superfície terrestre. Contudo, existem sensores que possuem sua própria fonte de energia e são capazes de emitir REM ativamente. A REM não precisa de um meio material para se propagar sendo definida como uma energia que se move na forma de ondas eletromagnéticas à velocidade da luz (~ 300.000 km/s). Usualmente a REM é caracterizada por sua frequência (f) e comprimento de onda (λ), sendo que estas duas grandezas estão relacionadas pela seguinte equação: c=f λ, Onde: c = a velocidade da luz (m/s), f é a frequência (1/s ou Hz) e λ é o comprimento de onda (m). O portal do agroconhecimento 25

Mapeamento do uso do solo para manejo de propriedades rurais A REM pode ser ordenada de maneira contínua em função de seu comprimento de onda ou de sua frequência, sendo esta disposição denominada de espectro eletromagnético. O espectro da REM apresenta subdivisões de acordo com as características de cada região. Cada subdivisão é função do tipo de processo físico que dá origem a energia eletromagnética, do tipo de interação que ocorre entre a radiação e o objeto (alvo) sobre o qual esta incide, e da transparência da atmosfera em relação à radiação eletromagnética. O espectro eletromagnético se estende desde comprimentos de onda muito curtos associados aos raios cósmicos, até as ondas de rádio de baixa frequência e grandes comprimentos de onda (Figura 7). Em sensoriamento remoto, as imagens são usualmente registradas utilizando a porção da REM localizada nas regiões do visível, infravermelho e radar (microondas). Figura 7. Espectro eletromagnético 3.1.2. Alvo Em sensoriamento remoto, qualquer objeto sobre a superfície terrestre pode ser considerado como um alvo. Os alvos são responsáveis por interagir com a REM, sendo que a REM incidente sobre um alvo pode ser em parte absorvida, refletida ou transmitida pelo mesmo. A absorção, reflexão e transmissão da energia incidente poder ser total ou parcial, guardando sempre o princípio de conservação de energia. A capacidade de um objeto absorver, refletir e transmitir a radiação 26 IEPEC

Capítulo 2 Fundamentos de Sensoriamento Remoto eletromagnética é denominada, respectivamente, de absortância, reflectância e transmitância, sendo que os valores variam entre 0 e 1. Os alvos terrestres interagem de maneira diferenciada espectralmente com a REM incidente, pois os objetos apresentam diferentes propriedades físico-químicas e biológicas. A vegetação, por exemplo, comumente absorve mais energia na região do visível e reflete grande parte da energia localizada na região do infravermelho. Estas diferentes interações é que possibilitam a distinção e o reconhecimento dos diversos objetos terrestres por meio de imagens de satélites, pois são reconhecidos devido a variação da porcentagem de energia refletida em cada comprimento de onda. O conhecimento do comportamento espectral dos alvos terrestres é muito importante para a escolha da região do espectro sobre a qual se pretende adquirir dados/imagens de satélite para determinada aplicação. A Figura 8 apresenta o comportamento espectral típico de diferentes alvos naturais da superfície terrestre. Figura 8. Comportamento espectral típico de alvos naturais na superfície da Terra. O portal do agroconhecimento 27

Mapeamento do uso do solo para manejo de propriedades rurais 3.1.3. Sensores Os sensores remotos são dispositivos capazes de detectar a REM (em determinadas faixas do espectro eletromagnético) proveniente de um alvo, transformá-las em um sinal elétrico e registrá-las, de tal forma que esta possa ser armazenada ou transmitida em tempo real para posteriormente ser convertido em informações que descrevem as feições dos alvos que compõem a superfície terrestre (Figura 9). As principais partes de um sensor são: a) Coletor: é um componente óptico capaz de concentrar o fluxo de energia proveniente da amostra no detector; b) Filtro: é o componente responsável pela seleção da faixa espectral da energia a ser medida; c) Detector: é um componente de pequenas dimensões feito de um material cujas propriedades elétricas variam ao absorver o fluxo de energia, produzindo um sinal elétrico; d) Processador: é um componente responsável pela amplificação do fraco sinal gerado pelo detector e pela digitalização do sinal elétrico produzido pelo detector; e) Unidade de saída: é um componente capaz de registrar os sinais elétricos captados pelo detector para posterior extração de informações. 28 IEPEC

Capítulo 2 Fundamentos de Sensoriamento Remoto Enhanced Thematic Mapper + Scanner Figura 9. Exemplo de um sensor remoto: ETM+ a bordo do satélite Landsat 7. 1) Mainframe 2) Aperture Sunshade 3) Sean Mirror 4) Primary Mirror 5) Secondary Mirror 6) Prime Focal Plane 7) Hybrid Preamplifiers 8) Calibration Shutter 9) Black Body 10) Relay Optics Assembly 11) Radiative Cooler 12) Circuit Card Assemblies 13) Earth Shield 14) Eletronics Module 15) Power Supplies 16) Thermal Control Louvers 17) Full Aperture Calibrator Assembly O portal do agroconhecimento 29

Mapeamento do uso do solo para manejo de propriedades rurais Atualmente existem diversos sensores disponíveis, em operação, para a coleta de dados. Cada um desses sensores pode ser classificado de acordo com suas características, sendo que, a aplicação dos dados coletados está intrinsicamente relacionada a estas características. A seguir é feita uma breve descrição das classificações dos sensores e suas resoluções. Classificação dos sensores Os sensores podem ser classificados de diferentes formas, sendo que um mesmo sensor pode apresentar diferentes classificações. A seguir é apresentado um breve resumo das classes de sensores. a) Tipo de dado: os sensores podem ser classificados em imageadores e não imageadores. Os sensores do tipo imageador são aqueles que fornecem dados na forma de imagens. Já os sensores não imageadores podem fornecer dados em outras formas, como por exemplo, na forma de gráficos e tabela de dados. A categoria de sensores imageadores podem ser sub classificados de acordo com o tipo de varredura utilizada na coleta dos dados. Neste caso, os sensores podem ser classificados como de varredura mecânica (whiskbroom) ou varredura eletrônica (pushbroom); b) Tipo de plataforma: os sensores podem ser classificados em orbitais ou sub orbitais. Os sensores orbitais são aqueles que estão a bordo de satélites e plataformas em órbita ao redor da Terra (p.ex. sensor TM a bordo do satélite Landsat5). Os sensores sub orbitais são aqueles que estão a bordo de aviões e outros tipos de plataformas que não estão em órbita ao redor da Terra (p.ex. sensor AVIRIS). Os sensores orbitais podem ser subdivididos em duas grandes categorias: os de órbita polar e os de órbita geoestacionária. Os sensores de órbita polar são aqueles que possuem uma órbita passando ao redor dos polos da Terra. Os sensores de órbita geoestacionária possuem, geralmente, uma órbita ao redor do Equador 30 IEPEC

Capítulo 2 Fundamentos de Sensoriamento Remoto terrestre; estes sensores possuem velocidade igual à de rotação da Terra, observando sempre a mesma região do globo terrestre. Os sensores de órbita polar possuem altitude (~700 km de altitude) inferior aos de órbita geoestacionária (~30.000 km de altitude). c) Faixa do espectro eletromagnético: os sensores podem ser classificados de acordo com a faixa do espectro eletromagnético que operam. Os sensores ópticos são aqueles que coletam imagens na região visível do espectro eletromagnético (400 nm - 700 nm). Os sensores termais são aqueles que coletam dados na região do espectro do infravermelho termal (3 m 100 m). Os sensores de microondas são aqueles que operam na região de microondas do espectro eletromagnético (~ 1 cm 10 cm). d) Número de bandas: Os sensores podem também ser classificados de acordo com o número de bandas em que coletam imagens. Os sensores multiespectrais são aqueles que coletam imagens em poucas bandas espectrais (p.ex. sensor TMa bordo do satélite Landsat 5). Já os sensores hiperespectrais são aqueles que coletam dados em diversas bandas espectrais (geral mais de 100 bandas), com largura de bandas estreitas e continuas (p.ex. sensor Hyperion a bordo do satélite EO-1). Resolução dos sensores Usualmente um sensor é caracterizado em função de quatro resoluções: espacial, espectral, temporal e radiométrica. Tais resoluções representam a limitação operacional de um sistema de sensoriamento remoto para produzir uma imagem nítida e bem definida. O portal do agroconhecimento 31

Mapeamento do uso do solo para manejo de propriedades rurais Resolução espectral Esta característica está relacionada ao número e a largura das bandas espectrais que o sistema sensor pode discriminar. Assim, um sensor será tanto mais sensível quanto maior o número de bandas estreitas que ele tiver, uma vez que isto facilita a caracterização espectral dos distintos alvos da superfície terrestre. Uma alta resolução espectral é obtida quando as bandas de um sistema sensor são estreitas e/ou quando se utiliza um maior número de bandas espectrais. O sistema TM, por exemplo, opera em sete faixas espectrais do espectro eletromagnético, possuindo, portanto, uma resolução espectral melhor do que o sistema MSS. Paralelamente, as bandas do TM são mais estreitas que as do MSS. Resolução espacial A resolução espacial é uma medida da menor separação angular ou linear entre dois objetos que pode ser determinada pelo sistema de sensoriamento remoto. Também pode ser entendida como a medida do menor objeto passível de ser resolvido espacialmente em uma imagem digital. O processo de amostragem é o principal fator que determina a resolução espacial de uma imagem digital, (JENSEN, 2007; GONZALES; WOODS, 2002). Segundo Schott (2007), a medida angular de um elemento detector individual é chamada de IFOV (Instantaneous Field of View), ou seja, campo de visada instantâneo do sensor. O IFOV pode ser expresso através da seguinte equação: Onde: é a dimensão lateral de um detector quadrado; é a distância focal do sistema óptico do sensor. Geralmente o IFOV é expresso em unidades de 32 IEPEC

Capítulo 2 Fundamentos de Sensoriamento Remoto miliradianos. A projeção do IFOV no terreno é denominada GIFOV (Ground Instantaneous Field of View). O GIFOV é dado em unidade de distância e sua relação com o IFOV é dada pela seguinte equação: GIFOV=H IFOV Onde: H é a altitude da plataforma na qual o sensor está a bordo. A Figura 10 apresenta a ideia de IFOV e GIFOV. Figura 10. Esquema ilustrativo apresentando a ideia de IFOV e GIFOV. Resolução temporal Pode ser compreendido como o intervalo de vezes que o satélite observa uma mesma área do terreno em um determinado período. A resolução temporal O portal do agroconhecimento 33

Mapeamento do uso do solo para manejo de propriedades rurais refere-se à periodicidade com que o sistema sensor é capaz de adquirir imagens da mesma porção da superfície terrestre. Esta característica dos sistemas sensores varia de acordo com os objetivos fixados para o sensor. Os satélites meteorológicos, por exemplo, são obrigados a oferecer informações em períodos curtos de tempo, pois se dedicam a observar um fenômeno muito dinâmico, por esta razão sua resolução temporal é de 30 minutos (p.ex. Meteosat e GOES) ou de 12 horas como os dos satélites da série NOAA. Os satélites de recursos naturais (p.ex. TM, OLI) oferecem uma periodicidade muito maior, pois não estão coletando informações de fenômenos tão dinâmicos como os meteorológicos, podendo variar entre dias e semanas. Resolução radiométrica De maneira simplificada, diz respeito a sensibilidade do sistema em detectar níveis de intensidade de radiação, ou seja, trata-se da capacidade de um determinado sensor em distinguir entre níveis distintos de intensidade do sinal de retorno. Assim, quanto maior a resolução radiométrica (expresso em número de bits) maior será a quantidade de níveis de brilho que o sensor poderá distinguir. 34 IEPEC

O Instituto de Estudos Pecuários é um portal que busca difundir o agroconhecimento, realizando cursos e palestras tanto presenciais quanto online. Mas este não é nosso único foco. Com o objetivo principal de levar conhecimento à comunidade do agronegócio, disponibilizamos conteúdos gratuitos, como notícias, artigos, entrevistas entre outras informações e ferramentas para o setor. Através dos cursos on-line, o IEPEC oferece a oportunidade de atualização constante aos participantes, fazendo com que atualizem e adquiram novos conhecimentos sem ter que gastar com deslocamento ou interromper suas atividades profissionais. www.iepec.com