VOLUMETRIA DE PRECIPITAÇÃO



Documentos relacionados
QUI 070 Química Analítica IV Análise Quantitativa. Volumetria de Precipitação

Introdução à Análise Química QUI semestre 2011 Profa. Maria Auxiliadora Costa Matos TITULOMETRIA DE PRECIPITAÇÃO

Volumetria de precipitação

Química Analítica IV TITULOMETRIA DE PRECIPITAÇÃO

Química Analítica Avançada: Volumetria de precipitação

Titulação de precipitação

VOLUMETRIA DE PRECIPITAÇÃO: DETERMINAÇÃO DE CLORETO DE SÓDIO EM SORO FISIOLÓGICO

Volumetria de Precipitação. Argentometria Ferrocianetometria

TITULAÇÃO DE PRECIPITAÇÃO

TITULAÇÃO EM QUÍMICA ANALÍTICA

QUI219 QUÍMICA ANALÍTICA (Farmácia) Prof. Mauricio X. Coutrim

Volumetria de precipitação

Separação de íons - controle da [agente precipitante]

Determinação de cloretos na água do mar pelo método de Mohr

Química Analítica IV INTRODUÇÃO A VOLUMETRIA

AULA 10 EQUILÍBRIO DE SOLUBILIDADE

QUÍMICA ANALÍTICA LISTA DE EXERCÍCIOS SOBRE GRAVIMETRIA, VOLUMETRIA DE NEUTRALIZAÇÃO, VOLUMETRIA DE COMPLEXAÇÃO, OXIDAÇÃO- REDUÇÃO E PRECIPITAÇÃO

QUI201 (145) QUÍMICA ANALÍTICA B (Química Industrial)

Calcule o ph de uma solução de HCl 1x10-7 mol L-1

TITULAÇÃO EM QUÍMICA ANALÍTICA

MÉTODO DE ANÁLISE. MÉTODO VOLHARD Pág.: 1/6

Equilíbrio de Precipitação

LCE0182 Química Analítica Quantitativa. Volumetria. Wanessa Melchert Mattos

INTRODUÇÃO A TITULAÇÃO

INTRODUÇÃO A TITULAÇÃO

PROVA FINAL DE QUÍMICA ANALÍTICA 1 /2015 Departamento de Química - Setor de Química Analítica

Introdução aos métodos volumétricos de análise química

AULA 3 PRECIPITAÇÃO- QUÍMICA ANALÍTICA II PROFESSOR HÉLCIO. Precipitação: Método Mohr e Fajans

07/11/2013. Equilíbrio de precipitação e Volumetria de precipitação. Solubilidade. Equilíbrio de Solubilidade. Importância da solubilidade

MÉTODOS CLÁSSICOS DE ANÁLISE QUÍMICA QUANTITATIVA A análise química pode ser definida como o uso de um ou mais processos que fornecem informações

TITULAÇÃO EM QUÍMICA ANALÍTICA

Definições. Dissociação iônica Considerando um composto iônico sólido hipotético: A a B b Em uma solução: A a B b (s) aa b+ (aq) + bb a- (aq)

Definições. Dissociação iônica Considerando um composto iônico sólido hipotético: A a B b Em uma solução: A a B b (s) aa b+ (aq) + bb a- (aq)

Volumetria. Procedimentos gerais

Prof a. Dr a. Luciana M. Saran

PRÁTICA 07: PADRONIZAÇÃO DE SOLUÇÕES

REAGENTES H 2 C N CH 2 CH 2 N CH 2

Volumetria de Neutralização

Introdução aos métodos volumétricos de análise química

Química Analítica IV QUI semestre 2012 Profa. Maria Auxiliadora Costa Matos ANÁLISE GRAVIMÉTRICA

Equilíbrio de solubilidade de precipitação

REAÇÕES EM SOLUÇÕES AQUOSAS E ESTEQUIOMETRIA. Prof. Dr. Cristiano Torres Miranda Disciplina: Química Geral QM81A Turmas Q13 e Q14

REAÇÕES EM SOLUÇÕES AQUOSAS E ESTEQUIOMETRIA. Prof. Dr. Cristiano Torres Miranda Disciplina: Química Geral I QM81B Turmas Q13 e Q14

Qual a quantidade de halogenetos que existe na água do mar?

Reações em Soluções Aquosas

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE QUÍMICA

PRÁTICA 04 - DETERMINAÇÃO DA DUREZA TOTAL E TEOR DE CÁLCIO E MAGNÉSIO EM ÁGUA

Lista de Exercícios Volumetria de Precipitação ALGUNS EXERCÍCIOS SÃO DE AUTORIA PRÓPRIA. OS DEMAIS SÃO ADAPTADOS DE LIVROS CITADOS ABAIXO.

Introdução aos métodos titulométricos volumétricos. Prof a Alessandra Smaniotto QMC Química Analítica - Farmácia Turmas 02102A e 02102B

PROVA FINAL DE QUÍMICA ANALÍTICA 1 /2015 Departamento de Química - Setor de Química Analítica

VOLUMETRIA DE NEUTRALIZAÇÃO.

TÍTULO: ANÁLISE TITRIMÉTRICA (Volumétrica)

Introdução à Volumetria. Profa. Lilian Lúcia Rocha e Silva

Capítulo by Pearson Education

Questões dos exercícios avaliativos para QUI232 t. 43, 44 e 45 em , Prof. Mauricio

Equilíbrio de solubilidade de precipitação

PRÁTICA 05 - DETERMINAÇÃO DE CLORO ATIVO EM ÁGUA SANITÁRIA E DETERMINAÇÃO IODOMÉTRICA DE ÁCIDO ASCÓRBICO

Teste de Laboratórios de Química I e soluções

ANÁLISE GRAVIMÉTRICA

Relatório 7 Determinação do produto de solubilidade do AgBrO3

TITRIMETRIA (VOLUMETRIA) 24/07/2013. Definição. Princípio da volumetria. n o de mols do titulante = n o de mols do titulado

Determinação do teor de Cloreto total na água consumida pelos discentes do IFMA- Campus Zé Doca (método de Mohr) 1

QUI219 QUÍMICA ANALÍTICA (Farmácia) Prof. Mauricio X. Coutrim

LISTA DE EXERCÍCIOS # 05 QUÍMICA ANALÍTICA PROF. Wendell

Preparação e padronização de soluções

Reações de identificação dos cátions dos grupos 1 e 2

Universidade Federal de Sergipe Departamento de Química Química Analítica Experimental Prof. Marcelo da Rosa Alexandre Alunos:

Reações envolvendo substâncias em solução aquosa: (reações por via úmida) e reações por via seca (substâncias não dissolvidas em solventes)

QUI219 QUÍMICA ANALÍTICA (Farmácia) Prof. Mauricio X. Coutrim

FATEC- Mecanização em agricultura de Precisão. Professora Mirian Maya Sakuno

Aprender a preparar soluções aquosas, realizar diluições e determinar suas concentrações.

A análise de muitos cátions metálicos, incluindo o cátion cálcio,

8ª LISTA - EXERCÍCIOS DE PROVAS Equilíbrio de Solubilidade

Produto de solubilidade de sais

Equilíbrio Heterogéneo

INTRODUÇÃO À TITULOMETRIA PADRONIZAÇÃO DE SOLUÇÕES. META Determinar a concentração de ácido clorídrico por titulometria de neutralização.

TITULAÇÃO POR COMPLEXAÇÃO

GUIA DE LABORATÓRIO ANÁLISES QUALITATIVAS. Departamento de Química. Instituto de Ciências Exatas. Universidade Federal de Juiz de Fora

Lista de Exercícios Equilíbrio de Solubilidade ALGUNS EXERCÍCIOS SÃO DE AUTORIA PRÓPRIA. OS DEMAIS SÃO ADAPTADOS DE LIVROS CITADOS ABAIXO.

, para vários sais, assinale a opção correta. CrO 4. (aq) em concentrações iguais, haverá precipitação, em primeiro lugar, do sal PbSO 4

Produto de solubilidade de sais. Produto de solubilidade de sais

Exercícios sobre Produto de Solubilidade - Kps

Padronizar uma solução aquosa de hidróxido de sódio 0,1mol/L para posteriormente determinar a acidez de amostras.

PAGQuímica Equilíbrio de Solubilidade

COLÓIDES. Prof. Harley P. Martins filho SISTEMAS COLOIDAIS. Colóide: dispersão de pequenas partículas de um material em outro

MÓDULO 2 2ª aula. Equilíbrio e Titulações de complexação Introdução ao Preparo de Amostras

PRÁTICA 01 - INTRODUÇÃO AO TRABALHO NO LABORATÓRIO DE QUÍMICA ANALÍTICA E PREPARO E PADRONIZAÇÃO DE SOLUÇÕES

MATERIAIS PARA FUNDIÇÃO - DETERMINAÇÃO DO FATOR DA SOLUÇÃO DE AZUL DE METILENO POR TITULAÇÃO COM SOLUÇÃO DE CLORETO TITANOSO (TiCl 3 )

Equilíbrio de Precipitação

Introdução à Análise Química QUI 094 VOLUMETRIA DE NEUTRALIZAÇÃO

O equilíbrio de solubilidade do HgS é representado pela equação abaixo.

1. PREPARO DE SOLUÇÕES E TITULAÇÃO

TITULAÇÃO ÁCIDO-BASE

TITULAÇÃO ÁCIDO-BASE

QUÍMICA ANALÍTICA QUANTITATIVA: TITULOMETRIA

QUI109 QUÍMICA GERAL (Ciências Biológicas) 4ª aula /

AULA 12 PRECIPITAÇÃO FRACIONADA E TRANSFORMAÇÕES METATÉTICAS

QUÍMICA ANALÍTICA QUALITATIVA - PROVAS RECOMENDADAS PARA A IDENTIFICAÇÃO DOS ÍONS SÓDIO, POTÁSSIO E AMÔNIO. USAR SAIS DE CLORETO OU NITRATO!!!!

Transcrição:

VOLUMETRIA DE PRECIPITAÇÃO I - Introdução A volumetria de precipitação se baseia em reações com formação de compostos pouco solúveis. As titulações de precipitação estão entre os métodos analíticos mais antigos, mas são muito limitadas porque muitas reações de precipitação não obedecem a alguns requerimentos básicos para o sucesso de uma titulação como estequiometria e/ou velocidade da reação e visualização do ponto final. A co-precipitação do analito ou do titulante leva muito freqüentemente a reações não estequiométricas. As técnicas de digestão e envelhecimento dos precipitados, usadas para minimizar a co-precipitação na gravimetria, não podem ser aplicadas nas titulações diretas uma vez que requerem um tempo considerável para tornarem-se efetivas. A velocidade de formação de alguns precipitados, particularmente na titulação de soluções diluídas, é comumente bastante baixa. À medida que se aproxima o ponto de equivalência e o titulante é adicionado lentamente, não existe um alto grau de supersaturação e a velocidade da precipitação pode se tornar muito pequena. Em um número reduzido de casos é possível conduzir a titulação sob observação visual até o ponto em que a formação do precipitado deixa de ocorrer. Mais comumente, adota-se o uso de indicadores. Muitos métodos volumétricos de precipitação empregam indicadores mais ou menos específicos, isto é, apropriados para uma dada reação de precipitação. Há, no entanto, uma classe especial de indicadores, os indicadores de adsorção, que encontram um campo mais amplo de aplicação. As possibilidades do uso das reações de precipitação na análise titulométrica se ampliam consideravelmente com a utilização de métodos físicoquímicos para a localização do ponto final. A Tabela 5 relaciona alguns métodos volumétricos de precipitação com caráter específico. Todavia, o mais importante deles é a argentimetira que se baseia na formação de sais de prata (haletos, cianeto e tiocianato) pouco solúveis. Tabela 5 - Alguns métodos volumétricos de precipitação específicos Íon determinado Reagente titulante Produto Indicador Br -, Cl - Hg 2 (NO 3 ) 2 Hg 2 X 2 Azul de bromofenol C 2 O 4 Pb(OAc) 2 PbC 2 O 4 Fluoresceína F- Th(NO 3 ) 4 ThF 4 Vermelho de alizarina MoO 4 Pb 2+ MgMoO 4 K 2 CrO 4 PO 4 3- SO 4 BaCl 2 Pb(NO 3 ) 2 Pb(OAc) 2 PbMoO 4 Eosina A PbMoO 4 PbCrO 4 Vermelho de solocromo B Ortocromo T Pb(OAc) 2 Pb 3 (PO 4 ) 2 Dibromofluoresceína BaSO 4 PbSO 4 Tetraidroxiquinona Eritrosina Zn 2+ K 4 Fe(CN) 6 K 2 Zn 3 [Fe(CN)6] Difenilamina As curvas de titulação para a volumetria de precipitação são construídas de forma análoga às da titulação ácido-base. Os dados necessários para a construção da curva são obtidos a partir da concentração dos reagentes e da constante do produto de solubilidade do sal formado. As curvas de titulação baseiam-se no uso do pm = - log [M n+ ] como variável crítica.

II - Métodos Argentimétricos 1-Soluções padrão As titulações argentimétricas diretas fazem uso de solução padrão de nitrato de prata. Nas titulações argentimétricas indiretas utiliza-se, além da solução anterior, uma solução padrão de tiocinanato de potássio ou de amônio. 1.1-Soluções de nitrato de prata O reagente pode ser obtido como padrão primário e as suas soluções podem ser preparadas a partir da pesagem direta. Tanto o nitrato de prata sólido como as suas soluções aquosas devem ser cuidadosamente protegidos do contato com poeiras e matérias orgânicas e da ação da luz solar direta; a redução química no primeiro caso é a fotodecomposição, no segundo provocam a formação da prata metálica. A umidade superficial do reagente pode ser eliminada mediante aquecimento, em estufa a 110 C. Esse aquecimento pode determinar o aparecimento de uma leve coloração nos cristais, mas a extensão da decomposição é, via de regra, desprezível. O nitrato de prata dessecado não é higroscópico. A grande desvantagem desse reagente é o seu elevado custo. Eventualmente, pode ser interessante padronizar as soluções de nitrato de prata contra cloreto de sódio. O cloreto de sódio é encontrado como padrão primário com valor argentimétrico de 99,95 a 100,05% após dessecação a 110 C. 1.2 - Soluções de tiocianato de potássio O sal quando aquecido a 150 C durante uma hora retém alguns centésimos percentuais de água. Os últimos traços de água podem ser eliminados mediante fusão a 190-200 C, durante 5 minutos e, então, o sal não mais absorve água, se conservado sob umidade relativa de 50%; o sal é estável quando conservado sobre cloreto de cálcio. O reagente quando convenientemente tratado pode servir para a preparação direta de soluções padrão. Normalmente, as soluções de tiocianato de potássio são padronizadas contra nitrato de prata. As soluções são indefinidamente estáveis. Indicadores Os indicadores usados nas titulações de precipitação são usualmente específicos, isto é, reagem seletivamente com o titulante para formar uma substância colorida. Tanto o analito, A, como o indicador, In, podem reagir com o titulante, T, assim, ambos podem ser considerados como competidores. Reação de titulação: A + T Reação do indicador: In + T AT (s) InT (s) Como a reação do indicador é a responsável pela mudança de cor, que sinaliza o ponto final da titulação, ela não deve ocorrer até que todo o analito tenha reagido com o titulante. A extensão na qual o analito reage preferencialmente ao indicador é governada basicamente pela diferença nas constantes de equilíbrio das duas reações. Quanto maior a constante de equilíbrio para a reação de titulação relativa à reação do indicador maior a preferência do titulante pelo analito. A reação do indicador com o titulante deve resultar em uma mudança de cor significativa com um consumo negligenciável do titulante para que o erro da titulação seja pequeno. Duas condições são necessárias para que isto ocorra: 1)a reação do indicador deve proceder apreciavelmente para a direita mesmo na presença de uma pequena quantidade do titulante; 2)o produto da reação do indicador deve ser intensamente colorido de modo que possa ser visualizado mesmo em baixa concentração. Um outro tipo de indicador usado na argentimetria é o indicador de adsorção. Esses indicadores são corantes orgânicos, com caráter de ácidos ou bases fracos (aniônicos ou catiônicos, respectivamente), que acusam o ponto final através de uma mudança de coloração sobre o precipitado. A mudança de coloração se deve à adsorção ou dessorção do corante, como conseqüência de uma modificação da dupla camada elétrica em torno das partículas do precipitado na passagem do ponto de equivalência.

3-Aplicações Ao longo da história da ciência as pessoas que fazem descobertas importantes são freqüentemente homenageadas tendo os seus nomes ligados às descobertas. Embora essa prática não seja muito comum atualmente, os métodos mais antigos tais como os métodos argentimétricos recebem o nome dos químicos responsáveis pelo seu desenvolvimento. 3.1 - Método de Mohr Formação de um precipitado colorido Esse método foi desenvolvido para a determinação de íons cloreto, brometo e iodeto usando como titulante uma solução padrão de nitrato de prata e como indicador uma solução de cromato de potássio. Reação de titulação: Ag + + Cl - AgCl (s) (precipitado branco) Reação do indicador: 2 Ag + + CrO 4 Ag 2 CrO 4(s) (precipitado vermelho tijolo) A solubilidade molar do Ag 2 CrO 4 (Kps = 1,1 x 10-12 ) é cerca de 5 vezes maior do que a do AgCl (Kps = 1,75 x 10-10 ), conseqüentemente o AgCl precipita primeiro. Imediatamente após o ponto de equivalência a concentração de íons prata torna-se grande o suficiente para iniciar a precipitação do cromato de prata, que sinaliza o fim da titulação. Como a concentração de íons no ponto de equivalência é conhecida, a concentração de íons cromato necessária para iniciar a precipitação do cromato de prata pode ser calculada. Normalmente, é usada uma concentração de cromato de 0,005 a 0,01 mol/l, o que contribui com um erro muito pequeno para concentrações de cloreto em torno de 0,1 mol/l. Em concentrações mais baixas de cloreto o erro é suficientemente grande para ser ignorado e deve ser feita uma correção para determinar o branco do indicador, isto é, determinar a quantidade de nitrato de prata necessária para titular o indicador. Esta prova em branco é feita usando uma suspensão de um sólido branco inerte, usualmente, carbonato de cálcio, livre de cloreto. Como alternativa para determinar o branco do indicador, a solução de nitrato de prata é padronizada com uma solução padrão de cloreto de sódio, usando o método de Mohr. Se os volumes de nitrato de prata necessários para titular o padrão e a amostra forem próximos, os erros do indicador para as duas titulações serão cancelados. A limitação mais séria do método de Mohr é a necessidade do controle cuidadoso do ph da solução, que deve ficar entre 6,5 e 10,5. Quando o ph é inferior a 6,5 o cromato de prata torna-se excessivamente solúvel devido à reação: 2 CrO 4 + 2 H + 2 HCrO 4- Cr 2 O 7 + H 2 O O dicromato de prata é consideravelmente mais solúvel do que o cromato de prata, o que aumenta o erro do indicador. Quando o ph é superior a 10,5 o íon prata pode reagir com o hidróxido ao invés do íon cloreto, formando o hidróxido de prata ou o óxido de prata insolúveis. 2 Ag + + 2 OH - 2 AgOH (s) Ag 2 O (s) + H 2 O Os cátions dos metais de transição são interferentes para o método de Mohr porque formam hidróxidos insolúveis ou sais básicos em meio neutro ou em soluções alcalinas que tendem a co-precipitar os íons cloreto e brometo. Além disso, alguns hidróxidos são bastante coloridos, como o Fe(OH) 3, e mascaram a cor do indicador. Chumbo e bário não devem estar presentes por formarem cromatos pouco solúveis. Ânions como fosfato, arseniato, carbonato e oxalato interferem por formarem sais pouco solúveis com a prata em soluções neutras e alcalinas. Se essas espécies estiverem presentes em quantidades apreciáveis devem ser separadas da amostra ou deve ser usado um método alternativo. A aplicação desse método à determinação de cianeto só é viável em soluções ligeiramente alcalinas. A titulação de iodeto e tiocianato não são satisfatórias apesar das solubilidades relativamente baixas desses sais de prata; o iodeto de prata e o tiocianato de prata adsorvem tão fortemente o íon cromato que eles não floculam no ponto final resultando em uma mudança de cor insatisfatória. A prata não pode ser titulada diretamente com o cloreto usando cromato como indicador, pois o cromato de prata, inicialmente presente, se

dissolve muito lentamente próximo do ponto de equivalência. Contudo, pode-se adicionar um excesso de solução padrão de cloreto e, então, contratitular usando o cromato como indicador. 3.Método de Volhard Formação de um complexo colorido O método de Volhard envolve a titulação do íon prata, em meio ácido, com uma solução padrão de tiocianato e o íon Fe (III) como indicador, que produz uma coloração vermelha na solução com o primeiro excesso de tiocianato. Reação de titulação: Ag + + SCN - AgSCN (s) (precipitado branco) Reação do indicador: Fe 3+ + SCN - FeSCN 2+ (complexo solúvel vermelho) O íon Fe (III) é um indicador extremamente sensível para o íon SCN -. Cálculos mostram que o erro do indicador varia muito pouco à medida que a concentração dos íons Fe (III) aumenta de 0,005 a 1,5 mol/l. Na prática, concentrações maiores que 0,2 mo/l devem ser evitadas porque os íons Fe (III) dão à solução uma coloração amarela que mascara a mudança de cor do indicador. O método pode ser usado para a titulação direta de prata com solução padrão de tiocianato ou para a titulação indireta de cloreto, brometo e iodeto. Na titulação indireta, um excesso de solução padrão de nitrato de prata é adicionado e a quantidade que não reage com os íons Cl -, Br - e I - é contratitulada com solução padrão de tiocianato. Reação do analito: Ag + (excesso) + Cl - AgCl (s) Reação de titulação: Ag + (sem reagir) + SCN - AgSCN (s) Reação do indicador: Fe 3+ + SCN - FeSCN 2+ A principal vantagem do método de Volhard é sua aplicação em meio fortemente ácido, necessário para evitar a hidrólise do íon Fe (III). Não interferem, então, os íons arseniato, fosfato, carbonato, oxalato, etc., cujos sais de prata são solúveis em meio ácido. Igualmente, não interferem os íons dos metais de transição a não ser os fortemente corados. Agentes oxidantes fortes reagem com o tiocianato. Um problema especial aparece quando o método de Volhard é usado para a determinação de cloreto. O cloreto de prata (Kps = 1,75 x 10-10 ) é mais solúvel do que o tiocianato de prata (Kps = 1,1 x 10-12 ) e a seguinte reação pode ocorrer durante a contratitulação: AgCl (s) + SCN - AgSCN (s) + Cl - o que significa que mais tiocianato do que o necessário é adicionado na contratitulação, levando a um erro muito grande na determinação. Esse problema pode ser evitado de duas maneiras. A remoção do AgCl mediante filtração dá excelente resultado, mas é bastante demorada. Mais simples, no entanto, é a adição de uma pequena porção de nitrobenzeno antes de efetuar a titulação com o tiocianato a fim de revestir as partículas do precipitado e, assim, evitar a ação dissolvente do tiocianato sobre o cloreto de prata. Quando o método de Volhard é aplicado à determinação de brometo e iodeto não há necessidade de isolar os haletos de prata, pois tanto o AgBr como o AgI são menos solúveis do que o AgSCN. Na determinação do iodeto, o íon Fe (III) só deve ser adicionado após a precipitação do AgI para evitar a oxidação do íon iodeto pelo Fe (III). O íon Fe (III) não tem ação sobre o iodeto de prata. 2Fe 3+ + 2I - 2Fe 2+ + I 2

3.3-Método de Fajans Uso de indicadores de adsorção Esse método usa os indicadores de adsorção para sinalizar o ponto final da titulação. Na aplicação desses indicadores à argentimetria é preciso considerar que a sensibilidade do haleto de prata à luz é aumentada pelos corantes. Em vista disso, a titulação deve ser efetuada rapidamente e sob luz difusa. O mecanismo de atuação desses indicadores foi explicado por Fajans e pode ser exemplificado considerando-se a titulação direta de íons cloreto com solução padrão de nitrato de prata. Antes do ponto de equivalência, partículas coloidais de AgCl são carregadas negativamente devido à adsorção dos íons Cl - existentes na solução. (AgCl). Cl - M + excesso de cloreto camada primária camada secundária Os íons Cl - adsorvidos formam uma camada primária, tornando as partículas coloidais negativamente carregadas. Essas partículas atraem os íons positivos da solução para formar uma segunda camada, mais fracamente ligada. Além do ponto de equivalência, o excesso de íons Ag + desloca os íons Cl - da camada primária e as partículas se tornam positivamente carregadas. (AgCl). Ag + X - excesso de prata camada primária camada secundária Os ânions da solução são atraídos para formar a camada secundária. A fluoresceína é um ácido orgânico fraco que pode ser representado por HFI. Quando a fluoresceína é adicionada no frasco da titulação, o ânion FI - não é adsorvido pelo AgCl coloidal, uma vez que o meio tem íons Cl - em excesso. Contudo, quando os íons Ag + estão em excesso, os íons FI - podem ser atraídos para a superfície das partículas positivamente carregadas. (AgCl). Ag + Fl - O agregado resultante é rosa e a cor é suficientemente intensa para servir como indicador visual. Alguns fatores devem ser considerados para a escolha do indicador de adsorção apropriado para uma titulação de precipitação, entre eles: 1)O precipitado deve separar-se com uma superfície específica relativamente grande, pois o funcionamento dos indicadores de adsorção envolve um fenômeno de superfície. Um colóide protetor, como a dextrina, pode ser adicionado para manter o precipitado altamente disperso; 2)A adsorção do indicador deve começar imediatamente antes do ponto de equivalência e aumentar rapidamente no ponto de equivalência. Alguns indicadores são tão fortemente adsorvidos que deslocam o íon primariamente adsorvido bem antes do ponto de equivalência ser alcançado; 3)O ph do meio deve ser controlado para garantir uma concentração eficiente do ácido ou da base. A fluoresceína, por exemplo, tem um Ka ~10-7 e em solução mais ácidas do que ph = 7 a concentração dos íons FI - é tão pequena que nenhuma coloração é observada. Portanto, esse indicador só pode ser usado em uma faixa de ph de 7 a 10. A diclorofluoresceína tem um Ka ~10-4 e pode ser usada em soluções com ph variando entre 4 e 10; 4)É preferível que o íon do indicador tenha a carga contrária à do íon adicionado como titulante. A adsorção do indicador não ocorrerá até que um excesso de titulante esteja presente.

Uma lista de indicadores de adsorção é dada na Tabela 6 abaixo: Tabela 6 - Alguns indicadores de adsorção. Indicador Íon titulado Titulante Condições Diclorofluoresceína Cl - Ag + ph 4 Fluoresceína Cl - Ag + ph 7 8 Eosina Br -, I -, SCN - Ag + ph 2 Torin SO 4 Ba 2+ ph 1,5 3,5 Verde de bromocresol SCN - Ag + ph 4 5 Violeta de metila Ag + Cl - solução ácida Rodamina 6 G Ag + Br - HNO 3 até 0,3 mol/l Ortocromo T Pb 2+ CrO 4 solução neutra 0,02 mol/l Azul de bromofenol Hg 2 2+ Cl - solução 0,1 mol/l III PARTE PRÁTICA 3.1-Preparo de uma solução de nitrato de prata, aproximadamente, 0,1 mol/l 1)Pesar a massa de nitrato de prata necessária para preparar 100mL de solução de concentração c.a. 0,1 mol/l; 2)Dissolver o soluto em água destilada; 3)Transferir, quantitativamente, para um balão volumétrico de 100mL o soluto dissolvido em água destilada, completar o volume para 100mL com água destilada e homogeneizar a solução; 4)Rotular o frasco contendo a solução. 3.2 - Padronização de uma solução de nitrato de prata c.a. 0,1 mol/l Método de Mohr 3.2.1-Planejamento: a)reagente Para ser usado como padrão primário, o cloreto de sódio p.a. deve ser previamente secado a 500-600 C por 20-30 minutos ou durante 1 hora a 110-130 C e resfriado em dessecador. b)indicador Como será usado o método de Mohr, o indicador será uma solução 5% m/v de cromato de potássio em um meio com ph entre 6,5 e 10,5. 3.2. Procedimento: 1)Pipetar, em triplicata, 5 ml da solução padrão de cloreto de sódio aproximadamente 0,1mol/L e transferir para erlenmeyer de 125 ml, com o auxílio de uma pipeta volumétrica. 2)Adicionar cerca de 50 ml de água destilada.

3)Acrescentar cerca de 0,05g de carbonato de cálcio para ajustar o ph entre 6,5 e 10. 4)Adicionar 4 gotas de solução de cromato de potássio 5% m/v. 5)Titular com solução de nitrato de prata sob agitação constante até o aparecimento do precipitado vermelho tijolo (até a mudança de coloração de amarelo para avermelhada) 6) Repetir a titulação da solução de NaCl para mais duas vezes. 7)Calcular a concentração da solução de nitrato de prata em mol/l. 8)Anotar a concentração da solução padronizada, a data da padronização da mesma e a identificação do grupo no rótulo do frasco contendo a solução de AgNO 3. 3.2.3 - Questões a serem respondidas durante a elaboração do relatório 1. Calcular a concentração média da solução de AgNO 3 em mol/l e o limite de confiança da concentração da solução padronizada. 2. Quais os possíveis fatores que afetam a volumetria de precipitação? 3.A concentração do indicador cromato de potássio interfere na determinação da concentração da solução de nitrato de prata pelo método de Morh? Justifique. 3.3 Determinação da concentração de uma solução de soro fisiológico com uma solução de nitrato de prata pelo Método de Fajans 3.3.1-Planejamento: Método de Fajans foi introduzido por K. Fajans, onde se utiliza um indicador de adsorção para as reações de precipitação. A ação destes indicadores é devida ao fato de que, no ponto de equivalência, o indicador é adsorvido pelo precipitado e, durante o processo de adsorção, ocorre uma mudança no indicador que conduz a uma substância de cor diferente. As substâncias empregadas ou são corantes ácidos, como os da série da fluoresceína, que são utilizados sob a forma de sais de sódio, ou corantes básicos, como os da série da rodamina, que são aplicados sob a forma de sais halogenados. AgNO 3 (aq) + Cl - (aq) AgCl (s) + NO 3 -(aq) Ind - (aq) + H + (aq) HInd (aq) (ph 6,5) (Fluoresceinato) (Fluoresceína) Ag + (aq) + Ind - (aq) AgInd (s) (precipitado rosa) 2AgNO 3 (aq) + 2OH - (aq) 2AgOH (s) Ag 2 O (s) + H 2 O (l) ( ph 10) 3.3.2 Procedimento 1)Com uma pipeta volumétrica, transferir 3,00 ml da solução de soro fisiológico para um erlenmeyer de 125 ml. 2)Adicionar cerca de 50,00 ml de água destilada ao erlenmeyer. 3) Acrescentar cerca de 0,05 g de carbonato de cálcio e 2 gotas de solução de fluoresceína ao erlenmeyer.

4)Titular com uma solução padrão de nitrato de prata 0,1mol/L, sob agitação constante, até a mudança da coloração da solução de amarela para alaranjado (observar a formação de um precipitado cor-de-rosa no fundo do erlenmeyer) 5) Anotar o volume de nitrato de prata gasto. 6)Repita esse procedimento mais duas vezes. 7)Calcular a porcentagem, em m/v, de cloreto na amostra. 3.3.3 - Questões a serem respondidas durante a elaboração do relatório 1. Calcular a concentração média de íons cloreto em %m/v e o limite de confiança de sua concentração na amostra de soro fisiológico analisada.