CAPÍTULO 08 SEMÁFOROS PARTE II

Documentos relacionados
7. PROGRAMAÇÃO DE SINALIZAÇÃO SEMAFÓRICA ISOLADA DE TEMPO FIXO

Minirrotatória. Um projeto simples e eficiente para redução de acidentes

Quando um dos controladores apresentar estágio função de demanda (geralmente botoeira de pedestre), a união não deverá ser efetivada.

SP 01/12/78 NT 027/78. Projeto MULV - Melhor Utilização do Leito Viário. Eng.º Mauro Mazamatti. Introdução

Realimentação. Engº Sun Hsien Ming

Interseções. Lastran/Ufrgs

NT 204/98. Realimentação. Engºs: Sun Hsien Ming. 1. Introdução

7. DIAGRAMAÇÃO DAS PLACAS

Aula 4 Conceitos Básicos de Estatística. Aula 4 Conceitos básicos de estatística

INSTITUTO TECNOLÓGICO

Cotagem de dimensões básicas

O Princípio da Complementaridade e o papel do observador na Mecânica Quântica

CIRCULAÇÃO EM ROTUNDAS

Faculdade Sagrada Família

Aula 4 Estatística Conceitos básicos

PROGRAMA DE PROTEÇÃO AO PEDESTRE

FÍSICA - 1 o ANO MÓDULO 16 GRÁFICOS DA CINEMÁTICA REVISÃO

Refração da Luz Índice de refração absoluto Índice de refração relativo Leis da refração Reflexão total da luz Lentes Esféricas Vergência de uma lente

Como erguer um piano sem fazer força

Capítulo 5: Aplicações da Derivada

Aspecto Fluidez no Estudo de Interseção Semaforizada e não Semaforizada

Tolerância geométrica de forma

TRANSFORMADORES. P = enrolamento do primário S = enrolamento do secundário

Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

AULA 6 Esquemas Elétricos Básicos das Subestações Elétricas

Trabalho 7 Fila de prioridade usando heap para simulação de atendimento

Boletim. Contabilidade Internacional. Manual de Procedimentos

Eventos independentes

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5

Grupos Especiais de Peões. Peões de mobilidade reduzida (velocidade de marcha inferior, falta de visão e audição

Laudo Técnico. Belo Horizonte, 22 de outubro de Retificação ao Laudo Técnico emitido no dia 18 de setembro de Considerar o presente laudo.

Lista de Exercícios para Recuperação Final. Nome: Nº 1 º ano / Ensino Médio Turma: A e B Disciplina(s): Física LISTA DE EXERCÍCIOS RECUPERAÇÃO - I

Os gráficos estão na vida

REGULAMENTO ESPECÍFICO SURF JEES 2016

onde Ia = índice de acidentes = acidentes ocorridos num período duração do período

SP 01/11/86 NT 112/86. Algumas Considerações Sobre Travessias e Brechas no Fluxo Veicular. Jaques Mendel Rechter. Introdução

PESQUISA DIA DAS CRIANÇAS - MOSSORÓ

Capítulo SETE Números em Ponto Fixo e Ponto Flutuante

NOME: Nº. ASSUNTO: Recuperação Final - 1a.lista de exercícios VALOR: 13,0 NOTA:

C5. Formação e evolução estelar

Numa turma de 26 alunos, o número de raparigas excede em 4 o número de rapazes. Quantos rapazes há nesta turma?

Os valores máximo e mínimo, portanto, são obtidos a partir da aplicação do desvio padrão sobre o valor médio obtido.

Diagnóstico da escolarização de crianças e adolescentes no Brasil

SUMÁRIO A PRIORIDADE DOS PEDESTRES SEGUNDO O CTB CAPÍTULO IV - DOS PEDESTRES E CONDUTORES DE VEÍCULOS NÃO MOTORIZADOS

Contas. Osni Moura Ribeiro ; Contabilidade Fundamental 1, Editora Saraiva- ISBN

N T 208. Cálculo do ciclo de verdes ótimos quando o fluxo de saturação não é constante. Engº: Sun Hsien Ming. Apresentação

5 Considerações finais

-ESTRUTURA VIÁRIA TT048 CURVAS VERTICAIS

Proposta de otimização do fluxo de veículos em um semáforo de trânsito intenso

Além do Modelo de Bohr

Potenciação no Conjunto dos Números Inteiros - Z

DURATION - AVALIANDO O RISCO DE MUDANÇA NAS TAXAS DE JUROS PARTE ll

MANUAL DE PROCEDIMENTOS DO ELEITOR

CADERNOS DE INFORMÁTICA Nº 1. Fundamentos de Informática I - Word Sumário


1. A corrida de vetores numa folha de papel.

Notas de Cálculo Numérico

6 Efeito do Tratamento Térmico nas Propriedades Supercondutoras e Microestruturas de Multicamadas Nb/Co

4Distribuição de. freqüência

Mantis. Solicitando suporte. Manual do Cliente

Coleta de Dados: a) Questionário

Unidade 3 Função Logarítmica. Definição de logaritmos de um número Propriedades operatórias Mudança de base Logaritmos decimais Função Logarítmica

CISALHAMENTO EM VIGAS CAPÍTULO 13 CISALHAMENTO EM VIGAS

Estatística no EXCEL

MATEMÁTICA 3. Resposta: 29

Eletrônica Analógica

7.3.1 Receitas a Serem Reconhecidas Proporcionalmente a Certo Período Contábil Decorrido

Considerações sobre redimensionamento de motores elétricos de indução

Nome:...N o...turma:... Data: / / ESTUDO DOS GASES E TERMODINÂMICA

Pino a centro e alavancas interna e externa (1) R.Barberena

INTRODUÇÃO E OBJETIVO DO JOGO

Lentes esféricas delgadas

A seguir é apresentada a sistemática de cada um desses itens de forma mais completa.

PROJETO GEOMÉTRICO ELEMENTOS DA SEÇÃO TRANVERSAL

SP 18/01/80 NT 051/80. Programação de Semáforos a Tempo Fixo para Ônibus. Eduardo Antonio Moraes Munhoz. 1. Apresentação

Estatística II Antonio Roque Aula 9. Testes de Hipóteses

INTRODUÇÃO À ENGENHARIA

Exercícios de Aprofundamento 2015 Mat Permutação e Arranjo

PARADOXO DA REALIZAÇÃO DE TRABALHO PELA FORÇA MAGNÉTICA

Diretrizes para determinação de intervalos de comprovação para equipamentos de medição.

PROCESSO SELETIVO EDITAL 23/2014

O momento do gol. Parece muito fácil marcar um gol de pênalti, mas na verdade o espaço que a bola tem para entrar é pequeno. Observe na Figura 1:

Resumidamente, vamos apresentar o que cada item influenciou no cálculo do PumaWin.

Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade

Análise Nutricional do Contador de Pontos (Carinhas)

Guia de utilização da notação BPMN

3º Ano do Ensino Médio. Aula nº10 Prof. Daniel Szente

CURSO: ADMINISTRAÇÃO Prof Dra. Deiby Santos Gouveia Disciplina: Matemática Aplicada OFERTA DE MERCADO

TÓPICO ESPECIAL DE CONTABILIDADE: IR DIFERIDO

Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Quadro 1: Classificação do fluxo aéreo segundo o atraso médio das aeronaves

CAPÍTULO. Casuística

Cap. 7 - Fontes de Campo Magnético

SP 01/06/92 NT 145/92. Conceitos Básicos na Operação de Semáforo. Núcleo de Estudos de Tráfego - NET. Objetivo

ORIENTAÇÕES BÁSICAS Lei Complementar 06/2013

Núcleo de Pesquisa. Federação do Comércio do Estado de Santa Catarina

SP 08/94 NT 178/94. Recomendações Funcionais II Superelevações, Superlarguras e Tangente mínima. Engº José Tadeu Braz. 1.

Transcrição:

CAPÍTULO 08 SEMÁFOROS PARTE II DIMENSIONAMENTO DE SEMÁFOROS ISOLADOS O bom desempenho do tráfego, em termos de fluidez e segurança, está diretamente relacionado com a regulagem dos semáforos existentes no sistema viário. Basicamente, regular um semáforo significa: a) determinar o tempo de ciclo ótimo da interseção; b) calcular os tempos de verde necessários para cada fase, em função do ciclo ótimo adotado; c) calcular as defasagens entre os semáforos adjacentes, se necessário. Em outras palavras: regular um semáforo é desenvolver planos de tráfego que efetuem da melhor maneira o controle de veículos na interseção, segundo um critério estabelecido, como, por exemplo, reduzir ao mínimo possível o atraso dos veículos. É claro que a elaboração desses planos está em estreita dependência com a proposta de estratégia de controle adotada e com o tipo de equipamento (controlador) disponível e/ou utilizado. A metodologia aqui apresentada e que apresenta resultados plenamente satisfatórios na prática, foi apresentada originariamente no trabalho de Traffic Signal Setting, de autoria de F.V. Webster, pesquisador da Inglaterra. O Método de Webster aborda praticamente todos os fatores que interferem no valor da capacidade e apresenta cálculos complementares que permitem uma avaliação mais precisa das condições encontradas, como a reserva de capacidade, o grau de saturação e outros. Assim sendo, trata-se de um método extremamente útil para o Brasil, especialmente se for levado em consideração que as capacidades reais das aproximações, obtidas em campo através de histogramas de tráfego, têm-se mostrado bem próximas das previstas por esse método. CAPACIDADE E FLUXO DE SATURAÇÃO Ao se estudar o problema de regulagem de semáforos, é necessário analisar a interseção em relação a vários fatores, dentre os quais se destaca a capacidade de suas aproximações. CAPACIDADE DE UMA APROXIMAÇÃO número máximo de veículos capazes de atravessar o cruzamento durante um período de tempo. FLUXO DE SATURAÇÃO (S) número máximo de veículos capazes de atravessar o cruzamento para o período de uma hora de tempo de verde do cruzamento.

Capacidade S gef (veic / h) C S = fluxo de saturação (veic/htv) C = tempo de ciclo (seg) g ef = tempo de verde efetivo (seg) Conforme foi definida, a capacidade horária é dada pelo produto do fluxo de saturação e pela porcentagem de verde dedicada à aproximação, sendo, portanto, uma taxa e não uma quantidade. Além disso, não tem sentido a comparação de capacidade horária entre interseções, pois este valor pode variar em função do tempo de verde. TEMPOS PERDIDOS E VERDE EFETIVO A partida de filas de veículos nos semáforos não é instantânea quando a luz fica verde. Existe um certo tempo perdido para a fila efetivamente partir, que envolve o tempo de percepção e reação dos motoristas e a aceleração dos veículos. Esse tempo depende do comportamento dos motoristas, do tipo de veículo, do porte da cidade, da inclinação da via, etc. Valores típicos observados na prática = 2s. O tempo amarelo dos semáforos mais o vermelho total quando existe, cuja soma é denominada de entreverdes: I= Y+Rt, deve ser utilizado pelos veículos que estão muito próximos do cruzamento quando a luz muda do verde para o amarelo e, por isso, não têm condições de parar antes da linha de retenção (por isso é que se diz que o amarelo é do verde. Os veículos que estão relativamente distantes do cruzamento e tem condições de parar sem ultrapassar a faixa de retenção devem fazê-lo. Em vista disso, uma certa parcela do tempo de entreverdes não é utilizada por questões de segurança, pois deve existir um intervalo de tempo entre a passagem do último veículo de uma fase e a passagem do primeiro veículo da fase subseqüente. Assim, o tempo total perdido por fase semafórica, na prática é: 4s (cidades grandes) e 5s (cidades de médio e pequeno porte). Em razão do tempo perdido no início do verde e no fim do entreverde (amarelo+vermelho total), o tempo realmente disponível para travessia de veículos em uma determinada fase, e que é denominado de verde efetivo, vale: gef g t a I g ef = tempo de verde efetivo (seg) g = tempo de verde normal (seg) t a = tempo de amarelo (seg) I = tempo perdido (seg)

CÁLCULO DO FLUXO DE SATURAÇÃO PELO MÉTODO DE WEBSTER S= 525 x L L= largura da aproximação Essa equação é valida para o intervalo: L > 5,50m L < 18,0m Se L < 5,50m, os valores devem ser retirados da Tabela 1, mostrado abaixo: Tabela 1: Valores de Fluxo de Saturação para larguras inferiores a 5,5m L (m) 3 3,3 3,6 3,9 4,2 4,5 4,8 5,2 S (veq/htv) 1.850 1.875 1.900 1.950 2.075 2.250 2.475 2.700 Entende-se por largura de via como sendo: para vias de mão dupla sem separação física - distância entre o meio-fio (guia) e a linha divisória central de separação do tráfego (mesmo que imaginária); para vias de mão dupla com separação física - distância entre o meio-fio e a borda da barreira física de separação do tráfego (Ilhas, blocos de concreto etc.). O fluxo de saturação é definido, em termos de unidades de veículos de passageiros, por hora de tempo verde: isso é feito para harmonizar numa unidade padrão (veículo de passageiro) os vários tipos de veículos comerciais que se utilizam da via. A cada tipo de veículo (ônibus, caminhão leve e/ou pesado, motocicleta etc.) corresponde um fator de equivalência, determinado em função da relação do espaço ocupado entre este e o veículo-padrão. A Tabela 2 fornece os fatores de equivalência para diversos tipos de veículos; Tabela 2: Fator de Equivalência para Diversos Tipos de Veículos Tipo de Veículo Automóvel de Passeio Caminhão Médio ou Pesado Caminhão Leve Ônibus Caminhão Conjugado (Carreta) Motocicleta Bicicleta Bonde Fator Equivalência (Veq) 1,00 1,75 1,00 2,25 2,50 0,33 0,20 2,60 A aplicação direta da equação do Fluxo de Saturação somente pode ser feita para aproximações consideradas como tipo padrão, ou seja, aproximações onde não haja veículos estacionados, e onde o tráfego de conversão à esquerda seja nulo, e o da direita seja no máximo de 10% do tráfego total.

Para aproximações que não se classificam neste tipo padrão, a aplicação da equação ainda continua válida, porém, o valor do fluxo de saturação obtido deverá sofrer uma correção, a fim de se incorporar o efeito de certas condições específicas do local. OS FATORES QUE DETERMINAM E/OU INTERFEREM NA ESTIMATIVA DO FLUXO DE SATURAÇÃO a) declividade; b) composição do tráfego; c) conversão à esquerda; d) conversão à direita; e) veículos estacionados; f) localização (a) efeito da declividade - sendo os valores do fluxo de saturação determinados em função de aproximações planas, a existência de declividade altera esses valores. 0 fluxo de saturação de uma aproximação "em subida" é inferior ao de uma aproximação plana, enquanto que o de uma "em descida" é superior. Assim, o fluxo de saturação deve ser reduzido de 3%, para cada 1 % de subida, e até no máximo de 10% de declividade. Por outro lado, deve-se aumentá-lo de 3% em cada 1% de descida, num máximo de 5% de declividade. (b) efeito da composição do tráfego - a Tabela 2 transforma os veículos existentes em veículos equivalentes (UCP). (c) efeito de conversão à esquerda - A conversão à esquerda é tratada com certa sofisticação por Webster que considera a existência ou não de tráfego oposto, bem como faixa especial para realizar o movimento. O procedimento geral para casos mais complexos, em que é necessário inclusive analisar-se a possibilidade de alguns veículos serem retidos no final do verde, sem conseguir virar, será discutido posteriormente. Para casos mais simples, em que a porcentagem de conversão é baixa e o tráfego oposto não é muito alto (maioria das interseções), esse efeito é considerado através da adoção de um coeficiente de equivalência igual a 1,75, ou seja: cada veículo que virar à esquerda vale 1,75 de um que vai em frente. (d) efeito de conversão à direita - Como na equação geral do fluxo de saturação (Equação 13.5.3) já está implícita uma porcentagem de 10% de conversões à direita, somente para valores maiores do que este é que se deve corrigir o efeito. Assim sendo, para cada excedente de 1% a mais do que 10% de conversões à direita, deve-se admitir cada veículo que vira como equivalente a 1,25 de um veículo que vai em frente. (e) efeito de veículos estacionados - 0 efeito dos veículos estacionados é dado em termos de perda de largura útil na linha de retenção, através da seguinte fórmula:

p 1,68 0,9 Z 7,6 g Sendo: P = perda de largura, em metros (m) Z = distância entre a linha de retenção e o primeiro veículo estacionado, em metros G = tempo de verde de aproximação, em segundos. Vale observar que o tempo de verde (g) nem sempre é conhecido, pois pode ser o valor que se procura dimensionar; neste caso, sugere-se a adoção de um valor de 30 segundos, e corrigi-lo posteriormente se o erro for excessivo. Por outro lado: a distância entre a linha de retenção e o primeiro veículo estacionado deve ser maior que 7,6m, ou seja, Z > 7,6m; caso contrário (Z < 7,6m), deve ser adotado Z = 7,6m; se o valor da expressão tornar-se negativo (p < 0), deve-se adotar a perda como zero; se o veículo estacionado for do tipo pesado (carreta, caminhões de 3 eixos etc.), a perda deve ser aumentada em 50%. (f) efeito de localização - a Tabela 3 adiante descreve o efeito da localização da interseção. Tipo de Local Bom Tabela 3 - Descrição e Efeito dos Tipos de Localização das Aproximações Descrição Sentidos de tráfego separados por canteiro central; Pouca interferência de pedestres, veículos estacionados, ou conversão à esquerda; Boa visibilidade e raios de curvatura adequados; Largura e alinhamento adequados. % de efeito médio no fluxo de saturação 120 Médio Ruim Condições médias: algumas características de local bom e outras de local ruim. Velocidade média baixa; Interferências de veículos parados, pedestres e/ou conversão à esquerda. Má visibilidade e/ou mau alinhamento; Ruas de centros comerciais movimentadas. 100 85 EXERCÍCIOS SOBRE FLUXO DE SATURAÇÃO PARTE 1. Considere-se uma via de mão única com 9,30 m de largura (largura de aproximação da interseção). A interseção localiza-se em uma área central, com bastante travessia de pedestres; além disso tem uma declividade positiva de 3%. Seja calcular o fluxo de saturação da aproximação em Veq/htv.

PARTE 2. Se 20% do total de veículos da aproximação fazem conversão à esquerda e não existe faixa exclusiva para esse movimento, calcular o fluxo de saturação nessas circunstâncias. PARTE 3. Admitindo-se que a composição do tráfego seja de 72% veículos leves, 10% veículos pesados, 15% ônibus e 3% motocicletas, estimar o fluxo de saturação calculado na parte 2 em unidades de veículos/hora. Parte 4: Se o tempo de verde é de 30 seg. e houver um veículo estacionado a 20m da faixa de retenção da aproximação, calcular o fluxo de saturação nestas condições. Parte 5: Calcular a perda de capacidade da aproximação devida ao veículo estacionado, considerando-se que o tempo de verde efetivo é 60% do tempo de ciclo. Sem o veículo estacionado: Com veículo estacionado: EFEITO DE CONVERSÕES À ESQUERDA A influência do veículo que faz a conversão à esquerda é corrigida através de coeficiente de equivalência em veículos diretos, como foi visto anteriormente em "Efeito de Conversão à Esquerda". Entretanto, para certos casos isto não é suficiente, sendo necessário analisar a situação do movimento de conversão, no que diz respeito à liberação ou não de todos os veículos que desejam virar. Se, dentro das condições predominantes mais importantes para o caso (tempo verde e volume oposto), os veículos que desejam virar conseguemno no primeiro período de verde apresentado, a aproximação por eles utilizada não sofrerá maiores conseqüências do que as normalmente esperadas. Este é o caso da maioria das interseções simples da zona urbana. Se, por outro lado, ao final do tempo verde sobrarem na fila alguns veículos que não conseguiram virar, a aproximação, após algum tempo, estará saturada com relação a este movimento de conversão. Torna-se necessário, então, reestudar a interseção, modificando a divisão de fases, o ciclo e/ou os tempos de verde. MÉTODO DE WEBSTER Webster ao estudar o movimento de conversão à esquerda, classificou-o em 4 tipos de situação: (a) Sem Faixa Escpecial e Sem Tráfego Oposto Deve-se utilizar o procedimento geral para o fluxo de saturação, independentemente dos movimentos de conversão. (b) Com Faixa Especial Mas Sem Tráfego Oposto

Neste caso, o fluxo de saturação da corrente que faz a conversão depende do raio de curvatura do movimento e é dado por: 1800 3000 S para fila única S para fila dupla 1,52 1,52 1 1 R R S= fluxo de saturação (Veq/htv) R = Raio de Curvatura do Movimento (m) (c) Sem faixa especial e com tráfego oposto: Neste caso, o efeito causado pelo veículo é o mais prejudicial de todos. Em primeiro lugar, ele causa atraso aos veículos da mesma fila que desejam ir em frente; em segundo lugar, inibe o uso desta faixa pelos veículos que não desejam virar e, por último, os veículos que desejam virar e permanecem na interseção no final do verde, retardam o início do período de verde da fase transversal. Com respeito aos dois primeiros efeitos, já foi comentado que cada veículo que vira pode ser considerado como equivalente a 1,75 de um veículo que vai em frente, sendo esta correção normalmente satisfatória para a maioria das interseções simples. Para o último efeito, todavia, é necessário verificar se sobram veículos no final do verde e quantos sobram. Para isso, estudou-se o comportamento do veículo que vira com relação às brechas encontradas no tráfego oposto. Sabendo-se que essa brecha é a diferença de passagem entre dois veículos sucessivos (medida da traseira do primeiro à frente do segundo), determinou-se, pelas pesquisas, que brechas de 5 a 6 segundos são o mais comum. 0 fluxo de saturação, nas condições discutidas, pode ser determinado pelo gráfico mostrado adiante inserido que fornece o fluxo de saturação de conversão a esquerda. (Sce) Para que o cálculo se torne prático, é necessário transformar este valor no número de veículos que conseguirão virar por ciclo, aproveitando os espaços na corrente oposta (Nce ). A expressão que fornece este número é dada por: N ce S ce g ef S S fo fo q q fo fo C Nce = número máximo de veículos que fazem conversão à esquerda por ciclo Sce = fluxo de saturação de conversão à esquerda (veic/seg) gef = tempo de verde dedicado ao fluxo oposto (seg) qfo = demanda do fluxo oposto (veic/h) Sfo = saturação do fluxo oposto C = tempo de ciclo (seg)

(d) Com faixa exclusiva e fluxo oposto Neste caso, os veículos que desejam seguir em frente não são retardados e o procedimento deve ser o mesmo do item (a). PROCEDIMENTO GERAL PARA O ESTUDO DA CONVERSÃO À ESQUERDA ETAPA 1 Conhecendo-se a demanda horária do movimento de conversão determinase o número médio (N) de veículos esperados por ciclo (demanda dividida pelo número de ciclos na hora) ETAPA 2 - A partir do valor da demanda horária de conversão, determina-se o fluxo de saturação de conversão (Sce ), através do gráfico ETAPA 3 - Transformar este valor no número máximo de veículos que pode virar por ciclo (Nce ) ETAPA 4 Se N <= Nce, o movimento à esquerda é acomodado pelas condições presentes, e não há nada a modificar Se N>Nce, sobram veículos que não conseguiram virar e é necessário reestudar o problema. Calcula-se então quantos veículos restaram: Nr = N - Nce Nr = número de veículos que não conseguiram realizar o movimento de conversão num ciclo N = número médio de veículos que desejam realizar a conversão Nce = número máximo de veículos que podem realizar a conversão Considerando-se que cada veículo leva, em média, 2,5 seg. para virar, para se escoarem todos os veículos retidos, necessita-se de um tempo de 2,5 Nr segundos. Este tempo pode ser dado através do intervalo de entreverdes, ou quando isto não for possível através de um "verde retardado". (atrasar a fase de verde), no caso de Nr ser um valor maior. EXERCÍCIO CONVERSÃO A ESQUERDA 2) Analisar a situação do movimento de conversão à esquerda de uma interseção, sabendo que: a demanda deste movimento é de 500v/h o fluxo oposto é de 600v/h, em duas filas o tempo de ciclo é de 60 seg e o verde efetivo dedicado ao fluxo oposto é 38 seg

o fluxo de saturação da aproximação oposta é de 5.000 veíc./htv TAXA DE OCUPAÇÃO E GRAU DE SATURAÇÃO DE UMA APROXIMAÇÃO qi y i Eq.13.5.7 S i yi Xi Eq. 13.5.8 g ef C yi = Taxa de ocupação da aproximação i qi = demanda (fluxo horário) da aproximação i (Veq/h) Si = fluxo de saturação da aproximação i (Veq/htv) Xi = grau de saturação da aproximação i gef = tempo de verde efetivo da fase associada ao movimento da aproximação (seg) C = tempo de ciclo do cruzamento (seg) EXERCÍCIO TAXA DE OCUPAÇÃO E GRAU DE SATURAÇÃO 3) Seja uma aproximação com volume horário igual a 1.800 Veq/h, fluxo de saturação de 3.600 Veq/htv e tempo de ciclo igual a 40 segundos. Comparar e discutir a taxa de ocupação e grau de saturação para os seguintes casos: (a) verde efetivo igual a 24 seg; (b) verde efetivo igual a 20 seg; (c) verde efetivo igual a 16 seg TEMPO DE CICLO MÍNIMO E TEMPO DE CICLO ÓTIMO Tp Cmin Eq. 13.5.9 1 Y 1,5T p 5 CO Eq. 13.5.10 1 Y Cmin = Tempo de ciclo mínimo (seg) Tp = Tempo perdido total (seg) Y = Somatória das taxas de ocupação críticas de cada fase da interseção CO = Tempo de ciclo ótimo (seg) EXERCÍCIO CILCO MÍNIMO E ÓTIMO 4) Dimensionar os tempos mínimos e ótimos do cruzamento, para operação com duas fases, conforme diagrama de estágios dado. O tempo de amarelo é igual a 3s e o tempo perdido por fase é de 2s. o período de entreverdes é igual ao tempo de amarelo.

5) Verificar, quanto à conversão à esquerda, a suficiência dos tempos do Semáforo Fila única Fila dupla

AV. NORTE SUL

AV. BRASIL