meio de moagem de alta energia

Documentos relacionados
Abstract. 1 Introdução

ESTUDO DO COMPORTAMENTO TÉRMICO DA LIGA Cu-7%Al-10%Mn-3%Ag (m/m)

OBTENÇÃO DE Nb METÁLICO ATRAVÉS DA REDUÇÃO DE Nb 2

ESTUDO QUALITATIVO DO EFEITO DAS CONDIÇÕES DE MOAGEM DE ALTA ENERGIA DA LIGA Sn-4,0Ag-0,5Cu (% peso)

Influência da Moagem de Alta Energia na porosidade de produtos da metalurgia do pó

Pós compósitos de alumina-boreto obtidos por moagem reativa de alta energia. (Alumina-boride composite powders obtained by reactive milling)

EFEITO DA ADIÇÃO DE SURFACTANTES NAS PROPRIEDADES E MICROESTRUTURA DE PÓS MAGNÉTICOS À BASE DE Pr-Fe-B OBTIDOS VIA HDDR E MOAGEM DE ALTA ENERGIA

5. Conclusões e Sugestões

OBTENÇÃO DE AÇO ROLAMENTO PELA ROTA DA METALURGIA DO PÓ. Jai Pedro do Santos*, João Batista Ferreira da Silva*, Gilbert Silva**, Vera Lucia Arantes**.

RELAÇÃO DO TEMPO DE SINTERIZAÇÃO NA DENSIFICAÇÃO E CONDUTIVIDADE ELÉTRICA EM CÉLULAS À COMBUSTÍVEL. Prof. Dr. Ariston da Silva Melo Júnior

SÍNTESE DE Mg 2 FeH 6 CONTENDO COMO ADITIVOS METAIS DE TRANSIÇÃO E FLUORETOS DE METAIS DE TRANSIÇÃO OU CARBONO

CARACTERIZAÇÃO QUÍMICA E ESTRUTURAL NA SUBSTITUIÇÃO DO LIGANTE METÁLICO Co POR Ti EM METAL DURO

CINÉTICA QUÍMICA CINÉTICA QUÍMICA EQUAÇÃO DE ARRHENIUS

Resultados e Discussões 95

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA MECÂNICA TÉCNICAS DE ANÁLISE

Universidade Estadual de Ponta Grossa - UEPG

OBTENÇÃO DE LIGA Al-Zn ATRAVÉS DA METALURGIA DO PÓ POR MOAGEM DE ALTA ENERGIA

TTT VI Conferência Brasileira sobre Temas de Tratamento Térmico 17 a 20 de Junho de 2012, Atibaia, SP, Brasil

Estudo comparativo de deformação permanente de CBUQ S confeccionados COM LIGANTES ASFÁLTICOS DIVERSOS

ESTUDO DAS LIGAS Ti-18Si-6B E Ti-7,5Si-22,5B CONFECCIONADAS POR MOAGEM DE ALTA ENERGIA E PRENSAGEM A QUENTE

SÍNTESE DA HEXAFERRITA DE BÁRIO DOPADA: INTERPRETAÇÃO TERMODINÂMICA

Caracterização de um detector de partículas alfa CR-39 exposto a uma fonte de rádio

5. CONSIDERAÇÕES FINAIS

SFI 5769 Físico Química e Termodinâmica dos Sólidos. SCM 5702 Termodinâmica dos Materiais. Prof. José Pedro Donoso

Bebida constituída de frutos de açaí e café: Uma alternativa viável

Leis Ponderais e Cálculo Estequiométrico

POROSIMETRIA AO MERCÚRIO

Leonnardo Cruvinel Furquim TERMOQUÍMICA

SIMULAÇÃO DE SECAGEM DE MILHO E ARROZ EM BAIXAS TEMPERATURAS

ASPECTOS METEOROLÓGICOS ASSOCIADOS A EVENTOS EXTREMOS DE CHEIAS NO RIO ACRE RESUMO

UNIVERSIDADE FEDERAL DE ALFENAS Campus Poços de Caldas

EFEITO DA ESTRUTURA BAINÍTICA EM AÇOS PARA ESTAMPAGEM

III-123 DIAGNÓSTICO AMBIENTAL EM ATERROS DE RESÍDUOS SÓLIDOS A PARTIR DE ESTUDOS DE REFERÊNCIA

Ministério da Educação Secretaria de Educação Profissional e Tecnológica Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul

ANÁLISE DA DISTRIBUIÇÃO TEMPORAL DE DADOS HORÁRIOS DE TEMPERATURA EM CURITIBA

Escola de Engenharia de Lorena USP - Cinética Química Capítulo 05 Reações Irreversiveis a Volume Varíavel

Aspectos ambientais da energia aplicada em reações químicas

TERMODINÂMICA CONCEITOS FUNDAMENTAIS. Sistema termodinâmico: Demarcamos um sistema termodinâmico em. Universidade Santa Cecília Santos / SP

A INFLUÊNCIA DO SISTEMA DE VÁCUO NAS PROPRIEDADES FÍSICAS DOS PRODUTOS DE CERÂMICA VERMELHA.

ESTUDO DE UM AÇO INOXIDÁVEL DÚPLEX UNS S31803 PROCESSADO EM UM MOINHO PLANETÁRIO

MÁQUINAS TÉRMICAS AT-101

Êoen AUTARQUIA ASSOCIADA À UNIVERSIDADE DE SÃO PAULO

LISTA DE EXERCÍCIOS ESTUDO DOS GASES

OBTENÇÃO DE PÓS DE NdFeB POR HDDR A PARTIR DE ÍMÃS SINTERIZADOS

CALOR, TEMPERATURA E CAPACIDADES CALORÍFICAS. C = q/ T. C = n. C m

ESTUDO EXPERIMENTAL DOS EQUILÍBRIOS ENTRE FASES COM APLICAÇÃO COMPUTACIONAL PARA O ENSINO DE TERMODINÂMICA PARA ENGENHARIA


UNIVERSIDADE FEDERAL DO PARANÁ PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA DE ALIMENTOS ANÁLISES TÉRMICAS DE ALIMENTOS

B) (até três pontos) Para os pares de espécies apresentados em i, ii e iii, tem-se, respectivamente, Al +, F - e Li.

2 Comportamento Termodinâmico de Fluidos no Reservatório

Influence of coarse aggregate shape factoc on concrete compressive strength

1 Fundação Centro Universitário Estadual da Zona Oeste UEZO, Rio de Janeiro RJ;

LOQ Físico-Química Capítulo 2: A Primeira Lei: Conceitos TERMOQUÍMICA Atkins & de Paula (sétima edição)

Assunto: TERMOQUÍMICA Folha 3.1 Prof.: João R. Mazzei

SÍNTESE DE LIGAS NICRALC POR MOAGEM DE ALTA ENERGIA

Ajuste dos Parâmetros de um Controlador PI em uma Coluna de Destilação Binária

A Termoquímica tem como objetivo o estudo das variações de energia que acompanham as reações químicas.

Anais. Naviraí/MS - Brasil. Organização. Coordenação. Comitê Científico

Cálculo de volume de objetos utilizando câmeras RGB-D

USP EEL - Escola de Engenharia de Lorena Reatores Aula 1 Introdução a Engenharia de Reatores

Energia kj/mol kcal/mol

INFLUÊNCIA DA CONCENTRAÇÃO DE NITRATO DE COBALTO NA TEMPERATURA E TEMPO DE CALCINAÇÃO PARA A SÍNTESE DO La 0,60 Sr 0,40 Co 0,20 Fe 0,80 O 3

CÁLCULO DE INCERTEZA EM ENSAIO DE TRAÇÃO COM OS MÉTODOS DE GUM CLÁSSICO E DE MONTE CARLO

EFEITO DO CORTE NAS PROPRIEDADES MAGNÉTICAS DE AÇOS ELÉTRICOS M. Emura 1, F.J.G. Landgraf 1, W. Rossi 2, J. Barreta 2

TRANSFERÊNCIA DE CALOR POR RESFRIAMENTO RADIAL EM SUCOS DILUÍDO E CONCENTRADO

SISTEMAS DE SOLO COMPÓSITO/BETÃO: CARACTERIZAÇÃO DA INTERFACE GEOCOMPÓSITO-SOLO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENG03108 MEDIÇÕES TÉRMICAS

Sistemas termodinâmicos simples

SÍNTESE E CARACTERIZAÇÃO DE PÓS NANOCOMPÓSITOS FOSFATO DE CÁLCIO/SiO 2 n PARA APLICAÇÕES BIOMÉDICAS

Assim como em qualquer problema de engenharia, existem limitações e exigências que você deve cumprir. Aqui estão as diretrizes.

Modos de Propagação. Tecnologia em Redes de Computadores 5º Período Disciplina: Sistemas e Redes Ópticas Prof. Maria de Fátima F.

VERIFICAÇÃO DA RESISTÊNCIA DE UM CONCRETO DE CIMENTO PORTLAND DO TIPO CPII-Z-32 PREPARADO COM ADIÇÃO DE UM RESÍDUO CERÂMICO

Efeito da moagem de alta energia na morfologia e compressibilidade do compósito WC-Ni

AFAP- PVC - ASSOCIAÇÃO BRASILEIRA DOS FABRICANTES DE PERFIS DE PVC PARA CONSTRUÇÃO CIVIL TECNOLOGIA E QUALIDADE DE SISTEMAS EM ENGENHARIA

OBTENÇÃO DE ÓXIDO DE ESTANHO ATRAVÉS DE HIDRÓLISE CONTROLADA SnCl 2 A.G. RAMALHÃO (1), E.R. LEITE (1), E. LONGO (1), J.A.

METALURGIA DO PÓ (SINTERIZAÇÃO) 1. Introdução Transformação de pó de metais em peças pela aplicação de pressão e calor (sem fusão do metal base).

DETERMINAÇÃO DO CALOR ESPECÍFICO DE AMOSTRAS DE METAIS E ÁGUA

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais

Obtenção de benzeno a partir do gás natural utilizando catalisadores Fe-Mo/ZSM-5

- A velocidade da reação direta (V1) é igual à velocidade da reação inversa (V2) V 1 = V 2

FERROCO S.A. TEMPOS DE CONSERVAÇÃO EM CAIXAS TÉRMICAS FACULDADE DE ENGENHARIA INSTITUTO DE ENGENHARIA QUÍMICA DEPARTAMENTO DE OPERAÇÕES UNITÁRIAS

Exercícios sobre Termoquímica- Energia de ligação

ANÁLISE DA CONSERVAÇÃO PÓS-COLHEITA DA ALFACE (Lactuca Sativa, L) UTILIZANDO O SISTEMA DE APOIO À TOMADA DE DECISÃO BKD

Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Química Disciplina: Físico-Química II Professora: Claudia

PRODUÇÃO DE ZEÓLITAS A PARTIR DE CAULIM PARA ADSORÇÃO DE COBRE

I. INSTRUÇÕES PARA APRESENTAÇÃO DE DISSERTAÇÃO OU TESE

URI - CAMPUS ERECHIM DEPARTAMENTO DE CIÊNCIAS AGRÁRIAS PROGRAMA DE MESTRADO EM ENGENHARIA DE ALIMENTOS

ANÁLISE DO TAMANHO DO CRISTALITO E MICRODEFORMAÇÃO DA REDE CRISTALINA DO CARBETO DE TUNGSTÊNIO MOÍDOS EM MOINHO DE ALTA ENERGIA.

OBJETIVOS: CARGA HORÁRIA MÍNIMA CRONOGRAMA:

Influence of Austenitizing Temperature On the Microstructure and Mechanical Properties of AISI H13 Tool Steel.

Capítulo 2. A 1ª Lei da Termodinâmica

Análise Térmica. Universidade Federal de Juiz de Fora. Instituto de Ciências Exatas Departamento de Química. Metodologia Analítica

EFEITO DA CONCENTRAÇÃO DO ÁCIDO CLORÍDRICO NA ATIVAÇÃO ÁCIDA DA ARGILA BENTONÍTICA BRASGEL

Disciplina MAF 2130 Química Aplicada Turma A02

DIAGRAMA Fe-C. DIAGRAMA Fe-Fe 3 C

Estudo da ilha de calor urbana em cidade de porte médio na Região Equatorial

DECRETO-LEI Nº de 8 de agosto 1945 CÓDIGO DE ÁGUAS MINERAIS 2,3

TERMOQUÍMICA. O que é o CALOR? Energia térmica em transito

PROJETO E CONSTRUÇÃO DE UM GERADOR DE VAPOR COM REALIMENTAÇÃO

Transcrição:

doi: 10.4322/tmm.0005 Formação de nial promovida por meio de moagem de alta energia Resumo Evaldo Toniolo Kubaski 1 Osvaldo Mitsuyuki Cintho 2 José Deodoro Trani Capocchi 3 Pós de e Al foram misturados com a composição Al (% atômica). As misturas de pós foram submetidas à moagem de alta energia (MAE) por diversos tempos (1 h, 2 h, 5 h e 15 h), monitorando-se a evolução da temperatura do jarro. Misturas com composição Al (sem moagem) foram compactadas na forma de pastilhas (diâmetro ~8 mm, altura ~2 mm) e submetidas a tratamentos térmicos (0 C, 8 C e 1.000ºC, por min, em pressões reduzidas). As propriedades termodinâmicas dos intermetálicos indicam que estes compostos têm preferência de formação em relação ao Al. Porém, após MAE da composição Al os difratogramas de raios X mostraram a formação de Al. Durante MAE, Al se forma através de uma reação exotérmica auto-propagante e, para que este tipo de reação ocorra, é necessário que a razão entre o calor de formação do composto e a capacidade calorífica a temperatura ambiente seja superior a 2.000 K, sendo que somente o Al obedece a esta condição e por isso se forma. Palavras-chave: Moagem de alta energia; Reação exotérmica; Sistema níquel-alumínio. Abstract Al FORMATION INDUCED BY HIGH-ENERGY MILLING Blends of and Al powders were mixed at Al (% at) composition. High-energy milling of the blends was performed at several milling times (1 h, 2 h, 5 h and 15 h), evaluating jar temperature during milling. Cylindrical samples (~8 mm diameter, ~2 mm height) were compacted and heat treated for min at 0 C, 8 C and 1,000ºC, in vacuum. and thermodynamic properties indicate prior occurrence when they are compared to Al. However, X ray diffraction patterns of Al blends after high-energy milling showed Al formation. During high-energy milling, Al formation happens through an exothermic and self-sustaining reaction and this kind of reaction occurs when the ratio of the heat of formation of the compound to room temperature heat capacity is greater than 2,000 K. Al follow this rule and its formation occurs. Key words: High-energy milling; Self-propagating reaction; -Al system. 1 INTRODUÇÃO O diagrama de fases binário do sistema -Al mostra a possibilidade de formação de cinco compostos intermetálicos:,, Al (fase com uma certa faixa de composição à baixas temperaturas), 5 e 3 Al, conforme mostrado na Figura 1. (1) Entre estes compostos, Al e 3 Al receberam a maior parte da atenção científica, sendo escassos os relatos a respeito de propriedades mecânicas e obtenção dos demais compostos, principalmente quando a técnica de moagem de alta energia é utilizada. A Tabela 1 mostra a energia de Gibbs de formação dos intermetálicos, e Al, em unidades de kj/mol de intermetálico formado, para três temperaturas distintas. (2) Como a energia de Gibbs é uma propriedade extensiva, a comparação da preferência de formação entre os três compostos intermetálicos, do ponto de vista termodinâmico, será feita utilizando-se o mesmo número de mols do reagente comum () a todas as reações de formação (Tabela 2). De acordo com os valores da Tabela 2, os compostos têm ocorrência preferencial, quando comparados com o Al. No entanto, vários relatos (3-7) mostraram que durante a moagem de alta energia de misturas de pós de níquel e alumínio de composição Al*, correspondente à estequiometria do composto, ocorre a formação do composto Al. Isso pode ser atribuído ao fato de que a moagem de alta energia é considerada uma técnica de processamento fora das condições de equilíbrio. (8) * As composições citadas no texto referem-se a porcentagens atômicas, exceto quando especificado o contrário. 1 MSc. Evaldo Toniolo Kubaski. Escola Politécnica da USP Departamento de Engenharia Metalúrgica e de Materiais. Av. Prof. Mello Moraes, 2463, Cidade Universitária, São Paulo, SP, CEP 058-900. E-mail: evaldotk@usp.br 2 Dr. Osvaldo Mitsuyuki Cintho. Universidade Estadual de Ponta Grossa Departamento de Engenharia de Materiais. Av. Gal. Carlos Cavalcante, 4748, Ponta Grossa, PR, CEP 8-900. E-mail: omcintho@uepg.br 3 Dr. José Deodoro Trani Capocchi. Escola Politécnica da USP Departamento de Engenharia Metalúrgica e de Materiais. Av. Prof. Mello Moraes, 2463, Cidade Universitária, São Paulo, SP, CEP 058-900. E-mail: jdtcapoc@usp.br Tecnologia em Metalurgia e Materiais, São Paulo, v.4, n.4, p. 27-31, abr.-jun. 08 27

0 1.0 1.0 1.0 1.0 1.0 1.0 1.100 1.000 900 800 0 6.452 C 0 0 Temperatura ( C) 5,7 (Al) Assim, este trabalho tem como objetivo sugerir uma explicação, fundamentada em conceitos termodinâmicos, para a formação de Al durante a moagem de misturas de pós de níquel e alumínio na composição Al. 2 MATERIAIS E MÉTODOS Teor de níquel (% atômica) 10 80 90100 1.638 C L 28 639,9 C 854 C 55,9 76,9 0 0Al 10 80 90 100 Teor de níquel (%peso) Misturou-se pós de níquel e alumínio com a composição Al, que corresponde à estequiometria do composto intermetálico. Utilizou-se pós de níquel metálico, fornecido pela Vetec Química Fina Ltda., e alumínio metálico, fornecido pela Alcoa Alumínio S.A., ambos com pureza de 99,8% e com diâmetros médios iguais a 158 µm e 37 µm, respectivamente. As misturas de pós foram submetidas à moagem de alta energia em um moinho marca Spex Cert/Prep, modelo 8000 Mixer/Mill. Realizou-se moagens em diversos tempos: 1 h, 2 h, 5 h e 15 h. As moagens foram conduzidas sob atmosfera de argônio, a qual foi introduzida nos recipientes (jarros) de moagem Figura 1. Diagrama de fases binário -Al. (1) 1.133 C61,2 44,5 Al 5 0 C 85 86,4 83 86 89 () Tabela 1. Energia de Gibbs de formação, em kj/mol de intermetálico, dos compostos, e Al, em três temperaturas. (2) Temperatura (K) Al 3 Composto intermetálico Al 8-166,8-311,0-133,0 900-166,2-9,9-131,9 9-1,6-9,2-131,2 Tabela 2. Energia de Gibbs de formação, em kj/mol de, dos compostos, e Al, em três temperaturas Temperatura (K) Composto intermetálico Al 8-166,8-155,5-133,0 900-166,2-155,0-131,9 9-1,6-154,6-131,2 1.456 C através de uma Glove Box. O poder de moagem empregado foi de 7:1, sendo que o poder de moagem é a relação entre a massa de bolas (corpos moedores) e a massa do material a ser processado. Durante as moagens, monitorou-se a evolução da temperatura do jarro utilizando um termopar tipo K fixado no fundo deste e um sistema de aquisição e armazenamento de dados do tipo Data Logger marca Delta Ohm, modelo DO9416. Além disso, amostras da mistura sem moagem foram compactadas na forma de corpos de prova cilíndricos com 8 mm de diâmetro e aproximadamente 2,0 mm de altura. A carga de compactação utilizada foi de 7 kgf, o que resultou em uma pressão de 146,4 MPa. Cânfora diluída em álcool etílico foi utilizada como ligante durante a compactação das amostras. Estas amostras foram submetidas à tratamentos térmicos a 0ºC, 8ºC e 1.000ºC, em pressões reduzidas (10 1 bar) por min. Utilizou-se um difratômetro de raios X marca Shimadzu, modelo XRD00, com radiação CuKα e um microscópio eletrônico de varredura marca Shimadzu, modelo SSX5 para a caracterização dos produtos obtidos. Informações detalhadas a respeito das matérias-primas e da metodologia utilizada podem ser encontradas no trabalho de Kubaski. (7) 3 RESULTADOS E DISCUSSÃO A composição Al, conforme pode ser observado no diagrama de fases binário -Al (Figura 1), corresponde à estequiometria do composto. No entanto, resultados de trabalhos anteriores (6,7) mostraram que, durante a moagem de alta energia de uma mistura de pós com esta composição, ocorre a formação do composto Al. A Figura 2 mostra difratogramas de raios X da mistura com composição Al em diversos tempos de moagem, sendo possível observar a formação de Al a partir de 2 h de moagem. Em misturas de pós de e Al, tratadas termicamente sem a realização prévia de moagem de alta energia, encontrou-se uma mistura entre as fases, não sendo verificada a presença de Al, conforme pode ser observado nos difratogramas da Figura 3. A identificação das fases em todos os difratogramas foi realizada utilizando-se a base de dados do Joint Committee on Powder Diffraction Standards (JCPDS). 28 Tecnologia em Metalurgia e Materiais, São Paulo, v.4, n.4, p. 27-31, abr.-jun. 08

Intensidade (escala arbitrária) 25 Al(100) Al(100) 35 Al(110) Al(110) Al(110) Al(0) (111) Al(0) (111) 45 (0) (0) Conforme verificado na Tabela 2, a energia de Gibbs de formação dos compostos intermetálicos expressa em kj/mol de, indica que os compostos têm ocorrência preferencial por apresentarem os menores valores de energia de Gibbs, assim, os resultados apresentados nos difratogramas da Figura 3 não são contraditórios em relação aqueles previstos por este critério, pois as amostras sem moagem e tratadas termicamente mostraram a presença de e a ausência de Al. Durante a moagem de alta energia, devido ao fato de que este processo ocorre em condi- 55 Ângulo 2 Al(0) Al(0) (2) 75 Al(311) 80 Al(211) Al(211) Al(211) Al(222) 85 15 h Figura 2. Difratogramas de raios X da mistura Al em diferentes tempos de moagem, mostrando a formação do composto intermetálico Al. Picos identificados de acordo com as fichas JCPDS 87-0712 (), JCPDS 85-1327 (Al) e JCPDS 44-1188 (Al). Intensidade(escala arbitrária) 1000ºC 0ºC 10 8ºC 15 25 35 45 55 Ângulo 2 Al 75 80 5 h 2 h 1 h 0 h 90 85 90 Figura 3. Difratogramas da mistura Al sem moagem e tratadas termicamente a 0ºC, 8ºC e 1.000ºC. Picos identificados de acordo com as fichas JCPDS 87-0712 (), JCPDS 85-1327 (Al), JCPDS 14-0648 (2Al3), JCPDS 02-0416 (Al3). ções distantes do equilíbrio, observa-se a formação de Al a partir de 2 h de moagem (Figura 2) e somente a presença de níquel e alumínio em suas formas elementares para tempos inferiores. Durante a moagem de alta energia, a formação do composto Al nas condições de moagem empregadas, ocorre de maneira repentina através de uma reação exotérmica auto-propagante, em concordância com resultados apresentados em trabalhos anteriores. (4,9-11) O caráter autopropagante de uma reação é freqüentemente caracterizado pela razão entre o valor da variação de entalpia da reação (DH 298 K ) e o calor específico do produto da reação, à temperatura ambiente (C p, 298 K ), sendo que valores H 298 K / C p, 298 K maiores que 2.000 K são requeridos para a propagação de uma reação auto-sustentada. (12,13) A detecção da ocorrência da reação exotérmica durante o processo de moagem foi realizada através da medida da evolução da temperatura do jarro de moagem em função do tempo. Caso esta curva apresente um pico de temperatura, pode-se afirmar que uma reação exotérmica ocorreu. A Figura 4 (6) mostra a temperatura do jarro em função do tempo de moagem durante o processamento da mistura com composição Al, onde pode ser identificado um pico, caracterizando a ocorrência da reação exotérmica. A detecção da variação brusca da temperatura do jarro como indicativo da ocorrência de reações exotérmicas é encontrada na literatura para diversos outros sistemas. (13-18) Temperatura do jarro ( C) Temperatura do jarro ( C) 10 0 0,0 0,5 1,0 1,5 2,0 2,5 3,0 Tempo de moagem (h) (a) 114 min 116 min 110 111 112 113 114 115 116 117 118 119 1 Tempo de moagem (min) (b) Figura 4. a) Temperatura do jarro em função do tempo, durante a moagem da composição Al; e b) Vista detalhada do pico de temperatura com o tempo em minutos. (6) Tecnologia em Metalurgia e Materiais, São Paulo, v.4, n.4, p. 27-31, abr.-jun. 08 29

Observando-se a morfologia dos pós, antes e após o pico de temperatura mostrado na Figura 4, também é possível notar diferenças significativas que auxiliam a evidenciar a ocorrência da reação exotérmica. A Figura 5 mostra micrografias eletrônicas de varredura de amostras da composição Al processadas por 1 h e 2 h em moinho Spex. Após a reação exotérmica (Figura 5b), os pós apresentaram a forma de um aglomerado de partículas menores. Antes da reação Figura 5a, as partículas possuíam maior tamanho, não sendo possível observar que as mesmas são constituídas por um aglomerado de partículas menores. Comportamento semelhante foi observado durante a moagem de alta energia de um mistura de pós de composição Al, (19) além disso, morfologias semelhantes foram observadas por Grigorieva, Korchagin e Lyakhov. () após 25 min de moagem de uma mistura de pós com composição 68%-32%Al (% peso). A Tabela 3 mostra os valores do calor de formação (DH f, 298 K ) e do calor específico à temperatura ambiente (C p, 298 K ) para o, e Al. Além disso, é mostrada a razão H f, 298 K para as respectivas reações de formação dos compostos intermetálicos. De acordo com os dados da Tabela 3, os compostos não possuem H f, 298K / C p, 298K maiores que 2.000 K, e desta forma este requisito para a ocorrência de uma reação exotérmica auto-propagante não é atendido. No entanto, o composto Al apresenta H f, 298 K / C p, 298 K igual a 2.577 K e, assim, existe uma grande probabilidade de ocorrência da reação devido à ativação mecânica produzida pela moagem de alta energia. Durante o processamento da composição Al, parte do pó que está sendo moído atinge a composição nominal do Al e por isso, há a ocorrência da reação exotérmica auto-propagante no interior do jarro de moagem, levando à formação de Al. A reação autopropagante torna-se possível devido à redução do tamanho de partículas, à mistura dos componentes entre si e devido ao aumento no número de defeitos quimicamente ativos, efeitos estes que são promovidos pela moagem de alta energia. Porém, a reação é incompleta e não atinge todo o material que está sendo processado, pois picos de e Al ainda podem ser vistos nos difratogramas de raios X para 2 h de moagem (Figura 2), mesmo após a formação de Al já ter ocorrido. Os picos de e Al só deixam de ser observados nos difratogramas de raios X para tempos mais longos de moagem (5 h e 15 h). 4 CONCLUSÕES Tabela 3. Calor de formação à temperatura ambiente ( H f, 298 K ), capacidade calorífica a temperatura ambiente (C p, 298 K ) e razão H f, 298 K para o, e Al. (21) Intermetálico H f, 298 K (kj/ mol) C p, 298 K (J/mol.K) H f, 298 K (K) -1,624 94,90 1588-282,4 116,29 486 Al -118,7 45,95 2577 (a) (b) µm µm Figura 5. Micrografias eletrônicas de varredura, obtidas utilizando elétrons secundários, mostrando a diferença na morfologia dos pós. a) 1 h de moagem, antes da reação exotérmica; e b) 2 h de moagem, após a reação exotérmica. Durante a moagem de alta energia de misturas de pós de e Al com composição Al há a formação do composto Al, devido ao fato deste composto se formar através de uma reação exotérmica auto-propagante. A reação de formação de Al possui um elevado caráter exotérmico, caracterizado pelo fato da razão H f, 298 K ser igual a 2.577 K, ou seja, superior a 2.000 K. A reação de formação do Al não é completa e não atinge a totalidade do pó que está sendo processado, pois mesmo após o aparecimento de picos referentes ao Al nos difratogramas de raios X, picos de e Al em suas formas elementares continuam sendo visíveis. Agradecimentos À Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), pelo auxílio à pesquisa concedido (processo n 07/954-0). O autor Evaldo Toniolo Kubaski agradece à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela bolsa de doutorado concedida. Tecnologia em Metalurgia e Materiais, São Paulo, v.4, n.4, p. 27-31, abr.-jun. 08

REFERÊNCIAS 1 NASH, P.; SINGLETON, M.F.; MURRAY, J.L. Al- (Aluminum-ckel). ASM handbook - alloy phase diagrams. 10. ed. Materials Park: ASM International, 1992. p. 249. 2 RÓG, G.; BORCHARDT, G.; WELLEN, M.; LÖSER, W. Determination of the activities in the ( + Al) alloys in the temperature range 8 K to 9 K by a solid-state galvanic cell using a CaF 2 electrolyte. Journal of Chemical Thermodynamics, v.35, n.2, p.261-8, 03. 3 PORTNOY, V.K.; BLINOV, A.M.; TOMILIN, I.A.; KUZNETSOV, V.N.; KULIK, T. Formation of nickel aluminides by mechanical alloying and thermodynamics of interaction. Journal of Alloys and Compounds, v. 336, n. 1-2, p.196-1, 02. 4 PABI, S.K.; MURTY, B.S. Mechanism of mechanical alloying in -Al and Cu-Zn systems. Materials Science and Engineering A, v.214, n.1-2, p.146-52, 1996. 5 MURTY, B.S.; SINGH, K.H.S.; PABI, S.K. Synthesis of nanocrystalline Al over a wide composition range by mechanical alloying. Bulletin of Materials Science, v.19, n.3, p.5-71, 1996. 6 KUBASKI, E.T.; MOINHOS, C.; CAPOCCHI, J.D.T.; CINTHO, O.M. Síntese do composto ntermetálico utilizando moagem de alta energia e tratamentos térmicos. In: CONGRESSO ANUAL DA ABM, 61., 06, Rio de Janeiro. Anais... São Paulo: ABM, 06, v. 61. p. 1084-90. 1 CD ROM. 7 KUBASKI, E. T. Síntese de compostos intermetálicos do sistema -Al utilizando moagem de alta energia. 05. 151 f. Dissertação (Mestrado em Engenharia e Ciência de Materiais) Universidade Estadual de Ponta Grossa, Ponta Grossa, 05. 8 SURYANARAYANA, C. Mechanical alloying and milling. Progress in Materials Science, v. 46, n.1-2, p.1-184, 01. 9 CARDELLINI, F.; MAZZONE, G.; MONTONE, A.; VITTORI ANTISARI, M. Solid state reactions between and Al powders induced by plastic deformation. Acta Metallurgica et Materialia, v. 42, n. 7, p. 2445-51, 1994. 10 KUBASKI, E.T.; MOINHOS, C.; MONLEVADE, E.F.; CAPOCCHI, J.D.T.; CINTHO, O.M. Síntese de intermetálicos do sistema -Al por meio de moagem de alta energia. In: CONGRESSO ANUAL DA ABM,. 05, Belo Horizonte. Anais... São Paulo: ABM, 05, v.. p. 2168-77. 1 CD ROM 11 LIU, Z.G.; GUO, J.T.; HU, Z.Q. Mechanical alloying of the -Al(M) (M Ti,Fe) system. Materials Science and Engineering A, v. 192-3, n. 2, p. 577-82, 1995. 12 MUNIR, Z.A.; ANSELMI-TAMBURINI, U. Self-propagating exothermic reactions: The synthesis of high-temperature materials by combustion. Materials Science Reports, v.3, n. 7-8, p. 277-3, 1989. 13 TAKACS, L.; SOIKA, V.; BALAZ, P. The effect of mechanical activation on highly exothermic powder mixtures. Solid State Ionics, v.141-2, p.641-7, 01. 14 TAKACS, L. Solid state reactions induced by ball milling. Hyperfine Interactions, v. 111, n. 1-4, p.245-, 1998. 15 DEIDDA, C.; DELOGU, F.; COCCO, G. In situ characterization of mechanically-induced self-propagating reactions. Journal of Materials Science, v. 39, n. 16, p. 5315-8, 04. 16 MANAI, G.; DELOGU, F.; SCHIFFINI, L.; COCCO, G. Mechanically induced self-propagating combustions: Experimental findings and numerical simulation results. Journal of Materials Science, v. 39, n. 16, p. 5319-24, 04. 17 MARTIM, D.R.; PALLONE, E.M.J.A.; BOTTA F.W.J.; TOMASI, R. Síntese de pós compósitos do sistema Al 2 O 3 -Al usando moagem reativa de alta energia. In: CONGRESSO BRASILEIRO DE ENGENHARIA E CIÊNCIA DOS MATE- RIAIS, 16. 04, Porto Alegre. Anais... Porto Alegre: UFRGS, 04, 1 CD ROM 18 TAKACS, L. Combustion phenomena induced by ball milling. Materials Science Forum, v.269-272, n.2, p.513-22, 1998. 19 KUBASKI, E.T.; MOINHOS, C.; CAPOCCHI, J.D.T.; CINTHO, O.M. Powder morphology during Al intermatallic compound synthesis. In: ENCONTRO DA SOCIEDADE BRASILEIRA DE PESQUISA EM MATERIAIS, 4. 05, Recife. Anais... Recife: UFPE, 05, v. 4. 1 CD ROM. GRIGORIEVA, T.; KORCHAGIN, M.; LYAKHOV, N. Combination of SHS and mechanochemical synthesis for Nanopowder technologies. KONA, n., p.144-58, 02. 21 BARIN et al., 1977 apud MORSI, K. Review: reaction synthesis processing of -Al intermetallic materials. Materials Science and Engineering A, v.299, n.1-2, p.1-15, 01. Recebido em: 14/11/07 Aceito em: 07/04/08 Proveniente de: CONGRESSO ANUAL DA ABM, 62., 07, Vitória, ES. São Paulo: ABM, 07. Tecnologia em Metalurgia e Materiais, São Paulo, v.4, n.4, p. 27-31, abr.-jun. 08 31