DECODIFICADOR DE DISPLAY DE 7 SEGMENTOS COM LATCH



Documentos relacionados
UNIVERSIDADE FEDERAL DO PARANÁ. Projeto de Circuito Integrado: Convesor Série-Paralelo Bidirecional

PROJETOS DE CIs DIGITAIS Decodificador do display de sete segmentos

Microeletrônica. Germano Maioli Penello.

Aula 09. Memórias e Circuitos Digitais Seqüenciais

A Figura 1 mostra uma organização do NEANDER com uma UAL de 6 funções. Figura 1: Organização para o NEANDER.

EE610 Eletrônica Digital I. 2_b_2 Chaves em circuitos lógicos

Circuitos Digitais Cap. 6

Circuitos Seqüenciais: Latches e Flip-Flops. Fabrício Noveletto

GUIA DE LABORATÓRIO DE SISTEMAS DIGITAIS PARA O CURSO DE ENGENHARIA DE CONTROLE E AUTOMAÇÃO

Memórias. O que são Memórias de Semicondutores? São componentes capazes de armazenar informações Binárias (0s e 1s)

Eletrônica Industrial Apostila sobre Modulação PWM página 1 de 6 INTRODUÇÃO

LABORATÓRIO DE DISPOSITIVOS ELETRÔNICOS Guia de Experimentos

CIRCUITOS E SISTEMAS ELECTRÓNICOS

R S Q Tabela 17 - Tabela verdade NOR

Aula 8 Circuitos Integrados

CONTROLE DIGITAL DE VOLUME

Informática Aplicada à Química. Hardware - armazenamento

Introdução à Engenharia de Computação

CAPÍTULO 4 CIRCUITOS SEQUENCIAIS II: CONTADORES ASSÍNCRONOS

Disciplina: Introdução à Informática Profª Érica Barcelos

Portas lógicas e circuitos digitais. Sistemas da Computação Prof. Rossano Pablo Pinto, Msc. rossano at gmail com 2 semestre 2007

MINISTÉRIO DA EDUCAÇÃO IFSC - Campus São José. CST em Telecomunicações ELETRÔNICA DIGITAL CONTADORES. Marcos Moecke

Conceitos básicos do

1. CAPÍTULO COMPUTADORES

UNIBRATEC Ensino Superior e Técnico em Informática DHD Desenvolvimento em Hardware

Figura 1 - Diagrama de um sistema de controle de temperatura que requer conversão analógico-digital para permitir o uso de técnicas de processamento

IFBA MOSFET. CELET Coordenação do Curso Técnico em Eletrônica Professor: Edvaldo Moraes Ruas, EE. Vitória da Conquista

Capítulo 3 - Trabalhando com circuitos digitais

Estabilizada de. PdP. Autor: Luís Fernando Patsko Nível: Intermediário Criação: 22/02/2006 Última versão: 18/12/2006

Entradas Digitais. PdP. Autores: Luís Fernando Patsko e Tiago Lone Nível: Intermediário Criação: 27/12/2005 Última versão: 18/12/2006

Tais operações podem utilizar um (operações unárias) ou dois (operações binárias) valores.

Tecnicas com Sistemas Digitais

O Hardware Dentro da Unidade do Sistema

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA INF Técnicas Digitais para Computação

Circuitos de Comando para MOSFETs e IGBTs de Potência

Projeto de Circuitos. Introdução ao Computador 2008/01 Bernardo Gonçalves

MINISTÉRIO DA EDUCAÇÃO CEFET/SC - Unidade de São José. Curso Técnico em Telecomunicações CONTADORES. Marcos Moecke

Portas lógicas e Circuitos. Marcos Monteiro, MBA

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2

AUTOMAҪÃO INDUSTRIAL E LINHAS DE PRODUҪÃO FLEXÍVEIS

Controle universal para motor de passo

Prof. Rafael Gross.

Autor: Luís Fernando Patsko Nível: Intermediário Criação: 22/02/2006 Última versão: 18/12/2006. PdP. Pesquisa e Desenvolvimento de Produtos

Símbolos Lógicos com Tabelas-Verdade

CAPÍTULO 5. INTERFACES PARA PERIFÉRICOS DE ARMAZENAMENTO INTERFACES DIVERSAS: FIREWIRE, SPI e I 2 C INTERFACES COM O MUNDO ANALÓGICO

Sistemas de Numeração. Engenharia da Computação 3 Período Alex Vidigal Bastos

Tecnologia VLSI - Uma Breve Introdução

Controle de Múltiplos Pivôs Centrais com um único Conjunto Motor-Bomba

Transitores CMOS, história e tecnologia

Sistemas Computacionais II Professor Frederico Sauer

Unidade Central de Processamento (CPU) Processador. Renan Manola Introdução ao Computador 2010/01

ARQUITETURA DE COMPUTADORES

Guilherme Pina Cardim. Relatório de Sistemas Operacionais I

Experiência 06 Resistores e Propriedades dos Semicondutores

Processadores. Guilherme Pontes

ARQUITETURA DE COMPUTADORES

Projecto 1. Simulação e Layout de um circuito lógico usando lógica complementar

Associação de Geradores

Circuitos Digitais. Conteúdo. Sistema de Numeração e Códigos :: Conversões de Binário para Decimal SISTEMA DE NUMERAÇÃO E CÓDIGOS


Módulo 4. Construindo uma solução OLAP

Universidade Estadual do Ceará

ROM e RAM. Memórias 23/11/2015

Introdução. Em se tratando de computador, entendemos que memória são dispositivos que armazenam dados com os quais o processador trabalha.

MOSFET. Fábio Makihara Gustavo de Carvalho Bertoli Luís Gustavo Fazzio Barbin Luiza Pio Costa da Silva

ACIONAMENTOS ELETRÔNICOS (INVERSOR DE FREQUÊNCIA)

CAPÍTULO 5 CIRCUITOS SEQUENCIAIS

Disciplina: Processamento Digital de Sinais (ENG577) Aula 05 Parte 2: Dispositivos de Hardware Programável Prof.: Eduardo Simas

GOVERNO DO ESTADO DE MATO GROSSO DO SUL SECRETARIA DE ESTADO DE EDUCAÇÃO CENTRO DE EDUCAÇÃO PROFISSIONAL EZEQUIEL F. LIMA ATERRAMENTO E BLINDAGEM

Tutorial de Eletrônica Aplicações com 555 v

Introdução. Criar um sistema capaz de interagir com o ambiente. Um transdutor é um componente que transforma um tipo de energia em outro.

UNIVERSIDADE CATÓLICA DE PETRÓPOLIS CENTRO DE ENGENHARIA E COMPUTAÇÃO

Endereçamento IP 09/05/2014. Endereçamento IP CLASSE B CLASSE A CLASSE A CLASSE C

Estudos Técnicos de Componentes e Periféricos (ETCP) Prof. Mauricio ETCP

Obs.: O processo irá se repetir enquanto durar o disparo do alarme.

FACULDADE PITÁGORAS DISCIPLINA: ARQUITETURA DE COMPUTADORES

5 SIMULAÇÃO DE UM SISTEMA WDM DE DOIS CANAIS COM O SOFTWARE VPI

CIRCUITOS COMBINACIONAIS Codificadores e decodificadores

Conheça o 4017 (ART062)

Arquitetura e Organização de Computadores

Aula Memória principal e 2. Memória de armazenagem em massa.

Informática I. Aula 4. Aula 4-11/09/2006 1

Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Engenharia Disciplina de Lógica Computacional Aplicada. Prof. Dr.

Instituto Educacional São João da Escócia Colégio Pelicano Curso Técnico de Eletrônica. FET - Transistor de Efeito de Campo

Circuitos Combinacionais. Sistemas digitais

Conversores D/A e A/D

1. Sistemas de numeração

TECNOLOGIAS DA INFORMAÇÃO E COMUNICAÇÃO

1.1. Organização de um Sistema Computacional

Instituto Tecnológico de Aeronáutica - ITA Divisão de Engenharia Eletrônica Departamento de Eletrônica Aplicada Laboratório de EEA-21

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ

Introdução à Organização e Arquitetura de Computadores. Prof. Leonardo Barreto Campos 1

Comunicação Serial com o AVR ATMEGA8

Controladores Lógicos Programáveis CLP (parte-3)

IW10. Rev.: 02. Especificações Técnicas

Sistemas de Numeração

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CCET - Centro de Ciências Exatas e de Tecnologia Engenharia de Computação VELOHIDRO CURITIBA

Unidade 1 - Objectivos das Tecnologias Informáticas

Lab 3. Timing Timing Constraints Simulação

CAPÍTULO 2 CARACTERÍSTICAS DE E/S E PORTA PARALELA

Transcrição:

UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ENGENHARIA ELÉTRICA DECODIFICADOR DE DISPLAY DE 7 SEGMENTOS COM LATCH Projeto para a matéria TE130 Projeto de Circuitos Integrados Digitais, ministrada pelo Prof. Dr. Oscar da Costa Gouveia Filho. Trabalho realizado pelos alunos Daniel Mauricio Klassen e Marcelo Hoffmann Bampi Curitiba 2011

SUMÁRIO 1 INTRODUÇÃO... 2 2 DECODIFICADOR DE SETE SEGMENTOS... 2 3 LATCH... 4 4 ESQUEMÁTICOS... 5 4.1 Inversor... 5 4.2 Inversor Grande... 6 4.3 NAND de Duas Portas... 6 4.4 NAND de Três Portas... 7 4.5 NOR de Duas Portas... 7 4.6 NOR de Três Portas... 7 4.7 Porta de Transmissão... 8 5 SIMULAÇÃO... 9 6 LAYOUT... 10 6.1 Layout de Cada Componente... 11 6.2 Layout de Cada Segmento... 13 6.3 Layout Completo... 15 7 RESULTADOS... 16 8 CONCLUSÃO... 16 REFERÊNCIAS... 17

1 INTRODUÇÃO Na fabricação de circuitos integrados a tecnologia CMOS (Complementary Metal-Oxide-Semiconductor) é a mais empregada. O termo Complementary vem do fato que esta tecnologia utiliza dois tipos de transistores MOSFET (Metal Oxide Semiconductor Field Effect Transistor), de tal forma que o MOSFET de canal N complementa o MOSFET de canal P. As principais vantagens dos circuitos integrados CMOS são o baixíssimo consumo de energia, que por consequência possui uma baixa dissipação de calor, agregados à alta densidade de integração. Nos circuitos integrados é possível criar diversos componentes, desde componentes com uma lógica digital básica, microprocessadores, microcontroladores até memórias RAM (Random Access Memory). Neste relatório será abordada a construção e a simulação de um decodificador de display de sete segmentos com um latch no final de cada saída lógica. O circuito foi implementado de modo que a fosse criada uma combinação de apenas transistores CMOS, criando a lógica requerida. 2 DECODIFICADOR DE SETE SEGMENTOS Um display de sete segmentos é usado como forma de exibir uma informação numérica sobre as operações internas de um dispositivo. Na Figura 01 é mostrado um esquemático do decodificador com o display, sendo quatro pinos para a entrada e sete saídas. Figura 1 - Esquemático do decodificador com o display de sete segmentos 2

Para representar os números de 0 a 9 são necessárias quatro entradas (4 bits), sendo que para cada sequência de bits de entrada, certos segmentos devem ser acesos. Por exemplo, para o número 0 aparecer no display (equivalente a uma entrada 0000), todos os segmentos devem ser acesos menos o g. Como os números de 10 a 15 não são utilizados, as saídas são indiferentes sendo representadas por X. Na Tabela 01 é apresentada a tabela verdade do decodificador. A B C D a b c d e f g 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 0 1 0 X X X X X X X 1 0 1 1 X X X X X X X 1 1 0 0 X X X X X X X 1 1 0 1 X X X X X X X 1 1 1 0 X X X X X X X 1 1 1 1 X X X X X X X Tabela 1 Tabela Verdade do decodificador de sete segmentos, números do intervalo do 10 ao 15 não podem ser mostrados pela limitação de símbolos, sendo eles com estado indiferente X. Tendo a lógica do circuito, ou seja, os estados da saída em função da entrada desejável, são possíveis à criação de um circuito lógico utilizando a ferramenta do mapa de Karnaugh. A lógica para cada segmento está listadas abaixo. a b - 3

c d e - f g 3 LATCH O latch é um circuito eletrônico digital que implementa uma célula de memória. A sua função é assegurar o estado anterior, até que venha uma mudança. Sendo assim, a sua saída sempre será um quando a sua entrada for um e sempre será zero na saída quando for zero na entrada. No circuito do latch existe o sinal do clock que ditará o tempo de refresh do estado do latch. Por sua vez esse tempo deve ser muito menor que o tempo que rege o circuito, para assegurar o estado até a próxima transição. No circuito será colocado um latch para cada saída do decodificador, o que evitará picos para a tensão máxima como para a tensão mínima no meio do estado. Na Figura 02 está demonstrado o esquemático do latch que contem duas portas de transmissão e quatro inversores, sendo dois pares idênticos com cada um do para com tamanho diferente. Na figura o inversor I 1 é igual ao inversor I 3 que são sei vezes maiores que os inversores I 2 e I 4, que por sua vez são iguais. Figura 2- Circuito do Latch, contendo portas de transmissão e inversores, de dois tamanhos distintos. O circuito é controlado pelo clock. Quando ocorre uma subida no sinal de clock, o dado de entrada (D) deve ser armazenado na saída (Q) até o clock completar um ciclo, quando um novo estado deverá ser armazenado. 4

4 ESQUEMÁTICOS Para a simulação do circuito foi montado no software Cadence Virtuoso o circuito demonstrado na Figura 03. A sua visualização detalhada fica difícil por se tratar de um circuito com muitas lógicas. As entradas estão localizadas na parte superior esquerda, as entradas de clock estão na parte superior direita e as saídas estão ao longo de todo o circuito começando pela lógica a até a g. Entradas A B C D Entradas CLK e CLK a b c d e f g Figura 3- Esquemático do decodificador de sete segmentos. Estão representadas as entradas de estado, de clock e a saída para cada segmento. Como é possível visualizar na Figura 03 existem diversos componentes lógicos para atender a necessidade de todas as lógicas requeridas. Nos pontos a seguir será mostrado o esquemático de cada componente separado. 4.1 Inversor O inversor consiste em dois transistores CMOS, sendo um P e um N. Para que o inversor possa ter as características desejáveis a largura do transistor P deve 5

ser três vezes maior que a largura do transistor N. O esquemático e os valores de cada transistor pode ser visualizado na Figura 04. 4.2 Inversor Grande O Inverso Grande tem a mesma topologia do inversor apresentado no ponto 3.1, a única alteração que as medidas dos seus canais passam a ser seis vezes maior. Figura 4 - Inversor, um transistor P e um N, w P=3*w N Figura 5 - Esquemático para o Inversor Grande 4.3 NAND de Duas Portas A porta NAND, de duas portas, deve realizar a lógica de que para a entrada alta em ambas entradas a saída deva ser zerada, caso contrario a saída será alta. Para atender a essa lógica com transistores em CMOS foi montado o circuito da Figura 06. A regra da dimensão dos canais, onde o w P =3*w N continua ser a que rege o tamanho dos canais para determinado circuito. Nesse arranjo e em todos os demais é feito o cálculo do pior caminho. As dimensões impostas para essa lógica estão demonstradas na Figura 06. 6

Figura 6 - Esquemático para a Lógica NAND de duas portas Figura 7 - Esquemático para a lógica NAND de três portas 4.4 NAND de Três Portas A lógica para o NAND de três portas é a mesma da NAND para duas portas, a única diferença é de que nesse caso a entrada é feita por meio de três pinos ao invés de dois. O cálculo do canal também foi realizado para o de pior caminho. 4.5 NOR de Duas Portas O circuito da lógica NOR é muito parecido com o circuito da lógica NAND, a diferença é de que quando o circuito está em paralelo ele vira em série e vice e versa. Na lógica NOR a saída é alta quando ambas as entradas são baixas e baixa caso contrário. O esquemático e as medidas do canal podem ser visualizados na Figura 08. 4.6 NOR de Três Portas A NOR de três portas segue a mesma lógica da NOR de duas portas, só que para três entradas. O seu esquemático e as medidas do canal podem ser visualizados na Figura 09. 7

Figura 8 - Esquemático para a NOR de duas portas Figura 9 - Esquemático para a lógica NOR de três portas 4.7 Porta de Transmissão A Porta de Transmissão é uma chave controlada por tensão, nesse caso o controle será realizado por um sinal de CLK e um sinal de. Para que o circuito funcione devidamente os seus transistores devem ser simétrico, logo a medida do seu canal é igual. O seu esquemático pode ser visualizado abaixo na Figura 10. A porta de transmissão consome baixa potência e simplifica o projeto de alguns circuitos lógicos, nesse caso o latch. Figura 10 - Porta de Transmissão 8

4.8 LATCH Como explicado anteriormente o latch funciona como uma memória de estado para o circuito evitando picos. O latch é atualizado por um sinal de clock que deve ter um período bem mais rápido que o período do sinal de entrada. O esquemático completo do latch pode ser visualizado na Figura 11. Figura 11 - Esquemático do Latch 5 SIMULAÇÃO Apresentados e montados todos os esquemáticos, foi realizado uma simulação para averiguar a veracidade do mesmo. Como o resultado da simulação pode se compará-lo com a Tabela 01, que contem a Tabela Verdade do circuito. O resultado da simulação pode ser visualizado na Figura 12. Nele estão os sinais de entrada, saída e de clock. Na otimização do circuito foi testado que o circuito não funcionava para um período menor do 5,02ns. Assim para esse período podemos definir que a frequência máxima de operação do mesmo é de 199,2MHz. Na simulação também foi possível calcular a potência total dissipada, o valor encontrado foi 703,75nW. No começo dos de alguns estados existe uma espécie de meio estado ativo ou desativo, averiguou-se na simulação que isso era um erro inicialização, a medida que o período total foi se repetindo, esse erro era inexistente. Não foi possível realizar a simulação lógica do circuito, pois o software não conseguiu simula-lo. 9

Figura 12 - Resultado da Simulação, linhas de cima para baixo: D, C, B, A, a, b, c, d, e, f, g, CLK e ~CLK 6 LAYOUT Pelo fato do decodificador ser um circuito grande e com vários componentes distintos, será apresentado cada layout separadamente. Em um próximo passo será apresentado o layout para cada segmente e ao final será apresentada uma visão macro do decodificador inteiro. O padrão segue o esquemático onde o transistor PMOS está representado acima do transistor NMOS. A faixa de metal será sempre a superior em cada componente e o terra será sempre o metal mais inferior. A entrada está representada com uma faixa de metal no meio do componente para a esquerda e a saída para a direita. Todos os componentes seguiram as medidas amostradas nos esquemáticos. Para a construção do layout foi considerado uma tecnologia de λ=0,2µm. 10

6.1 Layout de Cada Componente Nesta seção serão mostrados todos os layouts que foram montados para cada componente lógico. Cada um será apresentado por uma figura. As suas medidas são as especificadas pelo esquemático. Figura 13 - Layout Inversor Figura 14 - Layout Inversor Grande Figura 15 - Layout NAND duas portas Figura 16- Layout NAND três portas 11

Figura 17- Layout NOR duas portas Figura 18- Layout NOR três portas Figura 19- Layout Porta de Transmissão Figura 20- Layout Latch 12

6.2 Layout de Cada Segmento saída. Como o layout do circuito inteiro é muito grande, foi dividido em layouts de cada Figura 21- Layout Segmento a Figura 22- Layout Segmento b Figura 23- Layout Segmento c 13

Figura 24- Layout Segmento d Figura 25- Layout Segmento e Figura 26- Layout Segmento f 14

Figura 27- Layout Segmento g 6.3 Layout Completo Uma visão macro pode ser visualizada do decodificador na Figura 28. Pode se perceber tanto nessa figura como nas de cada segmento que pelo menos 50% da área ocupada é ocupado pelo latch. Pelo número de detalhes e por eles serem muito pequenos fica difícil a compreensão total do circuito por essa visão. Figura 28- Layout Completo 15

7 RESULTADOS Para a constituição do decodificador foi necessário a seguinte quantidade de componentes: quantidades de materiais utilizados. 39 inversores. 14 inversores grandes. 10 NAND s de 2 portas. 1 NAND de 3 portas. 9 NOR s de 2 portas. 7 NOR s de 3 portas. 14 portas de transmissão. 7 latches. Com essa quantidade de componentes a soma do número de transistores é igual a 129 NMOS e 129 PMOS, totalizando em 258 transistores. O tamanho final do circuito ficou 273,7 x 199,9 μm, totalizando em uma área de 54.712,63µm 2. 8 CONCLUSÃO A construção de um layout é muito metódica obedecendo a regras de funcionamento. A sua montagem deve prezar a otimização de espaço desde o primeiro componente, pois esse valor a mais é acrescentado sempre que utilizado o componente. É muito fácil perder área na junção de componentes para se criar o layout total. Na montagem final aproximadamente 50% da área utilizada é para o latch. O circuito montado funcionou da maneira desejada e o decodificador não demandou de um número muito grande de transistores. É muito fácil criar combinações lógicas com os transistores CMOS, que se mostraram muito importantes no caráter de desenvolvimento de novos circuitos integrados. 16

REFERÊNCIAS www.mspc.eng.br/eledig/eldg0610.shtml http://www.engr.sjsu.edu/dparent/icgroup/index.htm http://www.mosis.com/technical/layermaps/lm-scmos_scn4me.html http://www.eletrica.ufpr.br/ogouveia/te130/aulas.html 17