Análise de algoritmos Parte I
|
|
|
- Salvador Laranjeira Covalski
- 7 Há anos
- Visualizações:
Transcrição
1 Parte I SCE-8 Introdução à Ciência da Computação II Rosane Minghim Algoritmo Noção geral: conjunto de instruções que devem ser seguidas para solucionar um determinado problema Cormen et al. (2002) Qualquer procedimento computacional bem definido que toma algum valor ou conjunto de valores de entrada e produz algum valor ou conjunto de valores de saída Material preparado por : Prof. Thiago A. S. Pardo e modificado por R. Minghim SCC - ICMC Ferramenta para resolver um problema computacional bem especificado Assim como o hardware de um computador, constitui uma tecnologia, pois o desempenho total do sistema depende da escolha de um algoritmo eficiente tanto quanto da escolha de um hardware rápido 2 Algoritmo Comen et al. (2002) Deseja-se que um algoritmo termine e seja correto Perguntas Mas um algoritmo correto vai terminar, não vai? A afirmação está redundante? Recursos de um algoritmo Uma vez que um algoritmo está pronto/disponível, é importante determinar os recursos necessários para sua execução Tempo Memória Qual o principal quesito? Por que? 3 4
2 Um algoritmo que soluciona um determinado problema, mas requer o processamento de um ano, não deve ser usado O que dizer de uma afirmação como a abaixo? Desenvolvi um novo algoritmo chamado TripleX que leva 4,2 segundos para processar.000 números, enquanto o método SimpleX leva 42, segundos Você trocaria o SimpleX que roda em sua empresa pelo TripleX? 5 A afirmação tem que ser examinada, pois há diversos fatores envolvidos Características da máquina em que o algoritmo foi testado Quantidade de memória Linguagem de programação Compilada vs. interpretada Alto vs. baixo nível Implementação pouco cuidadosa do algoritmo SimpleX vs. super implementação do algoritmo TripleX Quantidade de dados processados Se o TripleX é mais rápido para processar.000 números, ele também é mais rápido para processar quantidades maiores de números, certo? 6 Eficiência de algoritmos A comunidade de computação começou a pesquisar formas de comparar algoritmos de forma independente de Hardware Linguagem de programação Habilidade do programador Portanto, quer-se comparar algoritmos e não programas Área conhecida como análise/complexidade de algoritmos 7 Sabe-se que Processar números leva mais tempo do que 000 números Cadastrar 0 pessoas em um sistema leva mais tempo do que cadastrar 5 Etc. Então, pode ser uma boa idéia estimar a eficiência de um algoritmo em função do tamanho do problema Em geral, assume-se que n é o tamanho do problema, ou número de elementos que serão processados E calcula-se o número de operações que serão realizadas sobre os n elementos 8 2
3 Eficiência de algoritmos O melhor algoritmo é aquele que requer menos operações sobre a entrada, pois é o mais rápido O tempo de execução do algoritmo pode variar em diferentes máquinas, mas o número de operações é uma boa medida de desempenho de um algoritmo De que operações estamos falando? Toda operação leva o mesmo tempo? Exemplo: TripleX vs. SimpleX TripleX: para uma entrada de tamanho n, o algoritmo realiza n 2 +n operações Pensando em termos de função: f(n)=n 2 +n SimpleX: para uma entrada de tamanho n, o algoritmo realiza.000n operações g(n)=.000n 9 0 Exemplo: TripleX vs. SimpleX Faça os cálculos do desempenho de cada algoritmo para cada tamanho de entrada Exemplo: TripleX vs. SimpleX Faça os cálculos do desempenho de cada algoritmo para cada tamanho de entrada Tamanho da entrada (n) f(n)=n 2 +n g(n)=.000n Tamanho da entrada (n) f(n)=n 2 +n g(n)=.000n A partir de n=.000, f(n) mantém-se maior e cada vez mais distante de g(n) Diz-se que f(n) cresce mais rápido do que g(n) 2 3
4 Análise assintótica Deve-se preocupar com a eficiência de algoritmos quando o tamanho de n for grande Análise assintótica Atenção Definição: a eficiência assintótica de um algoritmo descreve a eficiência relativa dele quando n tornase grande Portanto, para comparar 2 algoritmos, determinamse as taxas de crescimento de cada um: o algoritmo com menor taxa de crescimento rodará mais rápido quando o tamanho do problema for grande Algumas funções podem não crescer com o valor de n Quais? Também se pode aplicar os conceitos de análise assintótica para a quantidade de memória usada por um algoritmo Mas não é tão útil, pois é difícil estimar os detalhes exatos do uso de memória e o impacto disso 3 4 Existem basicamente 2 formas de estimar o tempo de execução de programas e decidir quais são os melhores Empírica ou teoricamente É desejável e possível estimar qual o melhor algoritmo sem ter que executá-los Função da análise de algoritmos Calculando o tempo de execução Supondo que as operações simples demoram uma unidade de tempo para executar, considere o n 3 programa abaixo para calcular o resultado de i Início declare soma_parcial numérico; soma_parcial 0; para i até n faça soma_parcial soma_parcial+i*i*i; escreva(soma_parcial); Fim i= 5 6 4
5 Calculando o tempo de execução Calculando o tempo de execução Supondo que as operações simples demoram uma unidade de tempo para executar, considere o n 3 programa abaixo para calcular o resultado de i Início declare soma_parcial numérico; soma_parcial 0; para i até n faça soma_parcial soma_parcial+i*i*i; escreva(soma_parcial); Fim unidade de tempo i= unidade para inicialização de i, n+ unidades para testar se i n e n unidades para incrementar i = 2n+2 4 unidades ( da soma, 2 das multiplicações e da atribuição) executada n vezes (pelo comando para ) = 4n unidades unidade para escrita 7 Supondo que as operações simples demoram uma unidade de tempo para executar, considere o n 3 programa abaixo para calcular o resultado de i Início declare soma_parcial numérico; soma_parcial 0; para i até n faça soma_parcial soma_parcial+i*i*i; Custo total: somando escreva(soma_parcial); tudo, tem-se 6n+4 unidades Fim de tempo, ou seja, a função é O(n) unidade de tempo i= unidade para inicialização de i, n+ unidades para testar se i n e n unidades para incrementar i = 2n+2 4 unidades ( da soma, 2 das multiplicações e da atribuição) executada n vezes (pelo comando para ) = 4n unidades unidade para escrita 8 Calculando o tempo de execução Regras para o cálculo Ter que realizar todos esses passos para cada algoritmo (principalmente algoritmos grandes) pode se tornar uma tarefa cansativa Em geral, como se dá a resposta em termos do bigoh, costuma-se desconsiderar as constantes e elementos menores dos cálculos No exemplo anterior A linha soma_parcial 0 é insignificante em termos de tempo É desnecessário ficar contando 2, 3 ou 4 unidades de tempo na linha soma_parcial soma_parcial+i*i*i O que realmente dá a grandeza de tempo desejada é a repetição na linha para i até n faça 9 Repetições O tempo de execução de uma repetição é pelo menos o tempo dos comandos dentro da repetição (incluindo testes) vezes o número de vezes que é executada 20 5
6 Regras para o cálculo Repetições aninhadas Regras para o cálculo Comandos consecutivos A análise é feita de dentro para fora O tempo total de comandos dentro de um grupo de repetições aninhadas é o tempo de execução dos comandos multiplicado pelo produto do tamanho de todas as repetições É a soma dos tempos de cada um, o que pode significar o máximo entre eles O exemplo abaixo é O(n 2 ), apesar da primeira repetição ser O(n) O exemplo abaixo é O(n 2 ) para i 0 até n faça para j 0 até n faça faça k k+; 2 para i 0 até n faça k 0; para i 0 até n faça para j 0 até n faça faça k k+; 22 Regras para o cálculo Regras para o cálculo Se... então... senão Chamadas a sub-rotinas Para uma cláusula condicional, o tempo de execução nunca é maior do que o tempo do teste mais o tempo do maior entre os comandos relativos ao então e os comandos relativos ao senão O exemplo abaixo é O(n) Uma sub-rotina deve ser analisada primeiro e depois ter suas unidades de tempo incorporadas ao programa/sub-rotina que a chamou se i<j então i i+ senão para k até n faça i i*k;
7 Exercício Estime quantas unidades de tempo são necessárias para rodar o algoritmo abaixo Início declare i e j numéricos; declare A vetor numérico de n posições; i ; enquanto i n faça A[i] 0; i i+; para i até n faça para j até n faça A[i] A[i]+i+j; Fim Relembrando um pouco de matemática... Expoentes x a x b = x a+b x a /x b = x a-b (x a ) b = x ab x n +x n = 2x n (diferente de x 2n ) 2 n +2 n = 2 n Relembrando um pouco de matemática... Relembrando um pouco de matemática... Logaritmos (usaremos a base 2, a menos que seja dito o contrário) x a =b log x b=a log a b = lob c b/log c a, se c>0 log ab = log a + log b log a/b = log a log b log(a b ) = b log a Logaritmos (usaremos a base 2, a menos que seja dito o contrário) E o mais importante log x < x para todo x>0 Alguns valores log =0, log 2=, log.024=0, log =20 27 Exemplo para várias bases 28 7
8 Função exponencial vs. logarítmica Na palma da mão direita Relembrando um pouco de matemática... Séries n i= 0 i n 2 = 2 + n i a a = a n+ i= 0 n i= 2 n( n + ) n i = Algumas notações Notações que usaremos na análise de algoritmos T(n) = O(f(n)) (lê-se big-oh, big-o ou da ordem de ) se existirem constantes c e n 0 tal que T(n) c * f(n) quando n n 0 A taxa de crescimento de T(n) é menor ou igual à taxa de f(n) T(n) = Ω(f(n)) (lê-se ômega ) se existirem constantes c e n 0 tal que T(n) c * f(n) quando n n 0 A taxa de crescimento de T(n) é maior ou igual à taxa de f(n) Algumas notações Notações que usaremos na análise de algoritmos T(n) = Θ(f(n)) (lê-se theta ) se e somente se T(n) = O(f(n)) e T(n) = Ω(f(n)) A taxa de crescimento de T(n) é igual à taxa de f(n) T(n) = o(f(n)) (lê-se little-oh ou little-o) se e somente se T(n) = O(f(n)) e T(n) Θ(f(n)) A taxa de crescimento de T(n) é menor do que a taxa de f(n)
9 Algumas notações Algumas notações Algumas notações Algumas notações O uso das notações permite comparar a taxa de crescimento das funções correspondentes aos algoritmos Não faz sentido comparar pontos isolados das funções, já que podem não corresponder ao comportamento assintótico
10 Exemplo Mais algumas considerações Para 2 algoritmos quaisquer, considere as funções de eficiência correspondentes.000n e n 2 A primeira é maior do que a segunda para valores pequenos de n Ao dizer que T(n) = O(f(n)), garante-se que T(n) cresce numa taxa não maior do que f(n), ou seja, f(n) é seu limite superior A segunda cresce mais rapidamente e eventualmente será uma função maior, sendo que o ponto de mudança é n=.000 Segunda as notações anteriores, se existe um ponto n 0 a partir do qual c*f(n) é sempre pelo menos tão grande quanto T(n), então, se os fatores constantes forem ignorados, f(n) é pelo menos tão grande quanto T(n) No nosso caso, T(n)=.000n, f(n)=n 2, n 0 =.000 e c= (ou, ainda, n 0 =0 e c=00) Ao dizer que f(n) = Ω(T(n)), tem-se que T(n) é o limite inferior de f(n) 37 Dizemos que.000n=o(n 2 38 ) Outros exemplos A função n 3 cresce mais rapidamente que n 2 n 2 = O(n 3 ) n 3 = Ω(n 2 ) Se f(n)=n 2 e g(n)=2n 2, então essas duas funções têm taxas de crescimento iguais Portanto, f(n) = O(g(n)) e f(n) = Ω(g(n)) Taxas de crescimento Algumas regras Se T (n) = O(f(n)) e T 2 (n) = O(g(n)), então T (n) + T 2 (n) = max(o(f(n)), O(g(n))) T (n) * T 2 (n) = O(f(n) * g(n)) Para que precisamos desse tipo de cálculo?
11 Taxas de crescimento Algumas regras Se T(x) é um polinômio de grau n, então T(x) = Θ(x n ) Relembrando: um polinômio de grau n é uma função que possui a forma abaixo Taxas de crescimento Algumas regras log k n = O(n) para qualquer constante k, pois logaritmos crescem muito vagarosamente seguindo a seguinte classificação em função do grau Grau 0: polinômio constante Grau : função afim (polinômio linear, caso a 0 = 0) Grau 2: polinômio quadrático Grau 3: polinômio cúbico Se f(x)=0, tem-se o polinômio nulo 4 42 Funções e taxas de crescimento As mais comuns Funções e taxas de crescimento Função Nome c constante log n log 2 n logarítmica log quadrado tempo n linear n log n n 2 quadrática n 3 cúbica 2 n a n exponencial 43 n 44
12 Taxas de crescimento Apesar de às vezes ser importante, não se costuma incluir constantes ou termos de menor ordem em taxas de crescimento Queremos medir a taxa de crescimento da função, o que torna os termos menores irrelevantes As constantes também dependem do tempo exato de cada operação; como ignoramos os custos reais das operações, ignoramos também as constantes Não se diz que T(n) = O(2n 2 ) ou que T(n) = O(n 2 +n) Diz-se apenas T(n) = O(n 2 ) Exercício em duplas Um algoritmo tradicional e muito utilizado é da ordem de n,5, enquanto um algoritmo novo proposto recentemente é da ordem de n log n f(n)=n,5 g(n)=n log n Qual algoritmo você adotaria na empresa que está fundando? Lembre-se que a eficiência desse algoritmo pode determinar o sucesso ou o fracasso de sua empresa Exercício em duplas Uma possível solução f(n) = n,5 n,5 /n = n 0,5 (n 0,5 ) 2 = n g(n) = n log n (n log n)/n = log n (log n) 2 = log 2 n Como n cresce mais rapidamente do que qualquer potência de log, temos que o algoritmo novo é mais eficiente e, portanto, deve ser o adotado pela empresa no momento Para proceder a uma análise de algoritmos e determinar as taxas de crescimento, necessitamos de um modelo de computador e das operações que executa Assume-se o uso de um computador tradicional, em que as instruções de um programa são executadas sequencialmente Com memória infinita, por simplicidade
13 Repertório de instruções simples: soma, multiplicação, comparação, atribuição, etc. Por simplicidade e viabilidade da análise, assume-se que cada instrução demora exatamente uma unidade de tempo para ser executada Obviamente, em situações reais, isso pode não ser verdade: a leitura de um dado em disco pode demorar mais do que uma soma Operações complexas, como inversão de matrizes e ordenação de valores, não são realizadas em uma única unidade de tempo, obviamente: devem ser analisadas em partes Considera-se somente o algoritmo e suas entradas (de tamanho n) Para uma entrada de tamanho n, pode-se calcular T melhor (n), T média (n) e T pior (n), ou seja, o melhor tempo de execução, o tempo médio e o pior, respectivamente Obviamente, T melhor (n) T média (n) T pior (n) Atenção: para mais de uma entrada, essas funções teriam mais de um argumento Geralmente, utiliza-se somente a análise do pior caso T pior (n), pois ela fornece os limites para todas as entradas, incluindo particularmente as entradas ruins Logicamente, muitas vezes, o tempo médio pode ser útil, principalmente em sistemas executados rotineiramente Por exemplo: em um sistema de cadastro de alunos como usuários de uma biblioteca, o trabalho difícil de cadastrar uma quantidade enorme de pessoas é feito somente uma vez; depois, cadastros são feitos de vez em quando apenas Pergunta Idealmente, para um algoritmo qualquer de ordenação de vetores com n elementos Qual a configuração do vetor que você imagina que provavelmente geraria o melhor tempo de execução? Dá mais trabalho calcular o tempo médio E qual geraria o pior tempo? O melhor tempo não tem muita utilidade
14 Exemplo Soma da subseqüência máxima Soma da subseqüência máxima Dada uma seqüência de inteiros (possivelmente negativos) a, a 2,..., a n, encontre o valor da máxima soma de quaisquer números de elementos consecutivos; se todos os inteiros forem negativos, o algoritmo deve retornar 0 como resultado da maior soma Há muitos algoritmos propostos para resolver esse problema Alguns são mostrados abaixo juntamente com seus tempos de execução Por exemplo, para a entrada -2,, -4, 3, -5 e -2, a resposta é 20 (soma de a 2 a a 4 ) 53 *ND = Não Disponível 54 Soma da subseqüência máxima Taxas de crescimento Deve-se notar que Para entradas pequenas, todas as implementações rodam num piscar de olhos Portanto, se somente entradas pequenas são esperadas, não devemos gastar nosso tempo para projetar melhores algoritmos Para entradas grandes, o melhor algoritmo é o 4 Os tempos não incluem o tempo requerido para leitura dos dados de entrada Para o algoritmo 4, o tempo de leitura é provavelmente maior do que o tempo para resolver o problema: característica típica de algoritmos eficientes
15 Taxas de crescimento 57 5
Análise de algoritmos. Parte I
Análise de algoritmos Parte I 1 Recursos usados por um algoritmo Uma vez que um procedimento está pronto/disponível, é importante determinar os recursos necessários para sua execução Tempo Memória Qual
COMPLEXIDADE DE ALGORITMOS
COMPLEXIDADE DE ALGORITMOS Algoritmos Seqüência de instruções necessárias para a resolução de um problema bem formulado Permite implementação computacional COMPLEXIDADE DE ALGORITMOS Um algoritmo resolve
COMPLEXIDADE DE ALGORITMOS COMPLEXIDADE DE ALGORITMOS
COMPLEXIDADE DE ALGORITMOS Algoritmos Seqüência de instruções necessárias para a resolução de um prolema em formulado Permite implementação computacional COMPLEXIDADE DE ALGORITMOS Um algoritmo resolve
Análise de algoritmos
Análise de algoritmos Introdução à Ciência de Computação II Baseados nos Slides do Prof. Dr. Thiago A. S. Pardo Análise de algoritmos Existem basicamente 2 formas de estimar o tempo de execução de programas
Aula 1. Teoria da Computação III
Aula 1 Teoria da Computação III Complexidade de Algoritmos Um problema pode ser resolvido através de diversos algoritmos; O fato de um algoritmo resolver um dado problema não significa que seja aceitável
ANÁLISE DE ALGORITMOS: PARTE 3
ANÁLISE DE ALGORITMOS: PARTE 3 Prof. André Backes 2 A notação grande-o é a forma mais conhecida e utilizada de análise Complexidade do nosso algoritmo no pior caso Seja de tempo ou de espaço É o caso mais
03 Análise de Algoritmos (parte 3) SCC201/501 - Introdução à Ciência de Computação II
03 Análise de Algoritmos (parte 3) SCC201/501 - Introdução à Ciência de Computação II Prof. Moacir Ponti Jr. www.icmc.usp.br/~moacir Instituto de Ciências Matemáticas e de Computação USP 2010/2 Moacir
Análise de Algoritmos Estrutura de Dados II
Centro de Ciências Exatas, Naturais e de Saúde Departamento de Computação Análise de Algoritmos Estrutura de Dados II COM10078 - Estrutura de Dados II Prof. Marcelo Otone Aguiar [email protected]
ANÁLISE DE COMPLEXIDADE DOS ALGORITMOS
1/18 ANÁLISE DE COMPLEXIDADE DOS ALGORITMOS Algoritmos 2/18 Algoritmos Algoritmo - sequência de instruções necessárias para a resolução de um problema bem formulado (passíveis de implementação em computador)
Complexidade de algoritmos Notação Big-O
Complexidade de algoritmos Notação Big-O Prof. Byron Leite Prof. Tiago Massoni Engenharia da Computação Poli - UPE Motivação O projeto de algoritmos é influenciado pelo estudo de seus comportamentos Problema
Medida do Tempo de Execução de um Programa
Medida do Tempo de Execução de um Programa Livro Projeto de Algoritmos Nívio Ziviani Capítulo 1 Seção 1.3.1 http://www2.dcc.ufmg.br/livros/algoritmos/ Comportamento Assintótico de Funções O parâmetro n
ANÁLISE DE ALGORITMOS: PARTE 1. Prof. André Backes. Como resolver um problema no computador? Precisamos descrevê-lo de uma forma clara e precisa
ANÁLISE DE ALGORITMOS: PARTE 1 Prof. André Backes Algoritmos 2 Como resolver um problema no computador? Precisamos descrevê-lo de uma forma clara e precisa Precisamos escrever o seu algoritmo Um algoritmo
Algoritmo. Exemplo. Definição. Programação de Computadores Comparando Algoritmos. Alan de Freitas
Algoritmos Programação de Computadores Comparando Algoritmos Um algoritmo é um procedimento de passos para cálculos. Este procedimento é composto de instruções que definem uma função Até o momento, vimos
CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches
CT-234 Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural Carlos Alberto Alonso Sanches Bibliografia T.H. Cormen, C.E. Leiserson and R.L. Rivest Introduction to algorithms R. Sedgewick
Análise de complexidade
Introdução Algoritmo: sequência de instruções necessárias para a resolução de um problema bem formulado (passíveis de implementação em computador) Estratégia: especificar (definir propriedades) arquitectura
É interessante comparar algoritmos para valores grandes de n. Para valores pequenos de n, mesmo um algoritmo ineficiente não custa muito para ser
É interessante comparar algoritmos para valores grandes de n. Para valores pequenos de n, mesmo um algoritmo ineficiente não custa muito para ser executado 1 Fazendo estimativas e simplificações... O número
Análise de Algoritmos
Análise de Algoritmos Estes slides são adaptações de slides do Prof. Paulo Feofiloff e do Prof. José Coelho de Pina. Algoritmos p. 1 Introdução CLRS 2.2 e 3.1 AU 3.3, 3.4 e 3.6 Essas transparências foram
Projeto e Análise de Algoritmos
Projeto e Análise de Algoritmos Aula 01 Complexidade de Algoritmos Edirlei Soares de Lima O que é um algoritmo? Um conjunto de instruções executáveis para resolver um problema (são
Teoria da Computação Aula 9 Noções de Complexidade
Teoria da Computação Aula 9 Noções de Complexidade Prof. Esp. Pedro Luís Antonelli Anhanguera Educacional Análise de um Algoritmo em particular Qual é o custo de usar um dado algoritmo para resolver um
Quantidade de memória necessária
Tempo de processamento Um algoritmo que realiza uma tarefa em 10 horas é melhor que outro que realiza em 10 dias Quantidade de memória necessária Um algoritmo que usa 1MB de memória RAM é melhor que outro
Medida do Tempo de Execução de um Programa. David Menotti Algoritmos e Estruturas de Dados II DInf UFPR
Medida do Tempo de Execução de um Programa David Menotti Algoritmos e Estruturas de Dados II DInf UFPR Classes de Comportamento Assintótico Se f é uma função de complexidade para um algoritmo F, então
Algoritmos e Estruturas de Dados I Prof. Tiago Eugenio de Melo
Algoritmos e Estruturas de Dados I Prof. Tiago Eugenio de Melo [email protected] www.tiagodemelo.info Observações O conteúdo dessa aula é parcialmente proveniente do Capítulo 11 do livro Fundamentals of
2. Complexidade de Algoritmos
Introdução à Computação II 5952011 2. Complexidade de Algoritmos Prof. Renato Tinós Depto. de Computação e Matemática (FFCLRP/USP) 1 Principais Tópicos 2.1. Introdução 2.1.1. Revisão de Pseudo-Código 2.1.2.
Teoria da computabilidade Indecidíveis Decidíveis
Bacharelado em Ciência da Computação Disciplina: Algoritmos e Estruturas de Dados I Professor: Mário Luiz Rodrigues Oliveira Teoria da computabilidade Indecidíveis Decidíveis Teoria da complexidade Intratáveis:
Introdução à Ciência da Computação II
Introdução à Ciência da Computação II 2semestre/200 Prof Alneu de Andrade Lopes Apresentação com material gentilmente cedido pelas profas Renata Pontin Mattos Fortes http://wwwicmcuspbr/~renata e Graça
Análise de Algoritmos
Análise de Algoritmos Aula 04 Prof. Fernando Freitas Classes de Comportamento Assintótico Se f é uma função de complexidade para um algoritmo F, então O(f) é considerada a complexidade assintótica ou o
Melhores momentos AULA 1. Algoritmos p.38/86
Melhores momentos AULA 1 Algoritmos p.38/86 Definições x := inteiro i tal que i x < i + 1 x := inteiro j tal que j 1 < x j Exercício A1.B Mostre que n 1 2 n 2 n 2 e n 2 n 2 n + 1 2 para qualquer inteiro
ESTRUTURAS DE DADOS prof. Alexandre César Muniz de Oliveira
ESTRUTURAS DE DADOS prof. Alexandre César Muniz de Oliveira 1. Introdução 2. Pilhas 3. Filas 4. Listas 5. Árvores 6. Grafos 7. Complexidade 8. Ordenação 9. Busca Sugestão bibliográfica: ESTRUTURAS DE DADOS
Elementos de Análise Assintótica
Elementos de Análise Assintótica Marcelo Keese Albertini Faculdade de Computação Universidade Federal de Uberlândia 23 de Março de 2018 Aula de hoje Nesta aula veremos: Elementos de Análise Assintótica
Teoria dos Grafos Aula 7
Teoria dos Grafos Aula 7 Aula passada Implementação BFS DFS, implementação Complexidade Aplicações Aula de hoje Classe de funções e notação Propriedades da notação Funções usuais Tempo de execução Comparando
Teoria da Computação. Aula 3 Comportamento Assintótico 5COP096. Aula 3 Prof. Dr. Sylvio Barbon Junior. Sylvio Barbon Jr
5COP096 Teoria da Computação Aula 3 Prof. Dr. Sylvio Barbon Junior 1 Sumário 1) Exercícios Medida de Tempo de Execução. 2) Comportamento Assintótico de Funções. 3) Exercícios sobre Comportamento Assintótico
01 Análise de Algoritmos (parte 2) SCC201/501 - Introdução à Ciência de Computação II
01 Análise de Algoritmos (parte 2) SCC201/501 - Introdução à Ciência de Computação II Prof. Moacir Ponti Jr. www.icmc.usp.br/~moacir Instituto de Ciências Matemáticas e de Computação USP 2010/2 Moacir
Complexidade de Algoritmos
Complexidade de Algoritmos! Uma característica importante de qualquer algoritmo é seu tempo de execução! é possível determiná-lo através de métodos empíricos, considerando-se entradas diversas! é também
Análise de algoritmos. Parte II
Análise de algoritmos Parte II 1 Análise de algoritmos Existem basicamente 2 formas de estimar o tempo de execução de programas e decidir quais são os melhores Empírica ou teoricamente É desejável e possível
Análise de Algoritmos
Análise de Algoritmos Parte 3 Prof. Túlio Toffolo http://www.toffolo.com.br BCC202 Aula 06 Algoritmos e Estruturas de Dados I Como escolher o algoritmo mais adequado para uma situação? (continuação) Exercício
Análise e Projeto de Algoritmos
Análise e Projeto de Algoritmos Mestrado em Ciência da Computação Prof. Dr. Aparecido Nilceu Marana Faculdade de Ciências I think the design of efficient algorithms is somehow the core of computer science.
Complexidade de Algoritmos
60 Desempenho 50 40 30 20 Algoritmo1 Algoritmo2 Algoritmo3 10 0 Complexidade de Algoritmos INFORMÁTICA BÁSICA Prof. Demétrios Coutinho C a m p u s P a u d o s F e r r o s D i s c i p l i n a d e A l g
BCC202 - Estrutura de Dados I
BCC202 - Estrutura de Dados I Aula 06: Análise de Algoritmos (Parte 3) Reinaldo Fortes Universidade Federal de Ouro Preto, UFOP Departamento de Ciência da Computação, DECOM Website: www.decom.ufop.br/reifortes
Algoritmos 3/17/ Algoritmos como área de estudo e investigação
Algoritmos e Complexidade Ana Teresa Freitas INESC-ID/IST ID/IST 3/17/2005 1 O que é um algoritmo? Algoritmos: Sequência de instruções necessárias para a resolução de um problema bem formulado [passíveis
Comportamento assintótico
ANÁLISE DE ALGORITMOS: PARTE 2 Prof. André Backes 2 Na última aula, vimos que o custo para o algoritmo abaixo é dado pela função f(n) = 4n + 3 1 3 Essa é a função de complexidade de tempo Nos dá uma ideia
Teoria da Computação Aula 8 Noções de Complexidade
Teoria da Computação Aula 8 Noções de Complexidade Prof. Esp. Pedro Luís Antonelli Anhanguera Educacional Motivação: Por que estudar algoritmos? Perguntas: - Por que estudar algoritmos se os computadores
Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.
Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada [email protected], [email protected] Grafos e Algoritmos Preparado a partir do texto: Rangel, Socorro.
Análise de Complexidade de Algoritmos. mario alexandre gazziro
Análise de Complexidade de Algoritmos mario alexandre gazziro Definição A complexidade de um algoritmo consiste na quantidade de esforço computacional necessária para sua execução. Esse esforço é expresso
Complexidade de Tempo e Espaço
Complexidade de Tempo e Espaço Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Complexidade de Tempo e Espaço junho - 2018 1 / 43 Este material é preparado usando
ALGORITMOS AVANÇADOS UNIDADE I Análise de Algoritmo - Notação O. Luiz Leão
Luiz Leão [email protected] http://www.luizleao.com Conteúdo Programático 1.1 - Algoritmo 1.2 - Estrutura de Dados 1.2.1 - Revisão de Programas em C++ envolvendo Vetores, Matrizes, Ponteiros, Registros
Área que visa determinar a complexidade (custo) de um algoritmo, com isso é possível:
Área que visa determinar a complexidade (custo) de um algoritmo, com isso é possível: Comparar algoritmos: existem algoritmos que resolvem o mesmo tipo de problema. Determinar se o algoritmo é ótimo :
Análise e Projeto de Algoritmos
Análise e Projeto de Algoritmos Prof. Eduardo Barrére www.ufjf.br/pgcc www.dcc.ufjf.br [email protected] www.barrere.ufjf.br Consumo de tempo assintótico Seja A um algoritmo para um problema
01 Análise de Algoritmos (parte 1) SCC201/501 - Introdução à Ciência de Computação II
01 Análise de Algoritmos (parte 1) SCC201/501 - Introdução à Ciência de Computação II Prof. Moacir Ponti Jr. www.icmc.usp.br/~moacir Instituto de Ciências Matemáticas e de Computação USP 2010/2 Moacir
Complexidade de Algoritmos
Complexidade de Algoritmos O que é um algoritmo? Sequência bem definida e finita de cálculos que, para um dado valor de entrada, retorna uma saída desejada/esperada. Na computação: Uma descrição de como
INF 1010 Estruturas de Dados Avançadas
INF 1010 Estruturas de Dados Avançadas Complexidade de Algoritmos 2012 DI, PUC-Rio Estruturas de Dados Avançadas 2012.2 1 Introdução Complexidade computacional Termo criado por Hartmanis e Stearns (1965)
Capítulo. Análise de Algoritmos. 6.1 Complexidade de Algoritmos 6.1
Capítulo 6 Análise de Algoritmos A eficiência (ou desempenho) de um programa é medida em termos do espaço de armazenamento e pelo tempo que ele utiliza para realizar uma tarefa. Mais precisamente, um programa
Introdução à Ciência da Computação II
Introdução à Ciência da Computação II Análise de Algoritmos: Parte I Prof. Ricardo J. G. B. Campello Este material consiste de adaptações e extensões de slides disponíveis em http://ww3.datastructures.net
Lista de Exercícios 6: Soluções Funções
UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios 6: Soluções Funções Ciências Exatas & Engenharias o Semestre de 06 Conceitos. Determine e justifique se a seguinte afirmação é verdadeira ou não
Construção de Algoritmos II Aula 06
exatasfepi.com.br Construção de Algoritmos II Aula 06 André Luís Duarte Porque mil anos são aos teus olhos como o dia de ontem que passou, e como a vigília da noite. Salmos 90:4 Recursividade e complexidade
Noções de complexidade de algoritmos
Noções de complexidade de algoritmos 358 Tempo de Execução A avaliação de desempenho de um algoritmo quanto executado por um computador pode ser feita a posteriori ou a priori. Uma avaliação a posteriori
Técnicas de Projeto de Algoritmos
UNIVERSIDADE NOVE DE JULHO - UNINOVE Pesquisa e Ordenação Técnicas de Projeto de Algoritmos Material disponível para download em: www.profvaniacristina.com Profa. Vânia Cristina de Souza Pereira 03 _ Material
Projeto e Análise de Algoritmos. Introdução. Prof. Ademir Constantino Universidade Estadual de Maringá Departamento de Informática
Projeto e Análise de Algoritmos Introdução Prof. Ademir Constantino Universidade Estadual de Maringá Departamento de Informática Projeto e Análise de Algoritmos Eu penso que o projeto de algoritmos eficientes
Análise de Complexidade de Algoritmos
Análise de Complexidade de Algoritmos Algoritmos e Estruturas de Dados 2009/2010 Introdução Algoritmo: conjunto claramente especificado de instruções a seguir para resolver um problema Análise de algoritmos:
CES-11. Noções de complexidade de algoritmos. Complexidade de algoritmos. Avaliação do tempo de execução. Razão de crescimento desse tempo.
CES-11 Noções de complexidade de algoritmos Complexidade de algoritmos Avaliação do tempo de execução Razão de crescimento desse tempo Notação O Exercícios COMPLEXIDADE DE ALGORITMOS Importância de análise
BC1424 Algoritmos e Estruturas de Dados I Aula 05 Custos de um algoritmo e funções de complexidade
BC1424 Algoritmos e Estruturas de Dados I Aula 05 Custos de um algoritmo e funções de complexidade Prof. Jesús P. Mena-Chalco 1Q-2016 1 1995 2015 2 Custo de um algoritmo e funções de complexidade Introdução
ANÁLISE DE ALGORITMOS
ANÁLISE DE ALGORITMOS Paulo Feofiloff Instituto de Matemática e Estatística Universidade de São Paulo agosto 2009 Introdução P. Feofiloff (IME-USP) Análise de Algoritmos agosto 2009 2 / 102 Introdução
Pra início de conversa... O que é um algoritmo? Exemplos de algoritmos. Como podemos descrever algoritmos? Como podemos descrever algoritmos?
Pra início de conversa... O que é um algoritmo? Como podemos descrever algoritmos? avaliar algoritmos? Introdução à Análise de Algoritmos Prof. Cláudio E. C. Campelo http://claudiocampelo.com Derivado
Complexidade Assintótica de Programas Letícia Rodrigues Bueno
Complexidade Assintótica de Programas Letícia Rodrigues Bueno Análise de Algoritmos 1. Introdução; Análise de Algoritmos 1. Introdução; 2. Conceitos básicos; Análise de Algoritmos 1. Introdução; 2. Conceitos
LINGUAGEM C: COMANDOS DE REPETIÇÃO
LINGUAGEM C: COMANDOS DE REPETIÇÃO Prof. André Backes ESTRUTURAS DE REPETIÇÃO Uma estrutura de repetição permite que uma sequência de comandos seja executada repetidamente, enquanto determinadas condições
Lista de Exercícios 6 Funções
UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios 6 Funções Ciências Exatas & Engenharias o Semestre de 06 Conceitos. Determine e justifique se a seguinte afirmação é verdadeira ou não para todas
1 a Lista Professor: Claudio Fabiano Motta Toledo Estagiário PAE: Jesimar da Silva Arantes
SSC0503 - Introdução à Ciência de Computação II 1 a Lista Professor: Claudio Fabiano Motta Toledo ([email protected]) Estagiário PAE: Jesimar da Silva Arantes ([email protected]) 1. O que significa
5. Análise de Complexidade de Algoritmos. João Pascoal Faria (versão original) Ana Paula Rocha (versão 2003/2004) Luís Paulo Reis (versão 2005/2006)
5. Análise de Complexidade de Algoritmos João Pascoal Faria (versão original) Ana Paula Rocha (versão 2003/2004) Luís Paulo Reis (versão 2005/2006) FEUP - MIEEC Prog 2-2006/2007 Introdução Algoritmo: conjunto
André Vignatti DINF- UFPR
Notação Assintótica: Ω, Θ André Vignatti DINF- UFPR Limitantes Inferiores Considere o seguinte trecho de código: void main () { /* trecho que le N da entrada padrao */ for (i = 0 ; i< N; i++) puzzle(i);
Classes, Herança e Interfaces
Escola de Artes, Ciências e Humanidades EACH-USP ACH2002 Introdução à Ciência da Computação II Professor: Delano Medeiros Beder revisada pelo professor: Luciano Digiampietri EACH Segundo Semestre de 2011
MCTA028 Programação Estruturada Aula 19 Custos de um algoritmo e funções de complexidade
MCTA028 Programação Estruturada Aula 19 Custos de um algoritmo e funções de complexidade Prof. Jesús P. Mena-Chalco 3Q-2017 1 0 A = n-1... 2 0 A = n-1... - O programa funciona (está correto)? - Como medir/mensurar
7. Introdução à Complexidade de Algoritmos
7. Introdução à Complexidade de Algoritmos Fernando Silva DCC-FCUP Estruturas de Dados Fernando Silva (DCC-FCUP) 7. Introdução à Complexidade de Algoritmos Estruturas de Dados 1 / 1 Análise de Algoritmos
ESTRUTURAS DE DADOS E ALGORITMOS APRESENTAÇÃO DO CURSO E INTRODUÇÃO
ESTRUTURAS DE DADOS E ALGORITMOS APRESENTAÇÃO DO CURSO E INTRODUÇÃO Adalberto Cajueiro ([email protected]) Departamento de Sistemas e Computação Universidade Federal de Campina Grande 1
