INTRODUÇÃO À ROBÓTICA MÓVEL
|
|
|
- Otávio Pacheco Camarinho
- 7 Há anos
- Visualizações:
Transcrição
1 INTRODUÇÃO À ROBÓTICA MÓVEL Aua 25 Edson Prestes Departamento de Informática Teórica
2 Locaização Fitragem de Kaman Fitragem de kaman fornece uma abordagem recursiva para a estimação de estados de um sistema dinâmico na presença de ruídos. Ee é caracterizado por manter uma estimativa do estado corrente do sistema x e uma matriz de covariância P do erro de estimativa. Podemos visuaizar o Fitro de Kaman como sendo aquee que fornece como saída uma função de densidade probabiística Gaussiana com média x e covariancia P
3 Locaização Fitragem de Kaman Linear Simpes Observador Sistema: Predição: Correção : onde Atuaização:
4 Locaização Fitragem de Kaman Linear Simpes Observador Na atuaização, o ajuste no estado do robô é sempre perpendicuar ao hiperpano Erros na direção paraea à Ω nunca serão corrigidos. Como resutado, o estado estimado não convergirá para o estado rea do sistema na maioria dos casos[1]. A vantagem deste estimador é que as idéias usadas são as mesma do fitro de Kaman.
5 Locaização Fitragem de Kaman Observando com uma PDF O observador anterior produz uma estimativa que é um vetor. A estimativa produzida por um Fitro de Kaman é uma distribuição gaussiana mutivariada. Ou seja, o fitro de kaman aém de fornecer um vetor de estado estimado fornece também uma matriz de covariância do erro da estimativa P(k k).
6 Locaização Fitragem de Kaman Observando com uma PDF Considere o seguinte sistema com ruído na dinâmica, mas sem ruído nas medidas x(k+1) = F(k)x(k) + G(k) u(k)+v(k) y(k) = H(k)x(k) Ruído Onde v(k) 2 R n é um ruído gaussiano de média zero e matriz de covariância V(k). Usando, temos pois o vaor esperado de v(k) é zero
7 Locaização Fitragem de Kaman Observando com uma PDF A matriz de covariância é dada por Substituindo o vaor de e encontramos Após agumas manipuações temos
8 Locaização Fitragem de Kaman Observando com uma PDF Usando a propriedade da soma do vaor esperado, temos Como v(k) é independente de x(k) e de Como E[v(k)]=0, Torna-se
9 Locaização Fitragem de Kaman Observando com uma PDF Para encontrar a equação de atuaização, escohemos que seja o mais prováve ponto no hiperpano Ω ={ x 2 R n H(k+1)x = y(k+1) } ou seja, o que maximiza a distribuição gaussiana definida por e, i.e., A maximização de P(x), envove a minimização do expoente de e, i.e.,
10 Locaização Fitragem de Kaman Observando com uma PDF A distância e o produto interno de Mahaanobis[1] entre duas variáveis aeatórias x e y e matriz de covariância S são dados por Logo, a minimização de x y 2 M =(x y) T S 1 (x y) Consiste em cacuar x 2 Ω ou seja, de forma a minimizar = = - M
11 Locaização Fitragem de Kaman Observando com uma PDF é ortogona a com reação ao produto interno de mahaanobis, ou seja, infuenciada por P(k+1 k). Logo, x = P(k+1 k)h(k+1) T Considerando a inovação como Temos x = P(k+1 k)h(k+1) T Ki, para K 2 R p. De forma simiar ao apresentado no observador simpes, temos que ter
12 Locaização Fitragem de Kaman Observando com uma PDF Substituindo x, Encontramos
13 Locaização Fitragem de Kaman Observando com uma PDF Sistema: x(k+1) = F(k)x(k) + G(k) u(k)+v(k) y(k) = H(k)x(k) Predição: Correção: onde Atuaização:
14 Locaização Fitragem de Kaman Observando com uma PDF Como o observador simpes, este novo observador possui aguns probemas[1]: Devido ao fato de não termos considerado ruído na eitura dos sensores, as equações de atuaização farão com que a matriz de covariança se torne singuar. Uma matriz singuar possui determinante igua a 0, o que é coerente com o fato de que as medidas sensoriais não possuem incertezas. Isto prejudica a distribuição gaussiana que usa a inversa da matriz de covariância.
15 Locaização Fitragem de Kaman O fitro de Kaman usa os conceitos e mecanismos apresentados anteriormente, com a diferença de que o sistema é descrito por x(k+1) = F(k)x(k) + G(k) u(k) + v(k) y(k) = H(k)x(k) + w(k) Onde u(k) 2 R m é a entrada para o sistema (veocidades, torque, etc); y(k)2 R p é a saída do sistema e contém os vaores dados peos sensores do robô F(k) 2 R n n codifica a dinâmica do sistema G(k) 2 R n m descreve como as entradas infuênciam a dinâmica. v(k) 2 R n é o ruído gaussiano com média 0 e matriz de covariância V(k). H(k)2 R p n descreve como o vetor de estado é mapeado para a saída w(k) 2 R p é o ruído gaussiano com média 0 e matriz de covariância W(k).
16 Locaização Fitragem de Kaman Observando com uma PDF Sistema: x(k+1) = F(k)x(k) + G(k) u(k)+v(k) y(k) = H(k)x(k) + w(k) Predição: Correção: onde Novo termo Atuaização:
17 Locaização Fitragem de Kaman Exempo Dead Reckoning Considere um robô que se move em inha reta com estado e u como sendo a força que se apica ao robô. Sabemos pea segunda ei de newton que ou Logo, o próximo estado do robô é dado por Ruído gaussiano com média zero O robô possui um sensor que mede veocidade.
18 Locaização Fitragem de Kaman Exempo Dead Reckoning Em [1], são assumidos os seguintes parâmetros m=1, T=0.5, W=0.5 (variância na medida) e matriz de covariância V No instante k
19 Locaização Fitragem de Kaman Exempo Dead Reckoning Figuras extraídas de [1]
20 Locaização Fitragem de Kaman Exempo Dead Reckoning A incerteza diminuiu na direção vertica devido à informação obtida peo sensor de veocidade, porém existe perda de informação na direção da posição. Este probema não ocorre devido ao Fitro de Kaman, mas devido ao fato do sistema não ser observáve, ou seja, o estado do sistema não pode ser recuperado a partir das saídas disponíveis. Logo, o erro esperado irá crescer iimitadamente. Se o sistema é observáve, a estimativa fornecida peo Fitro de Kaman converge, ou seja, o erro esperado entre o estado atua e o estado estimado é imitado. Figura extraída de [1]
21 Locaização Fitragem de Kaman Fitro de Kaman Estendido Em gera, os sistemas dinâmicos são não-ineares. Portanto, temos que estender o Fitro de Kaman para tratar a não-inearidade do sistema. Considere o seguinte sistema A fase de predição é dada peas equações onde
22 Locaização Fitragem de Kaman Fitro de Kaman Estendido Correção: onde e
23 Locaização Fitragem de Kaman Exempo - Fitro de Kaman Estendido Considere um robô capaz de detectar andmarks previamente mapeados no ambiente. O estado do robô no instante k é dado por E a entrada de controe é dada por as veocidades inear e anguar. onde u 1 (k) e u 2 (k) representam O sistema dinâmico é dado por O ambiente possui n andmarks com posição porém o robô consegue apenas ver apenas uma quantidade p(k) a cada instante k. A função abaixo associa cada andmark visto com os conhecidos previamente.
24 Locaização Fitragem de Kaman Exempo - Fitro de Kaman Estendido A saída do sistema é dada por com Como a dinâmica do sistema é dada por A Jacobiana de f é Lembrando que
25 Locaização Fitragem de Kaman Exempo - Fitro de Kaman Estendido A matriz H que é usada para produzir a saída do Fitro é definida por com Lembrando que
26 Locaização Fitragem de Kaman Exempo - Fitro de Kaman Estendido A abordagem apresentada assume que a associação entre cada medida com o andmark já conhecido é feita corretamente, sem erros. Na prática, esta associação pode não ser tão fáci!! já que os andmarks podem ser muito parecidos. Este probema é chamado Associação de Dados, ou Data Association. A idéia básica para a associação de dados é considerar para cada medida i ( y i (k+1)) e andmark j um vaor de inovação v ij A medida y i (k+1) é associada ao andmark j que produz a menor inovação de acordo com a norma de Mahaanobis. Esta norma incorpora as incertezas associadas à predição e às medidas.
27 Locaização Fitragem de Kaman Exempo - Fitro de Kaman Estendido Figura extraída de [1]
28 Simpe SLAM - Fitragem de Kaman Estado do sistema Posição do robô Veocidade no eixo x e no eixo y Posições dos andmarks Erros associados ao desocamento A cada instante de tempo o robô consegue ver todos os andmarks, e pode distingui-os. Não temos o probema de associação de dados.
29 Simpe SLAM - Fitragem de Kaman Estimativa da posição para o andmark i Saída produzida peo Fitro Através deste conjunto de equações para o Fitro de Kaman Estendido, estamos estimando tanto a posição do robô quando dos andmarks Matriz de covariância associada ao ruído w(k)
30 Simpe SLAM - Fitragem de Kaman Como transformar este exempo em um SLAM efetivo, capaz de fornecer uma estimativa sobre a posição do robô e dos andmarks desconhecidos presentes no ambiente? A chave é verificar se um andmark é novo ou é agum já armazenado no mapa. Isto é feito através norma de Mahaanobis apicada ao termo de inovação Se o vaor mínimo encontrado é maior que um dado imiar, então o andmark é novo devendo ser iniciaizado e adicionado ao mapa.
31 BIBLIOGRAFIA [1] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.Kavraki, S. Thrun. Principes of Robot Motion : Theory, Agorithms, and Impementations. MIT Press [2] D. Fox, W. Burgard and S. Thrun. Markov Locaization for mobie robots in dynamic environments. Journa of Artificia Inteigence Research (JAIR), 11: , [3] S.Thrun. Learning Metric-Topoogica Maps for Indoor Mobie Robot Navigation. Artificia Inteigence, v.99, n. 1, 21-71,1998. [4]. S. Thrun, W. Burgard, and D. Fox. Probabiistic Robotics. MIT Press, Cambridge, MA, 2005.
3 Filtro de Kalman Discreto
3 Filtro de Kalman Discreto As medidas realizadas por sensores estão sujeitas a erros, como pode ser visto no Capítulo 2. Os filtros são aplicados aos sinais medidos pelos sensores para reduzir os erros,
INTRODUÇÃO À ROBÓTICA MÓVEL
INTRODUÇÃO À ROBÓTICA MÓVEL Aula 12 Edson Prestes Departamento de Informática Teórica http://www.inf.ufrgs.br/~prestes [email protected] É a estrutura interna que armazena as informações associadas
INTRODUÇÃO À ROBÓTICA MÓVEL
INTRODUÇÃO À ROBÓTICA MÓVEL Aula 27 Edson Prestes Departamento de Informática Teórica http://www.inf.ufrgs.br/~prestes [email protected] Localização É um componente essencial para um robô ser completamente
Filtro de Kalman. Teoria e Aplicação para Iniciantes. Prof. Dr. Marco Antonio Leonel Caetano. M&V Consultoria e Treinamento
Filtro de Kalman Teoria e Aplicação para Iniciantes Prof. Dr. Marco Antonio Leonel Caetano M&V Consultoria e Treinamento www.mudancasabruptas.com.br A História da Filtragem de Sinais 930 940 960 Filtro
Prática X PÊNDULO SIMPLES
Prática X PÊNDULO SIMPLES OBJETIVO Determinação do vaor da gravidade g em nosso aboratório. A figura abaixo representa um pênduo simpes. Ee consiste de um corpo de massa m, preso à extremidade de um fio
Podemos utilizar o cálculo do determinante para nos auxiliar a encontrar a inversa de uma matriz, como veremos à seguir.
O cácuo da inversa de uma matriz quadrada ou trianguar é importante para ajudar a soucionar uma série probemas, por exempo, a computação gráfica, na resoução de probemas de posicionamento de juntas articuadas
Representações da Crença e Mapas Localização Probabilística baseada em Mapas Exemplos de outros Sistemas de Localização Bibliografia Recomendada
Aula 6 Introdução à Robótica Móvel Localização Prof. Dr. Marcelo Becker EESC - USP Sumário da Aula Introdução Representações da Crença e Mapas Localização Probabilística baseada em Mapas Exemplos de outros
Projeção ortográfica de sólidos geométricos
Projeção ortográfica de sóidos geométricos Na aua anterior você ficou sabendo que a projeção ortográfica de um modeo em um único pano agumas vezes não representa o modeo ou partes dee em verdadeira grandeza.
Modelagem Matemática e Simulação Computacional da Dinâmica de um Robô SCARA
Proceeding Series of the Braziian Society of Appied and omputationa Mathematics, Vo 4, N, 6 Trabaho apresentado no DINON, Nata - RN, 5 Proceeding Series of the Braziian Society of omputationa and Appied
Tratamento Estatístico de Dados em Física Experimental
Tratamento Estatístico de Dados em Física Experimental Prof. Zwinglio Guimarães o semestre de 06 Tópico 7 - Ajuste de parâmetros de funções (Máxima Verossimilhança e Mínimos Quadrados) Método da máxima
A função f(x) = x é a função modular, cujo gráfico. A função g(x) = 1 - x é a função f(x) transformada.
Q uestão 6 - C O número 100.000.000.000 é uma potência inteira de dez igua a 10 11 ; pois 10 10 10... 10 = 100.000.000.000 11 fatores 10 Q uestão 7 - B Todos os números inteiros com o agarismo das unidades
Na figura abaixo, a balança está em equilíbrio e as três melancias têm o mesmo peso. Nessas condições, qual é o peso (em kg) de cada melancia?
A UUL AL A 5 Introdução à ágebra Na figura abaixo, a baança está em equiíbrio e as três meancias têm o mesmo peso. Nessas condições, qua é o peso (em ) de cada meancia? Para pensar 3 Uma barra de rapadura
Plantas e mapas. Na Aula 17, aprendemos o conceito de semelhança
A UA UL LA Pantas e mapas Introdução Na Aua 7, aprendemos o conceito de semehança de triânguos e vimos, na Aua 0, interessantes apicações desse conceito no cácuo de distâncias difíceis de serem medidas
Você já percebeu que os gráficos são cada vez. Relatórios de empresas Análises governamentais Relatórios de pesquisas Balanços financeiros
A UA UL LA 66 Gráfico de uma equação Introdução Você já percebeu que os gráficos são cada vez mais usados na comunicação. Podemos encontrá-os em vários tipos de pubicação, expressando os mais diversos
Vetor de Variáveis Aleatórias
Vetor de Variáveis Aleatórias Luis Henrique Assumpção Lolis 25 de junho de 2013 Luis Henrique Assumpção Lolis Vetor de Variáveis Aleatórias 1 Conteúdo 1 Vetor de Variáveis Aleatórias 2 Função de Várias
Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016
Robótica Prof. Reinaldo Bianchi Centro Universitário FEI 2016 5 a Aula Pós Graduação - IECAT Objetivos desta aula Velocidade e Aceleração de corpo rígido. Matrizes de inércia. Bibliografia Capítulos 5
Método dos Deslocamentos
Método dos Desocamentos formuação matemática do método das forças e dos desocamentos é bastante semehante, devendo a escoha do método de anáise incidir num ou noutro conforme seja mais vantajoso O método
Parábola. Sumário Parábola com vértice V = (x o, y o ) e reta focal. paralela ao eixo OX... 7
7 aráboa Sumário 7.1 Introdução....................... 2 7.2 aráboa........................ 3 7.3 ormas canônicas da paráboa............ 4 7.3.1 aráboa com vértice na origem e reta foca coincidente com
ϕ ( + ) para rotações com o Flechas e deflexões
Fechas e defeões Seja uma barra reta, em euiíbrio, apoiada em suas etremidades, submetida a uma feão norma. Esta barra fetida, deia de ser reta assumindo uma forma, como a mostrada na figura. figura barra
Triângulos. O triângulo é uma figura geométrica muito. Para pensar. Nossa aula
U UL L 41 Triânguos Para pensar O triânguo é uma figura geométrica muito utiizada em construções. Você já deve ter notado que existem vários tipos de triânguo. Observe na armação do tehado os tipos diferentes
O círculo e o número p
A UA UL LA 45 O círcuo e o número p Para pensar O círcuo é uma figura geométrica bastante comum em nosso dia-a-dia. Observe à sua vota quantos objetos circuares estão presentes: nas moedas, nos discos,
A linguagem matemática
A UUL AL A A inguagem matemática Observe o texto abaixo. Ee foi extraído de um ivro de geometria chinês. Veja se, mesmo sem saber chinês, você consegue entender o tema do texto, ou seja, sobre o que o
Estimadores ou Observadores de Estado
Estimadores ou Observadores de Estado 1. Estimadores ou Observadores de Estado: sistemas SISO 1. Extensões para Sistemas a Tempo Discreto pag.1 Teoria de Sistemas Lineares Aula 19 Estimadores ou Observadores
O triângulo é uma figura geométrica muito. Você já sabe que o triângulo é uma figura geométrica de:
U UL L cesse: http://fuvestibuar.com.br/ Triânguos Para pensar O triânguo é uma figura geométrica muito utiizada em construções. Você já deve ter notado que existem vários tipos de triânguo. Observe na
5 Filtro de Kalman Aplicado ao Modelo de Schwartz e Smith (2000)
5 Filtro de Kalman Aplicado ao Modelo de Schwartz e Smith (2000) A primeira parte deste capítulo, referente à passagem dos modelos estocásticos para as equações do Filtro de Kalman, já foi previamente
MOVIMENTO DE ROTAÇÃO: O ROTOR RÍGIDO
MOVIMENTO DE ROTAÇÃO: O ROTOR RÍGIDO Prof. Harey P. Martins Fiho o Rotação em duas dimensões Partícua de massa m descrevendo trajetória circuar no pano xy: Momento anguar da partícua: J z = rp = mrv Ser
Profª Gabriela Rezende Fernandes Disciplina: Análise Estrutural 2
rofª Gabriea Rezende Fernandes Discipina: náise Estrutura INCÓGNIS ROÇÕES E DESLOCMENOS LINERES INDEENDENES DOS NÓS Nº OL DE INCÓGNIS d n º de desocabiidades grau de hipergeometria da estrutura d d e +
A linguagem matemática
Acesse: http://fuvestibuar.com.br/ A UUL AL A A inguagem matemática Observe o texto abaixo. Ee foi extraído de um ivro de geometria chinês. Veja se, mesmo sem saber chinês, você consegue entender o tema
PME Mecânica dos Sólidos I 5 a Lista de Exercícios
ESCOL POLITÉCNIC D UNIVERSIDDE DE SÃO PULO DEPRTMENTO DE ENGENHRI MECÂNIC PME-00 - Mecânica dos Sóidos I 5 a Lista de Eercícios 1) estrutura treiçada indicada abaio é formada por barras de mesmo materia
EAE36AM - ESTATÍSTICA APLICADA A EXPERIMENTOS
EAE36AM - ESTATÍSTICA APLICADA A EXPERIMENTOS AULA 1 PROFª SHEILA REGINA ORO Ementa Panejamento de experimentos; Panejamento amostra; Deineamento experimenta; Coeta e vaidação dos dados; Testes de comparação
Análise de Regressão Linear Simples e
Análise de Regressão Linear Simples e Múltipla Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução A análise de regressão estuda o relacionamento entre uma variável
4 DEFINIÇÃO DA GEOMETRIA, MALHA E PARÂMETROS DA SIMULAÇÃO
4 DEFINIÇÃO DA GEOETRIA, ALHA E PARÂETROS DA SIULAÇÃO 4.1 Fornaha experimenta A fornaha experimenta utiizada como caso teste por Garreton (1994), era de 400kW aimentada com gás natura. Deste trabaho, estão
Máxima Verossimilhança Método dos Mínimos Quadrados (Al
Departamento de Física Experimental Máxima Verossimilhança (Alexandre Grothendieck) 20-21 de maio de 2014 Alexandre Grothendieck - 1928 Recherche, 486 (2014) 26-41. 1951 1991? Prólogo Nesta apresentação
Modelo de Regressão Múltipla
Modelo de Regressão Múltipla Modelo de Regressão Linear Simples Última aula: Y = α + βx + i i ε i Y é a variável resposta; X é a variável independente; ε representa o erro. 2 Modelo Clássico de Regressão
Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos
1 Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos Documento auxiliar à disciplina de Modelação, Identificação e Controlo Digital Alexandre Bernardino IST-Secção de Sistemas e Controlo
Detecção de Infração em faixa de pedestres sem semáforos utilizando visão computacional e redes neurais
Detecção de Infração em faixa de pedestres sem semáforos utiizando visão computaciona e redes neurais Aves, B. G. C.; ima, A. C. de C. Departamento de Engenharia Eétrica - Escoa Poitécnica - UFBA, R. Aristides
Aula 2 Uma breve revisão sobre modelos lineares
Aula Uma breve revisão sobre modelos lineares Processo de ajuste de um modelo de regressão O ajuste de modelos de regressão tem como principais objetivos descrever relações entre variáveis, estimar e testar
Professores: Elson Rodrigues Marcelo Almeida Gabriel Carvalho Paulo Luiz Ramos
Definição; Número de diagonais de um poígono convexo; Soma das medidas dos ânguos internos e externos; Poígonos Reguares; Reações Métricas em um poígono reguar; Professores: Eson Rodrigues Marceo Ameida
CC-226 Aula 05 - Teoria da Decisão Bayesiana
CC-226 Aula 05 - Teoria da Decisão Bayesiana Carlos Henrique Q. Forster - Instituto Tecnológico de Aeronáutica 2008 Classificador Bayesiano Considerando M classes C 1... C M. N observações x j. L atributos
RESTAURAÇÃO E RECONSTRUÇÃO DE IMAGENS. Nielsen Castelo Damasceno
RESTAURAÇÃO E RECONSTRUÇÃO DE IMAGENS Nielsen Castelo Damasceno Restauração de imagem Procura recuperar uma imagem corrompida com base em um conhecimento a priori do fenômeno de degradação. Restauração
Redes Complexas Aula 7
Redes Complexas Aula 7 Aula retrasada Lei de potência Distribuição Zeta Propriedades Distribuição Zipf Exemplo Wikipedia Aula de hoje Distribuição de Pareto Medindo lei de potência Estimando expoente Exemplos
INTRODUÇÃO À ROBÓTICA MÓVEL
INTRODUÇÃO À ROBÓTICA MÓVEL Aula 20 Edson Prestes Departamento de Informática Teórica http://www.inf.ufrgs.br/~prestes [email protected] Exploração baseada em Fronteiras Método desenvolvido por Brian
XXVII Olimpíada Brasileira de Matemática GABARITO Segunda Fase
XXVII Oimpíada Brasieira de Matemática GBRITO Segunda Fase Souções Níve 3 Segunda Fase Parte CRITÉRIO DE CORREÇÃO: PRTE Na parte serão atribuídos 4 pontos para cada resposta correta e a pontuação máxima
INTRODUÇÃO À ROBÓTICA MÓVEL
INTRODUÇÃO À ROBÓTICA MÓVEL Aula 18 Edson Prestes Departamento de Informática Teórica http://www.inf.ufrgs.br/~prestes [email protected] Planejamento de Caminhos O problema de planejamento de caminhos
3 INTERVALOS DE CONFIANÇA
3 INTEVALOS DE CONFIANÇA 3.1 Introdução A estimativa de intervalos de confiança é utilizada para se obter medidas de incerteza dos dados analisados. A análise da incerteza de uma previsão, por exemplo,
