Partes de uma máquina síncrona
|
|
|
- Maria do Loreto Garrau Carreira
- 8 Há anos
- Visualizações:
Transcrição
1 Oque são geradores síncronos Um dos tipos mais importantes de máquinas elétricas rotativas é o Gerador Síncrono, que é capaz de converter energia mecânica em elétrica quando operada como gerador. Os Geradores Síncronos são utilizados na grande maioria das Centrais Hidroelétricas e Termoelétricas. O nome Síncrono se deve ao fato de esta máquina operar com uma velocidade de rotação constante sincronizada com a frequência da tensão elétrica alternada aplicada aos terminais da mesma, ou seja, devido ao movimento igual de rotação, entre o campo girante e o rotor é chamado de máquina síncrona (sincronismo entre campo do estator e rotor). Partes de uma máquina síncrona Rotor (Campo) Parte girante da máquina, pode ser constituído por um pacote de lâminas de um material ferromagnético envolto em um enrolamento constituído de condutores de cobre designado como enrolamento de campo, que tem como função produzir um campo magnético constante assim como no caso do gerador de corrente contínua para interagir com o campo produzido pelo enrolamento do estator. A tensão aplicada nesse enrolamento é contínua e a intensidade da corrente suportada por esse enrolamento é muito menor que o enrolamento do estator, além disso o rotor pode conter dois ou mais enrolamentos, sempre em número par e todos conectados em série sendo que cada enrolamento será responsável pela produção de um dos polos do eletroímã. Em algumas máquinas síncronas o rotor pode ser constituído por um imã permanente no lugar de um eletroímã, sendo neste caso denominado máquina síncrona de imã permanente. Estator (Armadura) Parte fixa da máquina, montada em volta do rotor de forma que o mesmo possa girar no seu interior, também constituído por um pacote de lâminas de um material ferromagnético envolto num conjunto de enrolamentos distribuídos ao longo da sua circunferência e posicionados em ranhuras. Os enrolamentos do estator são alimentados por um sistema de tensões alternadas trifásicas. Pelo estator circula toda a energia elétrica gerada, sendo que tanto a tensão quanto a corrente elétrica que circulam são bastante elevadas em relação ao campo (rotor), que tem como função apenas produzir um campo magnético para "excitar" a máquina de forma que seja possível a indução de tensões nos terminais dos enrolamentos do estator. Comparemos, por exemplo, um gerador de grande porte no qual circulam 18kV e 6556A no estator contra 350V e 1464A no rotor.
2 Princípio de funcionamento Operação como Gerador Síncrono Ao operar como gerador, a energia mecânica é fornecida à máquina pela aplicação de um torque e pela rotação do eixo/veio da mesma, a fonte de energia mecânica pode ser, por exemplo, uma turbina hidráulica, a gás ou a vapor. Uma vez estando o gerador ligado à rede elétrica, a tensão aos seus terminais é ditada pela frequência de rotação e pelo número de polos: a frequência da tensão trifásica da máquina. Para que a máquina síncrona seja capaz de efetivamente converter a energia mecânica aplicada no seu eixo/veio, é necessário que o enrolamento de campo localizado no rotor da máquina seja alimentado por uma fonte de tensão contínua de forma que ao girar o campo magnético gerado pelos polos do rotor tenham um movimento relativo aos condutores dos enrolamentos do estator. Devido a esse movimento relativo entre o campo magnético dos polos do rotor, a intensidade do campo magnético que atravessa os enrolamentos do estator irá variar no tempo, e assim teremos pela lei de Faraday uma indução de tensões aos terminais dos enrolamentos do estator. Devido à distribuição e disposição espacial do conjunto de enrolamentos do estator, as tensões induzidas aos seus terminais serão alternadas sinusoidais trifásicas. A corrente elétrica utilizada para alimentar o campo (enrolamento do rotor) é denominada corrente de excitação. Quando o gerador está a funcionar de forma isolada de um sistema elétrico (ou seja, o sistema estará sendo alimentado exclusivamente pelo gerador síncrono), a forma de onda e a frequência da tensão deste sistema "ilhado" serão ditados pelo gerador e a excitação do campo irá controlar diretamente a tensão elétrica gerada. Quando o gerador está conectado a um sistema/rede elétrica que possui diversos geradores interligados, a excitação do campo irá controlar a potência reativa que a máquina vai entregar ao sistema podendo eventualmente controlar indiretamente a tensão local. Modelos de geradores síncronos Um gerador síncrono é composto por dois circuitos acoplados magneticamente. O primeiro é a armadura trifásica, localizada no estator e responsável pela transferência de potência elétrica AC entre a máquina e o sistema de potência ao qual ela se conecta. O segundo circuito é o campo, localizado no rotor e alimentado com corrente contínua, de modo a produzir um fluxo magnético constante. Sendo N f o número de espiras por fase da armadura, f 1 a frequência das correntes da armadura, F 2 o fluxo magnético por polo produzido pelo rotor, a força eletromotriz E f induzida em cada fase da armadura a vazio será = 2 p F E f f 1 N f 2 k w, (4.30) Força eletromotriz induzida em cada fase de uma armadura a vazio. onde k 1w é, ainda, o fator de enrolamento da armadura, tipicamente maior do que 0,85 e menor ou igual a 1,0.
3 Quando alimenta uma carga qualquer, de maneira isolada ou conectado ao sistema, a tensão nos terminais do gerador será V 1 ¹ E f, indicando a presença de uma impedância interna, usualmente representada em série. Contudo, por causa do desacoplamento elétrico entre campo e armadura, o gerador síncrono é uma fonte de corrente quase ideal, podendo ser representado inicialmente como na Figura 4.15, onde x m é a reatância de magnetização, x 1 é a reatância de dispersão da armadura, r 1 é a resistência ôhmica da armadura e r c é a resistência de perdas no núcleo (histerese e Foucault). Todos os parâmetros são expressos em ohms por fase. Figura 4.15 Modelo inicial de um gerador síncrono trifásico É possível fazer algumas simplificações no circuito da Figura Nos geradores comuns em sistemas de potência, sempre da classe MVA, os condutores da armadura têm bitola larga a ponto da resistência r 1 ser desprezível. As perdas no núcleo também são desprezíveis, o que significa que a resistência r c é muito grande em comparação com x m, e podemos fazer r c // x m x m. O resultado é o circuito da Figura 4.16, que consiste de um equivalente Norton em série com uma reatância de dispersão jx 1. Figura 4.16 Modelo intermediário de um gerador síncrono trifásico Finalmente, o equivalente Norton pode ser convertido em um equivalente Thévenin, no qual E f = jx m I f e x d = x m + x 1 é denominada reatância síncrona de eixo direto. O circuito equivalente final, mostrado na Figura 4.17, é adequado a geradores síncronos de polos lisos.
4 Figura 4.17 Modelo de circuito equivalente de um gerador síncrono de polos lisos Considerando que, em um gerador, o sentido da corrente de armadura I 1 é da máquina para a carga, a equação fasorial correspondente pode ser escrita como: Equação fasorial de um E f = V I 1 + jx d 1. (4.31) gerador de polos lisos em regime permanente. A equação (4.31) descrevem bastante bem o comportamento da máquina síncrona de polos lisos funcionando em regime permanente. No caso de geradores funcionando em regime transitório deveremos introduzir correções nas reatâncias síncronas. Vamos supor que um gerador síncrono esteja funcionando a vazio quando um curtocircuito trifásico ocorre. Vamos supor também, por simplicidade, que o curto ocorre exatamente quando a tensão alternada do gerador é instantaneamente nula. Por causa do caráter indutivo do gerador, a corrente não atingirá imediatamente um valor de regime constante, mas se comportará como mostrado na Figura A envoltória da senoide é uma exponencial mais complexa do que o usual, pois sua taxa de decaimento não é constante. Para evitar a dificuldade de se trabalhar com uma quantidade muito grande de constantes de tempo, costumamos definir três períodos de tempo, cada um deles caracterizado por uma reatância síncrona: 1) Período subtransitório: corresponde aos primeiros ciclos após o curto, durante os quais a corrente decai muito rapidamente; caracterizado pela reatância subtransitória de eixo direto, x d ''.
5 2) Período transitório: corresponde ao período após o período subtransitório e antes da corrente ter se estabilizado, durante o qual a corrente decai mais lentamente; caracterizado pela reatância transitória de eixo direto, x d '. 3) Período de regime permanente: corresponde ao período após a corrente ter se estabilizado; caracterizado pela reatância síncrona de eixo direto usual, x d. Figura 4.18 Corrente de armadura de um gerador síncrono em curto-circuito trifásico simétrico A Tabela 4.1 mostra os valores típicos das reatâncias de algumas máquinas síncronas. Note que a relação entre as reatâncias síncrona x d e subtransitória x d '' pode chegar a 11 vezes no caso do gerador de polos salientes. A corrente de curto da Figura 4.18, denominada corrente de curto simétrica, é um caso particular de um caso mais geral, o das correntes de curto assimétricas, as quais têm uma componente contínua que as desloca para cima ou para baixo. Uma corrente assimétrica corresponde a uma corrente simétrica mais uma componente contínua que decai exponencialmente. Tabela 4.1 Reatâncias típicas de máquinas síncronas Reatância Gerador de polos lisos Gerador de polos salientes Motor de polos salientes Síncrona, x d (pu) 1,10 1,10 1,10 Transitória, xd (pu) 0,20 0,35 0,50 Subtransitória, x d (pu) 0,10 0,23 0,35
SISTEMAS ELÉTRICOS. CURTO CIRCUITO Aula 1 - Introdução Prof. Jáder de Alencar Vasconcelos
SISTEMAS ELÉTRICOS CURTO CIRCUITO Aula 1 - Introdução Prof. Jáder de Alencar Vasconcelos INTRODUÇÃO O fenômeno curto-circuito pode ser definido como uma conexão de impedância muito baixa entre pontos de
SISTEMAS ELÉTRICOS. Sistemas p.u. Jáder de Alencar Vasconcelos
SISTEMAS ELÉTRICOS Sistemas p.u Jáder de Alencar Vasconcelos Sistemas Elétricos de Potência Sistemas por unidade p.u Aula 4 Sistema por unidade (pu) O sistemas por unidade (pu), é um meio conveniente de
Corrente simétrica Corrente parcialmente assimétrica
Curto circuito nas instalações elétricas A determinação das correntes de curto circuito nas instalações elétricas de alta e baixa tensão industriais é fundamental para elaboração do projeto de proteção
Máquinas elétricas. Máquinas Síncronas
Máquinas síncronas Máquinas Síncronas A máquina síncrona é mais utilizada nos sistemas de geração de energia elétrica, onde funciona como gerador ou como compensador de potência reativa. Atualmente, o
Lista de Exercícios 2 (Fonte: Fitzgerald, 6ª. Edição)
Universidade Federal de Minas Gerais Escola de Engenharia Curso de Graduação em Engenharia Elétrica Disciplina: Conversão da Energia Lista de Exercícios 2 (Fonte: Fitzgerald, 6ª. Edição) 5.3) Cálculos
O campo girante no entreferro e o rotor giram na mesma velocidade (síncrona); Usado em situações que demandem velocidade constante com carga variável;
Gerador Síncrono 2. MÁQUINAS SÍNCRONAS Tensão induzida Forma de onda senoidal Número de pólos Controle da tensão induzida Fases de um gerador síncrono Fasores das tensões Circuito elétrico equivalente
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 20
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA Aula 20 Aula de Hoje Introdução à máquina síncrona trifásica Características Básicas de uma Máquina Síncrona O enrolamento de campo é posicionado no rotor; O
CIRCUITO EQUIVALENTE MAQUINA
CIRCUITO EQUIVALENTE MAQUINA Se o circuito do induzido for fechado sobre uma carga, vai circular por ele uma corrente que será responsável por perdas por efeito de Joule na resistência do próprio enrolamento,
Capítulo 1 Introdução aos princípios de máquinas 1. Capítulo 2 Transformadores 65. Capítulo 3 Fundamentos de máquinas CA 152
resumido Capítulo 1 Introdução aos princípios de máquinas 1 Capítulo 2 Transformadores 65 Capítulo 3 Fundamentos de máquinas CA 152 Capítulo 4 Geradores síncronos 191 Capítulo 5 Motores síncronos 271 Capítulo
Máquinas Elétricas. Máquinas Síncronas Parte I. Geradores
Máquinas Elétricas Máquinas Síncronas Parte I Geradores Introdução Em um gerador síncrono, um campo magnético é produzido no rotor. través de um ímã permanente ou de um eletroímã (viabilizado por uma corrente
PÓS-GRADUAÇÃO PRESENCIAL MARINGÁ
17/09/2016 1 / 26 PRESENCIAL MARINGÁ Professor CURSOS 2016 Introdução aos Sistemas Elétricos de Potência Circuitos Trifásicos e Laboratório MatLab Gerador Síncrono Transformadores TOTAL DE CURSO 10 10
PRINCIPIO DE FUNCIONAMENTO DE GERADOR SINCRONO
1 UNIVERSIDADE DO ESTADO DE MATO GROSSO FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE BACHARELADO EM ENGENHARIA ELÉTRICA PRINCIPIO DE FUNCIONAMENTO DE GERADOR SINCRONO UNEMAT Campus de Sinop 2016
MÁQUINA DE INDUÇÃO FUNDAMENTOS DE MÁQUINAS DE CORRENTE ALTERNADA
FUNDAMENTOS DE MÁQUINAS DE CORRENTE ALTERNADA As máquinas de corrente alternada são geradores que convertem energia mecânica em energia elétrica e motores que executam o processo inverso. As duas maiores
Conversão de Energia II
Departamento de Engenharia Elétrica Aula 6.1 Máquinas Síncronas Prof. João Américo Vilela Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA MOTOR SÍNCRONO. Joaquim Eloir Rocha 1
MOTOR SÍNCRONO Joaquim Eloir Rocha 1 Os motores síncronos são usados para a conversão da energia elétrica em mecânica. A rotação do seu eixo está em sincronismo com a frequência da rede. n = 120 p f f
MÁQUINAS ELÉTRICAS ROTATIVAS. Fonte: logismarket.ind.br
MÁQUINAS ELÉTRICAS ROTATIVAS Fonte: logismarket.ind.br OBJETIVO Ao final deste capitulo o aluno estará apto a entender e aplicar conhecimentos relativos a Máquinas Elétricas Rotativas As máquinas elétricas
Introdução às máquinas CA
Introdução às máquinas CA Assim como as máquinas CC, o princípio de funcionamento de máquinas CA é advindo, principalmente, do eletromagnetismo: Um fio condutor de corrente, na presença de um campo magnético,
Departamento de Engenharia Elétrica Conversão de Energia II Lista 7
Departamento de Engenharia Elétrica Conversão de Energia II Lista 7 Exercícios extraídos do livro: FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica De Potência.
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA GERADOR SÍNCRONO. Joaquim Eloir Rocha 1
GERADOR SÍNCRONO Joaquim Eloir Rocha 1 Os geradores síncronos são usados para gerar a energia que é utilizada pela sociedade moderna para a produção e o lazer. Joaquim Eloir Rocha 2 Geradores síncronos
Sistemas de Geração, Transmissão e Distribuição de Energia Elétrica.
Sistemas de Geração, Transmissão e Distribuição de Energia Elétrica. Ímã: Princípios de Eletromecânica Ímã é um objeto formado por material ferromagnético que apresenta um campo magnético à sua volta.
MÁQUINA SÍNCRONA FUNDAMENTOS DE MÁQUINAS SÍNCRONAS
FUNDAMENTOS DE MÁQUINAS SÍNCRONAS 1. Máquina síncrona de campo fixo De forma semelhante às máquinas de corrente contínua, o enrolamento de campo é excitado por uma fonte CC. O enrolamento de armadura colocado
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Corrente Contínua
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA Introdução a Máquinas de Corrente Contínua Aula de Hoje Introdução à máquina de corrente contínua Produção de conjugado na máquina CC Ação do comutador Tensão
3. Elementos de Sistemas Elétricos de Potência
Sistemas Elétricos de Potência 3. Elementos de Sistemas Elétricos de Potência 3.2.6 Máquinas Trifásicas e Cargas em Sistemas Trifásicos Professor: Dr. Raphael Augusto de Souza Benedito E-mail:[email protected]
Em um gerador síncrono, uma corrente contínua é aplicada ao enrolamento do rotor, o qual produz um campo magnético;
Relembrando... Em um gerador síncrono, uma corrente contínua é aplicada ao enrolamento do rotor, o qual produz um campo magnético; Como o rotor é girado por uma força mecânica, se produz um campo magnético
Máquinas Elétricas. Máquinas Indução Parte I. Motores
Máquinas Elétricas Máquinas Indução Parte I Motores Motor indução Motor indução conjugado induzido Motor indução conjugado induzido Motor indução conjugado induzido Motor indução conjugado induzido Motor
Determinação da Reatância Síncrona Campos Girantes Máquina Síncrona ligada ao Sistema de Potência Gerador e Motor Síncrono
Máquinas Síncronas Determinação da Reatância Síncrona Campos Girantes Máquina Síncrona ligada ao Sistema de Potência Gerador e Motor Síncrono Aula Anterior Circuito Equivalente por fase O Alternador gerava
MOTOR DE INDUÇÃO TRIFÁSICO
MOTOR DE INDUÇÃO TRIFÁSICO Joaquim Eloir Rocha 1 As máquinas de corrente alternada podem ser síncronas ou assíncronas. São síncronas quando a velocidade no eixo estiver em sincronismo com a frequência.
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA ELÉTRICA
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA ELÉTRICA CLÉBERTON REIZ JORDAN LUIZ DOURADO FILGUEIRAS LUCAS IOHAN
Conversão de Energia II
Departamento de Engenharia Elétrica Aula 6.3 Máquinas Síncronas Prof. João Américo Vilela Máquina Síncrona Representação Fasorial Motor síncrono operando sobre-excitado E af > V t (elevada corrente de
PEA MÁQUINAS ELÉTRICAS I 91 PARTE 2 MÁQUINAS SÍNCRONAS
PEA 3400 - MÁQUINAS ELÉTRICAS I 91 PARTE 2 MÁQUINAS SÍNCRONAS PEA 3400 - MÁQUINAS ELÉTRICAS I 92 MÁQUINAS SÍNCRONAS - CARACTERIZAÇÃO E APLICAÇÃO MÁQUINAS SÍNCRONAS : OPERAÇÃO NO MODO MOTOR ( MOTORES DE
Máquinas Elétricas I PRINCÍPIO DE FUNCIONAMENTO
Máquinas Elétricas I PRINCÍPIO DE FUNCIONAMENTO 1. PARTES PRINCIPAIS As Máquinas elétricas tem duas partes principais (Figuras 1): Estator Parte estática da máquina. Rotor Parte livre para girar Figura
AULAS UNIDADE 1 MÁQUINAS ELÉTRICAS ROTATIVAS (MAE) Prof. Ademir Nied
Universidade do Estado de Santa Catarina Departamento de Engenharia Elétrica Curso de Graduação em Engenharia Elétrica AULAS 03-04 UNIDADE 1 MÁQUINAS ELÉTRICAS ROTATIVAS (MAE) Prof. Ademir Nied [email protected]
Prof. Abilio Manuel Variz
Máquinas de Corrente Alternada (ENE052) 2.7 G.S. de Pólos Salientes Prof. Abilio Manuel Variz Engenharia Elétrica Universidade Federal de Juiz de Fora Período 2010-3 Características do G.S. quanto aos
PEA MÁQUINAS ELÉTRICAS I 86 PARTE 2 MÁQUINAS SÍNCRONAS
PEA 2400 - MÁQUINAS ELÉTRICAS I 86 PARTE 2 MÁQUINAS SÍNCRONAS PEA 2400 - MÁQUINAS ELÉTRICAS I 87 MÁQUINAS SÍNCRONAS - CARACTERIZAÇÃO E APLICAÇÃO MÁQUINAS SÍNCRONAS : OPERAÇÃO NO MODO MOTOR ( MOTORES DE
LABORATÓRIO INTEGRADO II
FACULDADE DE TECNOLOGIA E CIÊNCIAS EXATAS CURSO DE ENGENHARIA ELÉTRICA LABORATÓRIO INTEGRADO II Experiência 05: MOTOR TRIFÁSICO DE INDUÇÃO ENSAIOS: VAZIO E ROTOR BLOQUEADO Prof. Norberto Augusto Júnior
Máquinas CA são ditas: 1. Síncronas: quando a velocidade do eixo estiver em sincronismo com a freqüência da tensão elétrica de alimentação;
AULA 10 MÁQUINAS DE INDUÇÃO (ou assíncronas) Descrição e construção da máquina Formação do campo magnético rotativo Tensões, frequências e correntes induzidas Produção de conjugado no eixo Máquinas Elétricas
Universidade Paulista Unip
As máquinas de corrente contínua podem ser utilizadas tanto como motor quanto como gerador. 1 Uma vez que as fontes retificadoras de potência podem gerar tensão contínua de maneira controlada a partir
campo em 2 A e a velocidade em 1500 rpm. Nesta condição qual o valor do torque
Um alternador síncrono de pólos lisos possui quatro pólos, está ligado em estrela e apresenta potência nominal igual a 20kVA. Em vazio a tensão entre os terminais é igual a 440 V, quando o rotor da máquina
Mecânica de Locomotivas II. Aula 9 Motores Elétricos de Tração
Aula 9 Motores Elétricos de Tração 1 A utilização de motores de corrente contínua apresenta inúmeras desvantagens oriundas de suas características construtivas, que elevam seu custo de fabricação e de
Máquinas Elétricas. Máquinas CA Parte I
Máquinas Elétricas Máquinas CA Parte I Introdução A conversão eletromagnética de energia ocorre quando surgem alterações no fluxo concatenado (λ) decorrentes de movimento mecânico. Nas máquinas rotativas,
MODELOS DE MOTORES DA MODELIX
MODELOS DE MOTORES DA MODELIX O MOTOR DE CC REVISÃO TÉCNICA. Aspectos Construtivos O motor de corrente contínua é composto de duas estruturas magnéticas: 1 / 5 Estator (enrolamento de campo ou ímã permanente);
Laboratório de Conversão Eletromecânica de Energia B
Laboratório de Conversão Eletromecânica de Energia B Prof a. Katia C. de Almeida 1 Característica de Magnetização da Máquina de Corrente Contínua 1.1 Introdução Máquinas de corrente contínua (MCC) devem
Princípios de máquinas elétricas força induzida Um campo magnético induz uma força em um fio que esteja conduzindo corrente dentro do campo
Princípios de máquinas elétricas Uma máquina elétrica é qualquer equipamento capaz de converter energia elétrica em energia mecânica, e vice-versa Principais tipos de máquinas elétricas são os geradores
MÁQUINAS ELÉTRICAS. MÁQUINAS ELÉTRICAS Motores Síncronos Professor: Carlos Alberto Ottoboni Pinho MÁQUINAS ELÉTRICAS
Motores Síncronos Ementa: Máquinas de corrente contínua: características operacionais; acionamento do motor CC; aplicações específicas. Máquinas síncronas trifásicas: características operacionais; partida
Máquinas Elétricas. Máquinas CA Parte I
Máquinas Elétricas Máquinas CA Parte I Introdução A conversão eletromagnética de energia ocorre quando surgem alterações no fluxo concatenado (λ) decorrentes de movimento mecânico. Nas máquinas rotativas,
EXP 05 Motores Trifásicos de Indução - MTI
EXP 05 Motores Trifásicos de Indução - MTI Funcionamento e Ligações Objetivos: Compreender o funcionamento e as ligações do motor de indução; Analisar os diferentes tipos de construção e as principais
PROVA DE CONHECIMENTOS ESPECÍFICOS. É característica que determina a um transformador operação com regulação máxima:
13 PROVA DE CONHECIMENTOS ESPECÍFICOS QUESTÃO 35 É característica que determina a um transformador operação com regulação máxima: a) A soma do ângulo de fator de potência interno do transformador com o
Acionamento de motores de indução
Acionamento de motores de indução Acionamento de motores de indução Vantagens dos motores de indução Baixo custo Robustez construtiva 1 Controle da velocidade de motores de indução Através de conversores
O MOTOR DE INDUÇÃO - 1
PEA 2211 Introdução à Eletromecânica e à Automação 1 O MOTOR DE INDUÇÃO - 1 PARTE EXPERIMENTAL Conteúdo: 1. Introdução. 2. Observando a formação do campo magnético rotativo. 3. Verificação da tensão e
Ensaio de circuito aberto (CCA) Ensaio de curto-circuito (CCC) Determinação dos parâmetros do circuito equivalente Perdas elétricas e Rendimento
Faculdade Pitágoras de Betim Engenharia Elétrica / Controle e Automação Máquinas Elétricas II Ensaio de circuito aberto (CCA) Ensaio de curto-circuito (CCC) Determinação dos parâmetros do circuito equivalente
Transformadores monofásicos
Transformadores monofásicos Motivações. Introdução. Transformador ideal. Transformador real. Circuito equivalente. Determinação dos parâmetros do circuito equivalente. Rendimento. Motivações Por que precisamos
674 Índice. Densidade de fluxo dos campos magnéticos fatores de conversão, 669
Índice A Ação de gerador, 34 35 Aceleração, 4, 6 Aceleração angular, 4, 7 Acionamentos de frequência variável para a partida do motor síncrono, 292 para o controle de velocidade do motor de indução, 367,
16 x PROFESSOR DOCENTE I - ELETRICIDADE CONHECIMENTOS ESPECÍFICOS
CONHECIMENTOS ESPECÍICOS 6. Um condutor conduz uma corrente contínua constante de 5mA. Considerando-se que a carga de 19 um elétron é 1,6x1 C, então o número de elétrons que passa pela seção reta do condutor
Capitulo 7 Geradores Elétricos CA e CC
Capitulo 7 Geradores Elétricos CA e CC 7 Geradores Elétricos CA e CC Figura 7-1 Gerador Elétrico CA A energia elétrica é obtida através da conversão de energia mecânica (movimento) em energia elétrica
Motores Síncronos de Ímãs Permanentes
Máquinas Elétricas Especiais Motores Síncronos de Ímãs Permanentes Motores Brushless AC (Motores CA sem escovas) Prof. Sebastião Lauro Nau, Dr. Eng. Set 2017 Motor Brushless de Ímãs com Acionamento Senoidal
Departamento de Engenharia Elétrica Conversão de Energia II Lista 3
Departamento de Engenharia Elétrica Conversão de Energia II Lista 3 Exercícios extraídos do livro: FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica De Potência.
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 07
SEL 39 COVERSÃO ELETROMECÂCA DE EERGA Aula 07 Revisão Corrente de excitação: circuito elétrico equivalente do eletroímã, desprezando a histerese i φ E i φ Corrente de excitação: circuito elétrico equivalente
MOTOR DE INDUÇÃO TRIFÁSICO (continuação)
MOTOR DE INDUÇÃO TRIFÁSICO (continuação) Joaquim Eloir Rocha 1 A produção de torque em um motor de indução ocorre devido a busca de alinhamento entre o fluxo do estator e o fluxo do rotor. Joaquim Eloir
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 07
SEL 39 COVERSÃO ELETROMECÂICA DE EERGIA Aula 07 Revisão Corrente de excitação: circuito elétrico equivalente do eletroímã, desprezando a histerese i φ E i φ Corrente de excitação: circuito elétrico equivalente
ENGC25 - ANÁLISE DE CIRCUITOS II
ENGC25 - ANÁLISE DE CIRCUITOS II Módulo V CIRCUITOS ACOPLADOS MAGNETICAMENTE INTRODUÇÃO AOS TRANSFORMADORES UFBA Curso de Engenharia Elétrica Prof. Eugênio Correia Teixeira Campo Magnético Linhas de fluxo
Máquina de Indução - Lista Comentada
Máquina de Indução - Lista Comentada 1) Os motores trifásicos a indução, geralmente, operam em rotações próximas do sincronismo, ou seja, com baixos valores de escorregamento. Considere o caso de alimentação
CONSTRUÇÃO E FUNCIONAMENTO
Temática Máquinas Eléctricas Capítulo Máquina Assíncrona CONSTRUÇÃO E FUNCIONAMENTO INTRODUÇÃO Relativamente à construção, apresentam-se os aspectos fundamentais da construção de máquinas assíncronas.
Operação e Controle de Sistemas Elétricos de Potência Lista de Exercícios No. 5 Não Precisa Entregar Exercícios sobre Geradores Síncronos
Operação e Controle de Sistemas Elétricos de Potência Lista de Exercícios No. 5 Não Precisa Entregar Exercícios sobre Geradores Síncronos 1. Um Gerador Síncrono de 2300 Volts, potência de 1000 kva, fator
1- INTRODUÇÃO ÀS MÁQUINAS ELÉTRICAS As máquinas elétricas podem ser classificadas em dois grupos:
MOTORES DE INDUÇÃO 1- INTRODUÇÃO ÀS MÁQUINAS ELÉTRICAS As máquinas elétricas podem ser classificadas em dois grupos: a) geradores, que transformam energia mecânica oriunda de uma fonte externa (como a
MOTORES DE INDUÇÃO. Estator: Campo Tres fases P polos (4-8) Distribução senoidal do fluxo. Rotor: Armadura Cilindro de ferro com conductores: Gaiola
MOTORES DE INDUÇÃO Estator: Campo Tres fases P polos (4-8) Distribução senoidal do fluxo Rotor: Armadura Cilindro de ferro com conductores: Gaiola Cortocircuito Conductores CAMPOS MAGNÉTICOS GIRANTES
síncrona s generalidades
A máquina síncrona A máquina m síncrona: s generalidades A máquina m síncrona s utiliza um estátor tor constituído por um enrolamento trifásico distribuído do a 120º idêntico à máquina assíncrona O rótor
Questionário Escolhas Múltiplas CORRECÇÃO
Temática Máquinas Eléctricas Capítulo Teste os seus conhecimentos Questionário Escolhas Múltiplas CORRECÇÃO PRINCÍPIO DE FUNCIONAMENTO DOS CONVERSORES ELECTROMAGNÉTICOS COM CAMPO GIRANTE INTRODUÇÃO Esta
Motores de Relutância Chaveados
Máquinas Elétricas Especiais Motores de Relutância Chaveados Switched Reluctance Motors Prof. Sebastião Lauro Nau, Dr. Eng. Set 2017 1 Definição - São também chamados de motores de relutância variável.
Sistemas Elétricos de Potência 1 Lista de Exercícios No. 6
Sistemas Elétricos de Potência 1 Lista de Exercícios No. 6 1) Determine a corrente de curto-circuito trifásico em Ampères e em p.u. no ponto F da figura abaixo (lado de AT do trafo), desprezando-se a corrente
PÓS-GRADUAÇÃO PRESENCIAL MARINGÁ
PRESENCIAL MARINGÁ Professor 01/10/2016 1 / 51 CURSOS 2016 Introdução aos Sistemas Elétricos de Potência Circuitos Trifásicos e Laboratório MatLab Gerador Síncrono Transformadores TOTAL DE CURSO 10 10
Máquinas de Indução - Características Operacionais
Máquinas de Indução - Características Operacionais 1. Introdução As máquinas de corrente alternada, em particular as máquinas de indução foram inventadas no século XIX por Nikola Tesla em torno do ano
Conversão de Energia II
Departamento de Engenharia Elétrica Aula 2.2 Máquinas Rotativas Prof. João Américo Vilela Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica
UNIVERSIDADE FEDERAL DO ACRE
CONCURSO PÚBLICO DE PROVAS E TÍTULOS PARA O CARGO EFETIVO DE PROFESSOR DA CARREIRA DE MAGISTÉRIO SUPERIOR EDITAL Nº 04/2016 PROGRAD PROVA ESCRITA RESPOSTAS ESPERADAS 1ª QUESTÃO (2,5PTS) Elabore um texto
Máquinas Elétricas. Máquinas CC Parte III
Máquinas Elétricas Máquinas CC Parte III Máquina CC Máquina CC Máquina CC Comutação Operação como gerador Máquina CC considerações fem induzida Conforme já mencionado, a tensão em um único condutor debaixo
Conversão de Energia I
Departamento de Engenharia Elétrica Aula 2.3 Transformadores Prof. Clodomiro Unsihuay Vila CARACTERISTICAS ELÉTRICAS Lembrete: https://www.youtube.com/watch?v=culltweexu Potência Nominal: NBR 5356:2006
Eletrotecnia Aplicada Transformadores (parte 1) Engenharia Eletrotécnica e de Computadores ( )
Eletrotecnia Aplicada Transformadores (parte ) Engenharia Eletrotécnica e de Computadores (3-0-03) Conceito de transformador Os transformadores elétricos são dispositivos eletromagnéticos acoplados indutivamente
Conversão de Energia II
Departamento de Engenharia Elétrica Aula 4.1 Motores Monofásicos Prof. João Américo Vilela Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica
Máquinas Elétricas. Máquinas CC Parte IV
Máquinas Elétricas Máquinas CC Parte IV Máquina CC eficiência Máquina CC perdas elétricas (perdas por efeito Joule) Máquina CC perdas nas escovas Máquina CC outras perdas a considerar Máquina CC considerações
ET720 Sistemas de Energia Elétrica I. Capítulo 4: Transformadores de potência. Exercícios
ET720 Sistemas de Energia Elétrica I Capítulo 4: Transformadores de potência Exercícios 4.1 Um transformador monofásico de dois enrolamentos apresenta os seguintes valores nominais: 20 kva, 480/120 V,
Questão 1. Gabarito. Considere P a potência ativa da carga e Q a potência reativa.
Questão 1 Uma indústria tem uma carga de 1000 kva com fator de potência indutivo de 95% alimentada em 13800 V de acordo com medições efetuadas. A maneira mais fácil de representar a carga da indústria
6 Motores de indução. capítulo OBJETIVOS DE APRENDIZAGEM
capítulo 6 Motores de indução OBJETIVOS DE APRENDIZAGEM Compreender as diferenças fundamentais entre um motor síncrono e um motor de indução. Compreender o conceito de escorregamento de rotor e sua relação
QUESTÕES PARA A PROVA 2: FORÇAS MAGNÉTICAS E MOTORES CC
QUESTÕES PARA A PROVA 2: FORÇAS MAGNÉTICAS E MOTORES CC SEL0329 CONVERSÃO ELETROMECÂNICA DE ENERGIA Prof. Dr. Elmer Pablo Tito Cari Departamento de Engenharia Elétrica e de Computação Universidade de São
Indução Eletromagnética
Indução Eletromagnética 1 Aprendemos que uma força eletromotriz (fem) é necessária para produzir uma corrente em um circuito. Até aqui, quase sempre tomamos uma bateria como a fonte de fem. Contudo, para
Curto-Circuito. cap. 5
Curto-Circuito cap. 5 1 Curto-Circuito Fundamental no dimensionamento da proteção; Baseada no conhecimento do valor das impedâncias; Provocadas por perdas na isolação; Atinge valores de 10 a 100 vezes
Integrantes do Grupo
Integrantes do Grupo PARTE EXPERIMENTAL 1. Objetivos Nesta experiência trabalharemos com um gerador trifásico, de frequência nominal 60 [Hz] e 4 pólos. Os seguintes fenômenos serão observados: ariação
Capítulo XI. Fontes de curto-circuito. Por Cláudio Mardegan*
38 Capítulo XI Fontes de curto-circuito Por Cláudio Mardegan* As fontes mais relevantes de curto-circuito são: transformador é considerada igual a zero. Ademais, o barramento infinito tem capacidade ideal
Sumário. CAPÍTULO 1 A Natureza da Eletricidade 13. CAPÍTULO 2 Padronizações e Convenções em Eletricidade 27. CAPÍTULO 3 Lei de Ohm e Potência 51
Sumário CAPÍTULO 1 A Natureza da Eletricidade 13 Estrutura do átomo 13 Carga elétrica 15 Unidade coulomb 16 Campo eletrostático 16 Diferença de potencial 17 Corrente 17 Fluxo de corrente 18 Fontes de eletricidade
TRANSFORMADORES. Fonte: itu.olx.com.br
Fonte: itu.olx.com.br OBJETIVO Ao final deste capitulo o aluno estará apto a entender, aplicar e realizar cálculos referentes Transformadores. Transformador é uma máquina elétrica estática, sem partes
Característica de Regulação do Gerador de Corrente Contínua com Excitação Independente
Experiência V Característica de Regulação do Gerador de Corrente Contínua com Excitação Independente 1. Introdução A mesma máquina de corrente contínua de fabricação ANEL utilizada no ensaio precedente
PEA 2404 MÁQUINAS ELÉTRICAS E ACIONAMENTOS
PEA 2404 MÁQUINAS ELÉTRICAS E ACIONAMENTOS Resumo das notas de aula 1 A1 PROGRAMA: 1 MÁQUINAS ASSÍNCRONAS: Caracterização e classificação das máquinas assíncronas - Aspectos construtivos Princípio de funcionamento
FACULDADE DE ENGENHARIA DE SOROCABA MÁQUINAS ELÉTRICAS. Prof. Joel Rocha Pinto
FACULDADE DE ENGENHARIA DE SOROCABA MÁQUINAS ELÉTRICAS Prof. Joel Rocha Pinto SUMÁRIO 5. MÁQUINAS SÍNCRONAS... 3 5.1 Princípio de Funcionamento... 3 5. Aspectos Construtivos... 4 5.3. Potência Desenvolvida
1ª. LISTA DE EXERCICIOS 2016 PEA 2306 CONVERSÃO ELETROMECÂNICA DE ENERGIA
1ª. LISTA DE EXERCICIOS 2016 PEA 2306 CONVERSÃO ELETROMECÂNICA DE ENERGIA Prof. José Roberto Cardoso Circuitos Magnéticos 1. Um núcleo toroidal de seção transversal 1 cm 2 e comprimento médio 15 cm é envolvido
1) Como as cargas eletrostáticas se comportam umas com as outras? 2) Quais são as três partículas que compõe o modelo atômico de Bohr?
ATIVIDADE T3 - Capítulo 8. 1. Princípios básicos de eletrônica 8.1 Cargas elétricas. 1) Como as cargas eletrostáticas se comportam umas com as outras? 2) Quais são as três partículas que compõe o modelo
Relatório 3 - Montagem do gerador de indução e dos procedimentos de energização.
UNIVERSIDADE DE SÃO PAULO - USP ESCOLA DE ENGENHARIA DE SÃO CARLOS - EESC Relatório 3 - Montagem do gerador de indução e dos procedimentos de energização. Alunos: Gustavo Henrique Santos Leonardo Nº: 8551591
lectra Material Didático COMANDOS ELÉTRICOS Centro de Formação Profissional
lectra Centro de Formação Profissional Material Didático COMANDOS ELÉTRICOS WWW.ESCOLAELECTRA.COM.BR COMANDOS ELÉTRICOS ÍNDICE INTRODUÇÃO 1. MOTORES ELÉTRICOS 1.1. Classificação de motores 1.1.1. Motores
1ª. Prova. Conversão Eletromecânica de Energia
ª. Proa Conersão Eletromecânica de Energia José Roberto Cardoso GABARITO 08 de Abril de 06 ª. Questão: Descrea o significado físico de cada parâmetro do circuito elétrico equialente do transformador destacando
Geração de Energia Controle de Velocidade de Usinas Hidrelétricas
Geração de Energia Controle de Velocidade de Usinas Hidrelétricas Prof. Dr. Eng. Paulo Cícero Fritzen 1 Objetivo da Aula: Definir conceitos e técnicas relacionadas o controle de velocidade na geração de
