Algoritmos e Estruturas de Dados II
|
|
|
- Sarah Maranhão Vilalobos
- 8 Há anos
- Visualizações:
Transcrição
1 Algoritmos e Estruturas de Dados II Organização Revisão (DFS) Exemplo de Execução (DFS) Grafos V: e Ricardo J. G. B. Campello Parte deste material é baseado em adaptações e extensões de slides disponíveis em (Goodrich & Tamassia). Propriedades e Aplicações Digrafos Acíclicos (DAGs) Revisão (Algoritmo DFS) Algoritmo DFS(G, v) v.label DESCOBERTO process_vertex(v) para todo e incidentedges(g, v) y opposite(g, v, e) se y.label = NÃO-DESCOBERTO y.parent v DFS(G, y) senão se ( y.label = EXPLORADO ) process_edge(e) v.label EXPLORADO Assume-se que inicialmente os vértices de G são rotulados como não descobertos. B B A C A C D D E E DFS e BFS podem ser adaptados para digrafos. Essas adaptações são mais genéricas: qualquer grafo não-direcionado pode ser transformado em um grafo direcionado. Mudança: percurso só é feito no sentido correto das arestas, ou seja, apenas através das arestas de saída. logo, não é preciso se preocupar em não processar duas vezes a mesma aresta arestas podem ser processadas no vértice de saída
2 DFS em Digrafos DFS em Digrafos DFS direcionado: as arestas que não são de descoberta não são mais necessariamente de retorno, pois não mais necessariamente apresentam a propriedade de conectar um vértice a um ancestral na árvore DFS. De fato, as arestas podem também ser de: Exemplo: SFO ORD JFK BOS avanço: conectam um vértice a um descendente na árvore DFS cruzamento: conectam um vértice a outro que não é nem descendente nem ancestral na árvore DFS LAX DFW MIA DFS em Digrafos Arestas: As adaptações de DFS e BFS para digrafos permitem: De descoberta Obter, para cada vértice de G, o subgrafo alcançável a partir daquele vértice. De retorno Calcular os componentes fortemente conexos de G e testar se G, como um todo, é fortemente conexo. De avanço De cruzamento Encontrar um ciclo direcionado em G. Obter um caminho com o menor número de arestas entre dois vértices (BFS)....
3 Propriedade : DFS ou BFS em um digrafo G partindo de um vértice s explora todos os vértices e arestas alcançáveis a partir de s. Exercício: Justificar a Propriedade Análise: Tempo: Se G for implementado com uma lista de adjacências ou estrutura alternativa, então DFS (BFS) roda em tempo O(n s +m s ), onde n s e m s são respectivamente os números de vértices e arestas alcançáveis a partir de s. Propriedade : As arestas de descoberta DFS ou BFS formam uma árvore com caminhos direcionados de s para cada um dos vértices alcançáveis a partir de s. Exercício: Justificar a Propriedade Cada vértice e aresta alcançáveis são explorados uma única vez Espaço: no caso de aresta, a partir da sua origem DFS utiliza O(n s ) espaço auxiliar com a pilha de recursão devido à n s chamadas recursivas com espaço constante em cada uma delas. BFS não possui recursão, mas utiliza espaço auxiliar O(n s ) para armazenar a fila de vértices Q. 0 Teste de Conexão Forte: Podemos executar DFS ou BFS múltiplas vezes e verificar se o grafo é fortemente conexo verificando se a partir de cada vértice tomado como origem todos os demais vértices são alcançáveis ou não: Tempo O( n (n + m) ) no pior caso. Qual o pior caso? Nota: É possível executar um teste de conexão forte em tempo O( n + m ) com apenas duas execuções de DFS ou BFS, uma sobre o digrafo original G e a outra sobre o seu transposto G T : Desafio: Descubra o porquê sem checar a literatura!!! Digrafos Acíclicos Grafos Direcionados Acíclicos (DAGs): Como sugere o nome, são digrafos que não possuem ciclos. Exemplos: Hierarquia de heranças entre classes em orientação a objetos Pré-requisitos entre disciplinas de um curso Restrições de cronograma entre tarefas de um projeto : Trata-se de uma ordenação dos vértices v,..., v n de um DAG G tal que para qualquer aresta direcionada (v i, v j ) tem-se i < j. Caminhos direcionados percorrem os vértices em ordem crescente. Qualquer caminho entre v i e v j não passa por v k tal que k < i ou k > j. Vide exemplo simples acima (no canto superior direito)
4 Algoritmo mais popular utiliza as seguintes Propriedades de DAGs: Necessariamente possuem ao menos um vértice sem arestas incidentes de entrada (apenas arestas de saída ou nenhuma). Se todo vértice possui ao menos uma aresta de entrada, necessariamente existe ao menos um ciclo. Se tais vértices e as suas arestas de saída forem removidas, o grafo restante também é um DAG. Idéia do Algoritmo: Remover sucessivamente aqueles vértices sem arestas incidentes de entrada, rotulando os mesmos em ordem crescente de remoção e removendo também as respectivas arestas de saída. Algoritmo TopologicalSort(G) S Pilha Vazia para todo u vertices(g) se u.indegree = 0 push(s, u) t enquanto empty(s) u pop(s) u.topsort t t t + para todo e outgoingedges(g, u) v opposite(g, u, e) v.indegree v.indegree se v.indegree = 0 push(s, v) Espaço e tempo de execução de pior caso: O( n + m ) Detecta Existência de Ciclos: G não é DAG se um ou mais vértices não for removido / rotulado. Note que os vértices não precisam ser de fato removidos do grafo. É suficiente modificar artificialmente uma contagem de arestas de entrada de cada vértice. Exemplo: Ordenação Topológica Note o uso de uma fila ao invés de pilha. De fato, qualquer ED pode ser utilizada. Diferentes EDs podem produzir ordens topológicas distintas. Exemplos: Ordenação topológica não é única!
5 Exercícios Exercícios. Modifique o pseudo-código DFS de grafos não direcionados para que este seja válido para grafos direcionados. Para tanto, faça as modificações necessárias ao TAD grafo apresentado em aula. Dica: Note que não mais é necessário se preocupar em não processar cada aresta mais de uma vez, apenas no vértice de saída.. Modifique a implementação C do algoritmo dfs vista em aula para que esta seja válida para grafos direcionados.. É necessário mudar algo na especialização do algoritmo DFS para busca de ciclos vista em aula se o grafo for direcionado? Explique. Nota: Observe que o princípio do uso de DFS para busca de ciclos não muda, ou seja, arestas de retorno continuam caracterizando ciclos (agora direcionados) e continuam sendo caracterizadas por levarem até um vértice já descoberto mas ainda não totalmente explorado.. Repita os Exercícios e para busca em largura (BFS).. Descreva com suas palavras uma forma de calcular o fechamento transitivo de um digrafo G usando BFS ou DFS. Assumindo que o digrafo possui m arestas, n vértices e é fortemente conexo, qual a complexidade do seu método em termos de tempo de execução? Dica: Tome como base a Propriedade de percursos em digrafos. Bob pretende fazer um conjunto de disciplinas de especialização. Ele está interessado nos seguintes cursos: LA, LA, LA, LA, LA, LA, LA, LA e LA. Dados os pré-requisitos desses cursos abaixo, mostre como usar ordenação topológica para encontrar uma seqüência de cursos que permita satisfazer todos os pré-requisitos: LA e LA: nenhum LA e LA: LA LA: LA e LA LA: LA e LA LA: LA LA: LA e LA LA: LA Mostre uma tal seqüência e responda justificadamente se ela é única ou não! Referências M. T. Goodrich and R. Tamassia, Data Structures and Algorithms in C++/Java, John Wiley & Sons, 00/00. N. Ziviani, Projeto de Algoritmos, Thomson, a. Edição, 00. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press, nd Edition, 00. S. Skiena e M. Revilla, Programming Challenges: The Programming Contest Training Manual, Springer-Verlag, 00.
Algoritmos e Estruturas de Dados II
Algoritmos e Estruturas de Dados II Grafos VI: Grafos Ponderados & Caminhos Mínimos (Bellman-Ford) Ricardo J. G. B. Campello Parte deste material é baseado em adaptações e extensões de slides disponíveis
05 Grafos: ordenação topológica SCC0503 Algoritmos e Estruturas de Dados II
05 Grafos: ordenação topológica SCC0503 Algoritmos e Estruturas de Dados II Prof. Moacir Ponti Jr. www.icmc.usp.br/~moacir Instituto de Ciências Matemáticas e de Computação USP 2011/1 Moacir Ponti Jr.
Grafos: Busca. SCE-183 Algoritmos e Estruturas de Dados 2. Thiago A. S. Pardo Maria Cristina
Grafos: Busca SCE-183 Algoritmos e Estruturas de Dados 2 Thiago A. S. Pardo Maria Cristina Percorrendo um grafo Percorrendo um Grafo Percorrer um grafo é um problema fundamental Deve-se ter uma forma sistemática
Teoria dos Grafos Aula 6
Teoria dos Grafos Aula 6 Aula passada Busca em grafos Busca em largura (BFS Breadth First Search) Propriedades Aula de hoje BFS implementação Complexidade Busca em profundidade (DFS) Conectividade, componentes
Teoria dos Grafos Aula 5
Teoria dos Grafos Aula Aula passada Explorando grafos Mecanismos genéricos Ideias sobre BFS, DFS Aula de hoje Busca em grafos Busca em largura (BFS Breadth First Search) Propriedades Busca em Grafos Problema
Estruturas de Dados. Filas em que a prioridade de remoção não é cronológica. Maior prioridade não é do elemento que ingressou primeiro
Estruturas de Dados Filas de Prioridade Ricardo J. G. B. Campello Parte deste material é baseado em adaptações e extensões de slides disponíveis em http://ww3.datastructures.net (Goodrich & Tamassia).
SCC-201 Introdução à Ciência de Computação II
SCC-201 João Luís Garcia Rosa 1 Ricardo J. G. B. Campello 1 1 Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo - São Carlos http://www.icmc.usp.br
Algoritmos em Grafos
Algoritmos em Grafos Baseado em: The Algorithm Design Manual Steven S. Skiena IF64C Estruturas de Dados 2 Engenharia da Computação Prof. João Alberto Fabro - Slide 1/42 Introdução (1) Um grafo G=(V,E)
Grafos Caminhos mais Curtos
ALGORITMOS E ESTRUTURAS DE DADOS II Grafos Caminhos mais Curtos Profa. Elaine Parros Machado de Sousa adaptações: Cris.na Dutra de Aguiar Ciferri Material baseado em aulas dos professores: Gustavo Basta,
Grafos. Fabio Gagliardi Cozman. PMR2300 Escola Politécnica da Universidade de São Paulo
PMR2300 Escola Politécnica da Universidade de São Paulo Um grafo é uma estrutura que generaliza árvores, sendo formado por nós e arestas. Cada nó em um grafo pode ser conectado a vários outros nós por
Grafos: Busca. Algoritmos e Estruturas de Dados 2. Graça Nunes
Grafos: Busca Algoritmos e Estruturas de Dados Graça Nunes Percorrendo um grafo Percorrendo um Grafo Percorrer um grafo é uma tarefa fundamental Pense no caso de se procurar uma certa informação associada
CAL ( ) MIEIC/FEUP Grafos: Introdução (Março, 2011)
1 Algoritmos em Grafos: Introdução R. Rossetti, A.P. Rocha, A. Pereira, P.B. Silva, T. Fernandes CAL, MIEIC, FEUP Março de 2011 Índice 2 Revisão de conceitos e definições Exemplificar aplicações Representação
O estudo utilizando apenas este material não é suficiente para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste
O estudo utilizando apenas este material não é suficiente para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste material e a resolução (por parte do aluno) de todos os
Estruturas de Dados Grafos
Estruturas de Dados Grafos Prof. Eduardo Alchieri (introdução) Grafo é um conjunto de pontos e linhas que conectam vários pontos Formalmente, um grafo G(V,A) é definido pelo par de conjuntos V e A, onde:
GRAFOS BUSCAS E MENOR CAMINHO. Prof. André Backes
8//6 GRAFOS BUSCAS E MENOR CAMINHO Prof. André Backes Busca em grafos Definição Consiste em explorar o grafo de uma maneira bem específica. Trata-se de um processo sistemático de como caminhar por seus
Desafios de Programação TCC Turma A-1
Desafios de Programação TCC-00.254 Turma A-1 Conteúdo Grafos Professor Leandro Augusto Frata Fernandes [email protected] Material disponível em http://www.ic.uff.br/~laffernandes/teaching/2015.1/tcc-00.254
O estudo utilizando apenas este material não é suficiente para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste
O estudo utilizando apenas este material não é suficiente para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste material e a resolução (por parte do aluno) de todos os
Grafos representação e aplicações. Prof. Guilherme Tomaschewski Netto
Grafos representação e aplicações Prof. Guilherme Tomaschewski Netto [email protected] Roteiro! Contextualização! Apresentação, um pouco de história! Conceitos Grafos! Principais aplicacões! Estruturas
Grafos: algoritmos de busca
busca em grafos como caminhar no grafo de modo a percorrer todos os seus vértices evitando repetições desnecessárias do mesmo vértice? e por onde começar? solução: necessidade de recursos adicionais que
Introdução à Ciência da Computação II
Introdução à Ciência da Computação II Análise de Algoritmos: Parte I Prof. Ricardo J. G. B. Campello Este material consiste de adaptações e extensões de slides disponíveis em http://ww3.datastructures.net
Busca em Largura. Adaptado de Humberto C. B. Oliveira
Busca em Largura Adaptado de Humberto C. B. Oliveira Últimas aulas Introdução: História Aplicações Conceitos Básicos: Grafo simples Grafo completo/vazio Grafo não orientado: Arestas laço Arestas paralelas
ÁRVORES E ÁRVORE BINÁRIA DE BUSCA
ÁRVORES E ÁRVORE BINÁRIA DE BUSCA Prof. André Backes Definição 2 Diversas aplicações necessitam que se represente um conjunto de objetos e as suas relações hierárquicas Uma árvore é uma abstração matemática
GRAFOS Conceitos Básicos (Parte 1)
ALGORITMOS E ESTRUTURAS DE DADOS II GRAFOS Conceitos Básicos (Parte 1) Gustavo Batista Profa. Elaine Parros Machado de Sousa alterações: Cris-na Dutra de Aguiar Ciferri Material baseado em aulas dos professores:
SIN5013 Análise de Algoritmos e Estrutura de Dados - 1o Semestre de 2019
SIN5013 Análise de Algoritmos e Estrutura de Dados - 1o Semestre de 2019 Luciano Antonio Digiampietri Escola de Artes, Ciências e Humanidades Programa de Pós-graduação em Sistemas de Informação (PPgSI)
ALGORITMOS E ESTRUTURAS DE DADOS CES-11
ALGORITMOS E ESTRUTURAS DE DADOS CES-11 Prof. Paulo André Castro [email protected] Sala 110 Prédio da Computação www.comp.ita.br/~pauloac IECE - ITA OBJETIVOS GERAIS Compreensão da necessidade de uma boa
Projeto e Análise de Algoritmos NP Completude Parte 2. Prof. Humberto Brandão
Projeto e Análise de Algoritmos NP Completude Parte 2 Prof. Humberto Brandão [email protected] Universidade Federal de Alfenas Departamento de Ciências Exatas versão da aula: 0.2 Última aula
Estruturas de Dados. Árvores AVL: Partes I e II. Desempenho de ABBs (Revisão)
Estruturas de Dados Árvores AVL: Partes I e II Prof. Ricardo J. G. B. Campello Parte deste material é baseado em adaptações e extensões de slides disponíveis em http://ww3.datastructures.net (Goodrich
Análise e Síntese de Algoritmos. Algoritmos em Grafos CLRS, Cap. 22
Análise e Síntese de Algoritmos Algoritmos em Grafos CLRS, Cap. 22 Mudança no Horário Aulas Teóricas de 4ª feira 10:30 12:00 Sala: FA1 12:00 13:30 Sala: FA1 Deixa de haver aula teórica às 9:00 por troca
Busca em Profundidade e em Largura
Busca em Profundidade e em Largura Grafos e Algoritmos Computacionais Prof. Flávio Humberto Cabral Nunes [email protected] 1 Mais sobre Caminhos TEOREMA: Se um grafo possui exatamente 2 vértices de
GRAFOS. Prof. André Backes. Como representar um conjunto de objetos e as suas relações?
8/0/06 GRAFOS Prof. André Backes Definição Como representar um conjunto de objetos e as suas relações? Diversos tipos de aplicações necessitam disso Um grafo é um modelo matemático que representa as relações
CES-11. Algoritmos e Estruturas de Dados. Carlos Alberto Alonso Sanches Juliana de Melo Bezerra
CES-11 Algoritmos e Estruturas de Dados Carlos Alberto Alonso Sanches Juliana de Melo Bezerra Objetivos gerais Compreensão da necessidade de uma boa estruturação das informações processadas no computador
Projeto e Análise de Algoritmos
Projeto e Análise de Algoritmos Aula 06 Busca em Profundidade e Busca em Largura Edirlei Soares de Lima Grafos (Revisão) G = (V, A) G: grafo; V: conjunto de vértices; A: conjunto
TGR BCC Representação Computacional de Grafos. Prof. Ricardo José Pfitscher
TGR BCC Representação Computacional de Grafos Prof. Ricardo José Pfitscher Cronograma Representação Matriz de djacências Lista de djacências Matriz de Incidências Representação Como podemos representar
Projeto de Algoritmos por Indução
Projeto de Algoritmos por Indução Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Projeto de Algoritmos por Indução junho - 2018 1 / 40 Este material é preparado
ESTRUTURAS DISCRETAS (INF 1631) GRAFOS. 1. O que é um grafo? Defina um grafo orientado. Defina um grafo não-orientado.
PUC-Rio Departamento de Informática Profs. Marcus Vinicius S. Poggi de Aragão Período: 0. Horário: as-feiras e as-feiras de - horas de maio de 0 ESTRUTURAS DISCRETAS (INF 6) a Lista de Exercícios Procure
INF1010 Lista de Exercícios 2
INF00 Lista de Exercícios 2 Árvores. Construir algoritmo para dada uma árvore n-ária, transformá-la em uma árvore binária. 2. Qual a maior e menor quantidade de nós que podem existir em uma árvore binária
Projeto e Análise de Algoritmos
Projeto e Análise de Algoritmos Aula 13 Componentes Fortemente Conectados Edirlei Soares de Lima Componentes Fortemente Conectados Um componente fortemente conectado (Strongly Connected
Algoritmos e Estruturas de Dados
Algoritmos e Estruturas de Dados Grafos Slides baseados em: ZIVIANI, N. Projetos de Algoritmos - com implementações em Java e C++. Thomson Learning, 2007. Cap 7. CORMEN, H.T.; LEISERSON, C.E.; RIVEST,
SUMÁRIO. Fundamentos Árvores Binárias Árvores Binárias de Busca
ÁRVORES SUMÁRIO Fundamentos Árvores Binárias Árvores Binárias de Busca 2 ÁRVORES Utilizadas em muitas aplicações Modelam uma hierarquia entre elementos árvore genealógica Diagrama hierárquico de uma organização
Estruturas de Dados. Pedro Ribeiro 2017/2018 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Estruturas de Dados 2017/ / 16
Estruturas de Dados Pedro Ribeiro DCC/FCUP 2017/2018 Pedro Ribeiro (DCC/FCUP) Estruturas de Dados 2017/2018 1 / 16 Informações Gerais Site: http://www.dcc.fc.up.pt/~pribeiro/aulas/edados1718/ Piazza: http://piazza.com/up.pt/spring2018/cc1007
ESTRUTURAS DE DADOS. prof. Alexandre César Muniz de Oliveira. 1. Introdução 2. Pilhas 3. Filas 4. Listas 5. Árvores 6. Ordenação 7. Busca 8.
ESTRUTURAS DE DADOS prof. Alexandre César Muniz de Oliveira 1. Introdução 2. Pilhas 3. Filas 4. Listas 5. Árvores 6. Ordenação 7. Busca 8. Grafos Sugestão bibliográfica: ESTRUTURAS DE DADOS USANDO C Aaron
UNIVERSIDADE DE SÃO PAULO INSTITUTO DE CIÊNCIAS MATEMÁTICAS E DE COMPUTAÇÃO Departamento de Ciências de Computação
UNIVERSIDADE DE SÃO PAULO INSTITUTO DE CIÊNCIAS MATEMÁTICAS E DE COMPUTAÇÃO Departamento de Ciências de Computação SCC-203 ALGORITMOS E ESTRUTURAS DE DADOS II Prova - Gabarito Nome: Nro. USP ) O matemático
Exercícios: Árvores. Universidade Federal de Uberlândia - UFU Faculdade de Computação - FACOM Lista de exercícios de estrutura de dados em linguagem C
Universidade Federal de Uberlândia - UFU Faculdade de Computação - FACOM Lista de exercícios de estrutura de dados em linguagem C Exercícios: Árvores 1. Utilizando os conceitos de grafos, defina uma árvore.
Busca em Profundidade. Busca em Grafos. Busca em Grafos. Busca em Grafos. Busca em Grafos. Os objetivos da busca são: Aplicações???
Teoria dos Grafos Introdução Prof. Humberto Brandão [email protected] aula disponível no site: http:bcc.unifal-mg.edu.br~humberto Universidade Federal de Alfenas Departamento de Ciências Exatas
Algoritmos em Grafos: Caminho Mínimo
Algoritmos em Grafos: Caminho Mínimo Letícia Rodrigues Bueno UFABC Problema 2: Menor caminho entre duas cidades Dado um mapa de cidades, contendo as distâncias entre cidades, qual o menor caminho entre
Prova Didática Grafos: Árvores Geradoras e Caminhos Mínimos, Análise de Complexidade
Prova Didática Grafos: Árvores Geradoras e Caminhos Mínimos, Análise de Complexidade Gustavo E.A.P.A. Batista 25 de janeiro de 2005 1 Contextualização 2 Caminhos Mínimos Caminhos Mínimos de uma Origem
If969 - Algoritmos e Estruturas de Dados
If969 - Algoritmos e Estruturas de Dados Centro de Informá-ca Universidade Federal de Pernambuco Sistemas de Informação Vinicius Cardoso Garcia [email protected] Missão Mo-var, apresentar, exercitar e consolidar
Algoritmos e Estruturas de Dados II LEIC
Algoritmos e Estruturas de Dados II Licenciatura em Engenharia Informática e Computação www.fe.up.pt/ rcamacho/cadeiras/aed2 LIACC/FEUP Universidade do Porto [email protected] Fevereiro 2005 Conteúdo da
Busca em largura. Algoritmos em Grafos. Marco A L Barbosa
Busca em largura Algoritmos em Grafos Marco A L Barbosa cba Este trabalho está licenciado com uma Licença Creative Commons - Atribuição-CompartilhaIgual 4.0 Internacional. Conteúdo Introdução Exemplo de
Grafos Parte 2. SCC-603 Algoritmos e Estruturas de Dados II. Profª. Rosane Minghim / Baseado em material de professores dos anos anteriores
Grafos Parte 2 SCC-603 Algoritmos e Estruturas de Dados II Profª. Rosane Minghim / 2012 Baseado em material de professores dos anos anteriores Percorrendo um grafo Percorrendo um Grafo Percorrer um grafo
Grafos. Notas. Notas. Notas. Notas. Algoritmos elementares. Representação de grafos Lista de adjacências Matriz de adjacências Atributos
Grafos Algoritmos elementares Conteúdo Introdução Representação de grafos Lista de adjacências Matriz de adjacências Atributos Pesquisas Busca em largura Aplicações Ordenação topológica Componentes fortemente
Estrutura de Dados e Algoritmos e Programação e Computadores II. Aula 10: Introdução aos Grafos
Estrutura de Dados e Algoritmos e Programação e Computadores II Aula 10: Introdução aos Grafos História O assunto que se constitui no marco inicial da teoria de grafos é na realidade um problema algorítmico.
Algoritmos e Estrutura de Dados. Aula 01 Apresentação da Disciplina e Introdução aos Algoritmos Prof. Tiago A. E. Ferreira
Algoritmos e Estrutura de Dados Aula 01 Apresentação da Disciplina e Introdução aos Algoritmos Prof. Tiago A. E. Ferreira Ementa e Objetivos Ementa: Análise de Algoritmos: Notação O e Análise Assintótica.
Pesquisa em Grafos. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Pesquisa em Grafos 2014/ / 33
Pesquisa em Grafos Pedro Ribeiro DCC/FCUP 2014/2015 Pedro Ribeiro (DCC/FCUP) Pesquisa em Grafos 2014/2015 1 / 33 Pesquisa em Grafos Uma das tarefas mais importantes é saber percorrer um grafo, ou seja
Filas de Prioridades Letícia Rodrigues Bueno
Filas de Prioridades Letícia Rodrigues Bueno UFABC Heaps Heaps: lista linear com chaves s 1,..., s n com propriedade s i s i/2, para 1 < i < n; Heaps Heaps: lista linear com chaves s 1,..., s n com propriedade
GRAFOS Aula 05 Algoritmos de percurso: busca em largura e profundidade Max Pereira
Ciência da Computação GRAFOS Aula 05 Algoritmos de percurso: busca em largura e profundidade Max Pereira Busca em Largura (Breadth-First Search) Um dos algoritmos mais simples para exploração de um grafo.
Grafos parte 2* Algoritmos e Estruturas de Dados II SCC-203 Rosane 2010/2011. *Baseado em material de professores dos anos anteriores
Grafos parte 2* Algoritmos e Estruturas de Dados II SCC-203 Rosane 2010/2011 *Baseado em material de professores dos anos anteriores Divisão do Arquivo 1ª parte Percorrendo um grafo Eficiência, Correção
Grafos parte 2. Percorrendo um grafo. Correção. Eficiência. Percorrendo um Grafo. Percorrendo um Grafo. Percorrendo um Grafo
Percorrendo um grafo Grafos parte 2 SCC-203 Algoritmos e Estruturas de Dados 2 Rosane 2010 Baseado em material de professores dos anos anteriores Percorrendo um Grafo Percorrer um grafo é um problema fundamental
5COP096 TeoriadaComputação
Sylvio 1 Barbon Jr [email protected] 5COP096 TeoriadaComputação Aula 13 Prof. Dr. Sylvio Barbon Junior Sumário - Problemas NP-Completo Algoritmos Não-deterministas; Classes NP-Completo e NP-Dificil; Teorema
O estudo utilizando apenas este material não é suficiente para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste
O estudo utilizando apenas este material não é suficiente para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste material e a resolução (por parte do aluno) de todos os
Solução de Recorrências
CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS Solução de Recorrências Algoritmos e Estruturas de Dados I Natália Batista https://sites.google.com/site/nataliacefetmg/ [email protected]
INF 1010 Estruturas de Dados Avançadas
INF Estruturas de Dados Avançadas Grafos //8 DI, PUC-Rio Estruturas de Dados Avançadas. Primeiro uso conhecido 7 Euler: pontes de Königsberg //8 DI, PUC-Rio Estruturas de Dados Avançadas. Primeiro uso
CI065 CI755 Algoritmos e Teoria dos Grafos
CI065 CI755 Algoritmos e Teoria dos Grafos Exercícios 11 de outubro de 2017 1 Fundamentos 1. Seja S = {S 1,..., S n } uma família de conjuntos. O grafo intercessão de S é o grafo G S cujo conjunto de vértices
Algoritmos e Estruturas de Dados
Algoritmos e Estruturas de Dados Ano Lectivo 2009/10 Margarida Mamede DI FCT/UNL Capítulo I Apresentação e Avaliação Margarida Mamede, DI FCT/UNL AED, 2009/10, Capítulo I 1 Enquadramento na LEI IP Introdução
Quicksort Letícia Rodrigues Bueno
Quicksort Letícia Rodrigues Bueno UFABC Quicksort Legenda: pivô; 1 a partição: ; 2 a partição: Quicksort Legenda: pivô; 1 a partição: ; 2 a partição: Quicksort Legenda: pivô; 1 a partição: ; 2 a partição:
Grafos - Introdução. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Grafos - Introdução 2014/ / 32
Grafos - Introdução Pedro Ribeiro DCC/FCUP 2014/2015 Pedro Ribeiro (DCC/FCUP) Grafos - Introdução 2014/2015 1 / 32 Conceito Definição de Grafo Formalmente, um grafo é: Um conjunto de nós/vértices (V).
AED Algoritmos e Estruturas de Dados LEE /2004
AED Algoritmos e Estruturas de Dados LEE - 2003/2004 http://web.tagus.ist.utl.pt/~ana.freitas/aed Algoritmos e Estruturas de Dados Disciplina de base da área científica de Metodologia e Tecnologia da Programação
QUESTÕES DE PROVAS ANTIGAS
CT-24 QUESTÕES DE PROVAS ANTIGAS ) Preencha a tabela abaixo com Î ou Ï: ω(log n) Θ(n) O(n log n) Ω(n 2 ) o(n ) 6n + 2n 2 + 2.log n + 4n + n.log n + log n 2) Dada a árvore binária abaixo, escreva os seus
Complexidade de Tempo e Espaço
Complexidade de Tempo e Espaço Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Complexidade de Tempo e Espaço junho - 2018 1 / 43 Este material é preparado usando
CES-11. Algoritmos e Estruturas de Dados. Carlos Alberto Alonso Sanches
CES-11 Algoritmos e Estruturas de Dados Carlos Alberto Alonso Sanches Juliana de Melo Bezerra Ideia de Tarjan (1972) Durante a exploração em profundidade de um digrafo, podemos numerar seus vértices de
SCC603 Algoritmos e Estruturas de Dados II Prof.a Rosane Minghim 1o sem. 2013
SCC603 Algoritmos e Estruturas de Dados II Prof.a Rosane Minghim 1o sem. 2013 Lista de Exercícios 1 1) Escrever em C funções para: a) Obter todos os nós adjacentes (vizinhos) a um nó do grafo, dado que
Estrutura de dados - Listas Encadeadas
Estrutura de dados - Listas Encadeadas Prof. Leonardo Cabral da Rocha Soares [email protected] Centro Universitário Newton Paiva 25 de abril de 2019 Estrutura de dados - Listas Encadeadas
