Título: Professor: Turma: Exercícios de recuperação José Alex A, B e D

Tamanho: px
Começar a partir da página:

Download "Título: Professor: Turma: Exercícios de recuperação José Alex A, B e D"

Transcrição

1 Título: Professor: Turma: Exercícios de recuperação José Alex A, B e D Questão 1 Constantes físicas necessárias para a solução dos problemas: razão de 20 litros por minuto, e vai descendo, com velocidade constante, até que encoste no fundo do tanque e a torneira seja fechada. aceleração da gravidade: 10 m/s constante de Planck: 6,6 x 10 J.s (UFPE 2007) Dois blocos, de massas M e M, estão ligados através de um fio inextensível de massa desprezível que passa por uma polia ideal, como mostra a figura. O bloco 2 está sobre uma superfície plana e lisa, e desloca-se com aceleração a = 1 m/s. Determine a massa M, em kg, sabendo que M = 1 kg. Questão 2 (FUVEST 2004) Um sistema industrial é constituído por um tanque cilíndrico, com 600 litros de água e área do fundo S = 0,6 m, e por um balde, com área do fundo S = 0,2 m. O balde está vazio e é mantido suspenso, logo acima do nível da água do tanque, com auxílio de um fino fio de aço e de um contrapeso C, como indicado na figura. Então, em t = 0 s, o balde passa a receber água de uma torneira, à Para o instante t = 6 minutos, com a torneira aberta, na situação em que o balde ainda não atingiu o fundo, determine: a) A tensão adicional ÐF, em N, que passa a agir no fio que sustenta o balde, em relação à situação inicial, indicada na figura. b) A altura da água H, em m, dentro do tanque. c) Considerando todo o tempo em que a torneira fica aberta, determine o intervalo de tempo T, em minutos, que o balde leva para encostar no fundo do tanque. NOTE E ADOTE: O contrapeso equilibra o peso do balde, quando vazio. O volume das paredes do balde é desprezível. Questão 3 (PUC-RIO 99) 1

2 A força ù, de módulo igual a 150N, desloca o corpo A de massa m =12kg junto com o corpo B de massa m =8kg. A aceleração gravitacional local é 10m/s. a) Determine o valor numérico da aceleração do corpo B. Esse balão, de massa igual a 14,4 kg e volume igual a 30 m, está preenchido por 3,6 kg de gás hélio, submetido à pressão de 1 atm. Em um dado instante, as cordas que o prendiam foram cortadas e o balão começou a subir. Considere que a temperatura seja constante e o gás, ideal. b) Determine o valor numérico da intensidade da força resultante que atua sobre o corpo B. c) Determine o valor numérico da aceleração total do corpo A. Questão 4 (UERJ 2005) Como propaganda, o supermercado utiliza um balão esférico no meio do estacionamento, preso por três cordas que fazem ângulo de 60 com a horizontal, conforme mostra a figura a seguir. a) Calcule a força de tração nas cordas quando o balão está preso. b) Supondo que o balão esteja a uma altura na qual seu volume corresponda a 37,5 m, calcule a pressão a que ele está submetido. Questão 5 (UERJ 2008) Os corpos A e B, ligados ao dinamômetro D por fios inextensíveis, deslocam-se em movimento uniformemente acelerado. Observe a representação desse sistema, posicionado sobre a bancada de um laboratório. 2

3 A massa de A é igual a 10 kg e a indicação no dinamômetro é igual a 40 N. Desprezando qualquer atrito e as massas das roldanas e dos fios, estime a massa de B. Questão 6 (UFF 2004) Um elevador de massa M encontra-se em repouso quando seu cabo de sustentação rompe-se. O elevador cai de uma altura h até atingir uma mola amortecedora, situada no fundo do poço, comprimindo-a. Durante a queda, um sistema de segurança pressiona as guias do elevador contra os trilhos laterais, provocando uma força de atrito resultante, constante, de valor igual a F (menor que o peso do elevador). Sabendo-se que a aceleração da gravidade é g, calcule em função de M, h, F e g: a) a aceleração do elevador após o rompimento do cabo; b) a velocidade do elevador ao atingir a mola. Suponha que a mola seja ideal e que a força de atrito não atue durante a compressão da mesma. Desprezando as perdas de energia no choque do elevador com a mola e sabendo-se que a compressão máxima sofrida pela mesma é y calcule: c) a variação da energia potencial gravitacional do elevador entre o instante do choque com a mola e o instante em que esta atinge sua compressão máxima; d) a constante elástica da mola. Questão 7 (UFG 2003) No arranjo esquematizado na figura 1, o corpo de massa m é ligado por um fio inextensível a uma bandeja, passando por uma polia. Sobre a bandeja há um corpo de massa m. O gráfico da velocidade do corpo de massa m (figura 2), em função do tempo, é: 3

4 Despreze as forças de atrito e as massas da bandeja, fio e polia. Considere m = 1,0 kg, g = 10,0 m/s e determine: a) a massa m ; b) a força que a bandeja exerce sobre o corpo de massa m. a) Faça o diagrama das forças que atuam no bloco durante a subida, identificando-as. b) Calcule a tensão no cabo durante a subida. c) O bloco de ferro pára quando sua base inferior atinge a altura de 10 m em relação ao solo. O bloco é então abandonado, caindo livremente. Calcule, usando o princípio da conservação da energia mecânica, a velocidade com que o bloco atinge o solo. Questão 9 (UFPE 2005) Um bloco de 1,2 kg é empurrado sobre uma superfície horizontal, através da aplicação de uma força ù, de módulo 10 N conforme indicado na figura. Calcule o módulo da força normal exercida pela superfície sobre o bloco, em newtons. Questão 8 (UFJF 2002) A figura a seguir esquematiza um equipamento de bate-estacas usado na construção civil, que eleva um bloco de ferro de massa igual a 500 kg com aceleração constante para cima de 2 m/s. Despreze o atrito, as rotações e considere que o cabo do bate-estacas seja inextensível. 4

5 Questão 10 (UFPE 2006) Um bloco A homogêneo, de massa igual a 3,0 kg, é colocado sobre um bloco B, também homogêneo, de massa igual a 6,0 kg, que por sua vez é colocado sobre o bloco C, o qual apoia-se sobre uma superfície horizontal, como mostrado na figura a seguir. Sabendo-se que o sistema permanece em repouso, calcule o módulo da força que o bloco C exerce sobre o bloco B, em newtons. Questão 12 (UFPE 2006) Um bloco A, de massa igual a 2,0 kg, é colocado sobre um bloco B, de massa igual 4,0 kg, como mostrado na figura. Sabendo-se que o sistema permanece em repouso sobre uma mesa, calcule a força que a mesa exerce sobre o bloco B, em newtons. Questão 11 (UFPE 2006) Uma vassoura, de massa 0,4 kg, é deslocada para a direita sobre um piso horizontal como indicado na figura. Uma força, de módulo F(cabo) = 10 N, é aplicada ao longo do cabo da vassoura. Calcule a força normal que o piso exerce sobre a vassoura, em newtons. Considere desprezível a massa do cabo, quando comparada com a base da vassoura. 5

6 considerado inextensível e de massa desprezível quando comparada à da carga. Considere g = 10 m/s. Questão 13 (UFRJ 96) Dois blocos de massa igual a 4 kg e 2 kg, respectivamente, estão presos entre si por um fio inextensível e de massa desprezível. Deseja-se puxar o conjunto por meio de uma força ù cujo módulo é igual a 3 N sobre uma mesa horizontal e sem atrito. O fio é fraco e corre o risco de romper-se. Qual o melhor modo de puxar o conjunto sem que o fio se rompa, pela massa maior ou pela menor? Justifique sua resposta. Suponha que, num determinado instante, a tensão no cabo de aço seja igual a 1200 N. a) Determine, neste instante, o sentido do vetor aceleração da carga e calcule o seu módulo. b) É possível saber se, nesse instante, o helicóptero está subindo ou descendo? Justifique a sua resposta. Questão 15 (UFRJ 97) Uma pessoa idosa, de 68 kg, ao se pesar, o faz apoiada em sua bengala como mostra a figura. Questão 14 (UFRJ 97) A figura mostra um helicóptero que se move verticalmente em relação à Terra, transportando uma carga de 100 kg por meio de um cabo de aço. O cabo pode ser 6

7 Com a pessoa em repouso a leitura da balança é de 650 N. Considere g = 10 m/s. a) Supondo que a força exercida pela bengala sobre a pessoa seja vertical, calcule o seu módulo e determine o seu sentido. b) Calcule o módulo da força que a balança exerce sobre a pessoa e determine a sua direção e o seu sentido. Questão 16 (UFRJ 99) O bloco 1, de 4kg, e o bloco 2, de 1 kg, representados na figura, estão justapostos e apoiados sobre uma superfície plana e horizontal. Eles são acelerados pela força horizontal ù, de módulo igual a 10N, aplicada ao bloco 1 e passam a deslizar sobre a superfície com atrito desprezível. Questão 17 (UFRJ 2004) O sistema representado na figura é abandonado sem velocidade inicial. Os três blocos têm massas iguais. Os fios e a roldana são ideais e são desprezíveis os atritos no eixo da roldana. São também desprezíveis os atritos entre os blocos (2) e (3) e a superfície horizontal na qual estão apoiados. a) Determine a direção e o sentido da força ù exercida pelo bloco 1 sobre o bloco 2 e calcule seu módulo. b) Determine a direção e o sentido da força ù exercida pelo bloco 2 sobre o bloco 1 e calcule seu módulo. O sistema parte do repouso e o bloco (1) adquire uma aceleração de módulo igual a a. Após alguns instantes, rompe-se o fio que liga os blocos (2) e (3). A partir de então, a aceleração do bloco (1) passa a ter um módulo igual a a'. Calcule a razão a' / a. 7

8 Questão 18 (UFRJ 2005) Quando o cabo de um elevador se quebra, os freios de emergência são acionados contra trilhos laterais, de modo que esses passam a exercer, sobre o elevador, quatro forças verticais constantes e iguais a f, como indicado na figura. Considere g = 10m/s. Suponha que, numa situação como essa, a massa total do elevador seja M = 600kg e que o módulo de cada força f seja f = 1350N. Calcule o módulo da aceleração com que o elevador desce sob a frenagem dessas forças. Determine a razão T'/T em função de a e g. Questão 20 (UFRJ 2007) Um sistema é constituído por um barco de 100 kg, uma pessoa de 58 kg e um pacote de 2,0 kg que ela carrega consigo. O barco é puxado por uma corda de modo que a força resultante sobre o sistema seja constante, horizontal e de módulo 240 newtons. Questão 19 (UFRJ 2006) Um bloco de massa m é abaixado e levantado por meio de um fio ideal. Inicialmente, o bloco é abaixado com aceleração constante vertical, para baixo, de módulo a (por hipótese, menor do que o módulo g da aceleração da gravidade), como mostra a figura 1. Em seguida, o bloco é levantado com aceleração constante vertical, para cima, também de módulo a, como mostra a figura 2. Sejam T a tensão do fio na descida e T' a tensão do fio na subida. Supondo que não haja movimento relativo entre as partes do sistema, calcule o módulo da força horizontal que a pessoa exerce sobre o pacote. 8

9 Questão 21 (UFRN 2002) Artêmis apresentou, em um dos seus trabalhos submetidos a uma revista de ensino de Física, uma análise dos conceitos físicos que aparecem nos desenhos animados. Dentre os casos que ela abordou, um particularmente interessante foi sobre a distraída Pantera Cor-de-Rosa. Nas suas ilustrações, Artêmis pôde registrar duas situações distintas de um episódio: - na primeira situação (figura 1), fisicamente possível, a Pantera encontra-se subindo um edifício com o auxílio de um elevador rudimentar e, nessa situação, ela precisa exercer uma força na corda para erguer-se. Ao chegar ao topo do edifício, a distraída Pantera solta a corda e cai em queda livre juntamente com o elevador. - na segunda situação (figura 2), fisicamente impossível, tem-se ilustrado o forte impacto do elevador ao se chocar com o solo, enquanto a Pantera livra-se dessa situação mortal dando um pequeno salto para fora do elevador. Diante das situações apresentadas, a) justifique o motivo pelo qual a situação da figura 2 é fisicamente impossível. b) esboce, separadamente, diagramas de forças que atuam na Pantera e no elevador durante a subida (figura 1). Considere que a roldana e a corda são ideais, há ausência de atrito no eixo da roldana e que a subida é feita com velocidade constante. c) determine a expressão literal da força que a Pantera fez na corda para conseguir erguer-se com o elevador, com velocidade constante. Considere M a massa da Pantera, m a massa do elevador e g a aceleração local da gravidade. Questão 22 (UFRRJ 2000) Na figura a seguir o fio que une os corpos A e B é inextensível e tem massa desprezível. As massas dos corpos são mû=m½=m. Sendo: ùû a força de atrito que atua no corpo 'A', '\' a aceleração da gravidade e '@' a aceleração do conjunto; demonstre que a=(mg-fû)/2m. 9

10 Questão 24 (UFRRJ 2005) Um banco e um bloco estão em repouso sobre uma mesa conforme sugere a figura: Questão 23 (UFRRJ 2004) Analise as figuras a seguir e leia com atenção o texto. Dois blocos de massas m e M, sendo M>m estão em repouso e em contato um ao lado do outro, sobre uma superfície plana. Se empurrarmos um dos blocos com uma força F, paralela à superfície, o conjunto irá mover-se com uma dada aceleração. Determine se faria diferença para as magnitudes da aceleração do conjunto e das forças de contato entre os blocos, se tivéssemos empurrado o outro bloco. Identifique todas as forças que atuam no banco, calculando seus valores. Questão 25 (UFSCAR 2003) Um caixote está em repouso, apoiado sobre a carroceria de um caminhão que percorre com velocidade constante um trecho plano, retilíneo e horizontal de uma estrada. Por alguns instantes, ainda nesse trecho de estrada, devido a uma alteração no movimento do caminhão, o caixote, apesar do atrito com a carroceria, escorrega para trás, mantendo-se porém na mesma direção da estrada. a) O que mudou no movimento do caminhão durante o escorregamento do caixote: acelerou, freou ou mudou de direção? Justifique. b) Represente esquematicamente, o caixote apoiado na carroceria e as forças que atuam sobre o caixote antes (I) e durante (II) o seu escorregamento, considerando um referencial inercial fixado na estrada. Em cada esquema, indique com uma seta o sentido do movimento do caminhão 10

11 e nomeie todas as forças representadas. Questão 26 (UFV 2004) Três blocos idênticos, A, B e C, cada um de massa M, deslocam-se sobre uma superfície plana com uma velocidade de módulo V constante. Os blocos estão interligados pelas cordas 1 e 2 e são arrastados por um homem, conforme esquematizado na figura a seguir. Questão 27 (UNB 97) O coeficiente de atrito estático entre os blocos A e B, montados como mostra a figura adiante, é de 0,9. Considerando que as massas dos blocos A e B sejam, respectivamente, iguais a 5,0 kg e 0,4kg e que g = 10,0 m/s, calcule, em newtons, o menor valor do módulo da força ù para que o bloco B não caia. Despreze a parte fracionária de seu resultado, caso exista. O coeficiente de atrito cinético entre os blocos e a superfície é e a aceleração da gravidade local é g. Calcule o que se pede em termos dos parâmetros fornecidos: a) a aceleração do bloco B. b) a força de tensão T na corda 2. c) o trabalho da força resultante no bloco C. d) a potência fornecida pelo homem. e) o trabalho da força de atrito sobre o bloco A quando este sofre um deslocamento L. Questão 28 (UNESP 92) Dois blocos idênticos, unidos por um fio de massa desprezível, jazem sobre uma mesa lisa e horizontal conforme mostra a figura a seguir. A força máxima a que esse fio pode resistir é 20N. 11

12 Qual o valor máximo da força F que se poderá aplicar a um dos blocos, na mesma direção do fio, sem romper o fio? Questão 29 (UNESP 99) Dois blocos, de massas M e m, mantidos em repouso por um fio A preso a uma parede e ligados entre si por um outro fio B, leve e inextensível, que passa por uma roldana de massa desprezível, estão dispostos conforme a figura. O bloco de massa M está apoiado sobre uma superfície plana e horizontal, enquanto o de massa m encontra-se suspenso. A roldana pode girar livremente. Num dado instante, o fio A é cortado e os blocos passam a ser mover com aceleração constante e igual a 2,5 m/s, sem encontrar qualquer resistência. Sabendo que m = 0,80 kg e considerando g = 10 m/s, determine a) a tensão T³ existente no fio B antes do corte em A ser efetuado, e a tensão T no fio B durante o período de aceleração. b) a massa M. Questão 30 (UNESP 2005) A figura ilustra um bloco A, de massa mû = 2,0 kg, atado a um bloco B, de massa m½ = 1,0 kg, por um fio inextensível de massa desprezível. O coeficiente de atrito cinético entre cada bloco e a mesa é Ý. Uma força F = 18,0 N é aplicada ao bloco B, fazendo com que ambos se desloquem com velocidade constante. Considerando g = 10,0 m/s, calcule a) o coeficiente de atrito Ý. b) a tração T no fio. 12

13 Questão 31 (UNESP 2006) Dois blocos, A e B, com A colocado sobre B, estão em movimento sob ação de uma força horizontal de 4,5 N aplicada sobre A, como ilustrado na figura. grande altura. Considere a situação em que a desafortunada caia, a partir do repouso, de uma altura de 81,0 m e que nosso super-herói a intercepte 1,0 m antes dela chegar ao solo, demorando 0,05 s para detê-la, isto é, para anular sua velocidade vertical. Considere que a massa da mocinha é de 50 kg e despreze a resistência do ar. a) Calcule a força média aplicada pelo super-herói sobre a mocinha, para detê-la. b) Uma aceleração 8 vezes maior que a gravidade (8 g) é letal para um ser humano. Determine quantas vezes a aceleração à qual a mocinha foi submetida é maior que a aceleração letal. Questão 33 Considere que não há atrito entre o bloco B e o solo e que as massas são respectivamente mû = 1,8 kg e m½ = 1,2 kg. Tomando g = 10 m/s, calcule a) a aceleração dos blocos, se eles se locomovem juntos. b) o valor mínimo do coeficiente de atrito estático para que o bloco A não deslize sobre B. Questão 32 (UNICAMP 99) As histórias de super-heróis estão sempre repletas de feitos incríveis. Um desses feitos é o salvamento, no último segundo, da mocinha que cai de uma (UNIRIO 98) Um corpo A, de 10 kg, é colocado num plano horizontal sem atrito. Uma corda ideal de peso desprezível liga o corpo A a um corpo B, de 40 kg, passando por uma polia de massa desprezível e também sem atrito. O corpo B, inicialmente em repouso, está a uma altura de 0,36 m, como mostra a figura. Sendo a aceleração da gravidade g = 10 m/s, determine: a) o módulo da tração na corda. b) o mínimo intervalo de tempo necessário para que o corpo B chegue ao solo. 13

14 Questão 34 (UNIRIO 99) Questão 35 (UFU 2001) O bloco A de massa 3,0kg está a 16m acima do solo, impedido de descer em virtude do anteparo. O bloco B, sobre o solo, tem massa 2,0kg. Desprezam-se quaisquer atritos e os pesos dos fios e da polia. Retirando-se o anteparo e admitindo-se g=10m/s, pedem-se: a) O tempo necessário para A atingir o solo. b) A altura máxima que B atinge acima do solo. Dois corpos A (mû=2,0kg) e B (m½=1,0kg) possuem dimensões desprezíveis. Os corpos A e B estão interligados por uma corda inextensível e de massa desprezível que passa por uma polia ideal, como mostra a figura anterior. Os corpos inicialmente estão em repouso. Considerando g=10 m/s e que não existem atritos, determine: a) a energia mecânica inicial do sistema, em joules; b) a velocidade com que a massa A chega ao solo. c) O trabalho total da força de tração que o fio exerce sobre os blocos A e B, desde o momento em que o anteparo é retirado até A tocar o solo. Questão 36 O texto abaixo refere-se às questões: 36 a 37 Na figura, o bloco A tem uma massa MÛ = 80 kg e o bloco B, uma massa M½ = 20 kg. São ainda desprezíveis os atritos e as inércias do fio e da polia e considera-se g = 10m/s. (PUCMG 2007) 14

15 Sobre a aceleração do bloco B, pode-se afirmar que ela será de: a) 10 m/s para baixo. b) 4,0 m/s para cima. c) 4,0 m/s para baixo. d) 2,0 m/s para baixo. Considere que as massas de A e B sejam, respectivamente, iguais a 80 kg e 20 kg. As polias e os fios são ideais, com g = 10 m/s. O módulo da força que traciona o fio é: a) 160 N b) 200 N c) 400 N d) 600 N Considere que as massas de A e B sejam, respectivamente, iguais a 80 kg e 20 kg. As polias e os fios são ideais, com g = 10 m/s. Questão 38 (CESGRANRIO 97) Três blocos, A, B e C, e mesmo peso P estão empilhados sobre um plano horizontal. O coeficiente de atrito entre esses blocos e entre o bloco C e o plano vale 0,5. Questão 37 (PUCMG 2007) ma força horizontal F é aplicada ao bloco B, conforme indica a figura. O maior valor que F pode adquirir, sem que o sistema ou parte dele se mova, é: a) P/2 b) P c) 3P/2 d) 2P e) 3P 15

16 Questão 40 (CESGRANRIO 98) Dois blocos A e B, de massas mû= 0,69kg e m½= 0,40kg, apresentados na figura adiante, estão ligados por um fio que passa por uma roldana. Tanto o fio quanto a roldana têm massas desprezíveis. O sistema é solto com o bloco B na posição M, indo atingir a posição N, 80cm abaixo, com velocidade de 2,0 m/s. Questão 39 (CESGRANRIO 98) Dois blocos A e B, de massas mû = 0,69 kg e m½ = 0,40 kg, apresentados na figura a seguir, estão ligados por um fio que passa por uma roldana. Tanto o fio quanto a roldana têm massas desprezíveis. O sistema é solto com o bloco B na posição M, indo atingir a posição N, 80 cm abaixo, com velocidade de 2,0 m/s. O trabalho realizado pela força de atrito durante esse movimento, vale, em joules: a) 0,80 b) 1,0 c) 1,2 d) 1,8 e) 2,0 aceleração que esses blocos adquirem, nesse movimento, vale, em m/s a) 1,5 b) 1,8 c) 2,0 d) 2,5 e) 3,0 Questão 41 (CESGRANRIO 98) Dois blocos A e B, de massas mû = 0,69 kg e m½ = 0,40 kg, apresentados na figura adiante, estão ligados por um fio que passa por uma roldana. Tanto o fio quanto a roldana têm massas desprezíveis. O sistema é solto com o bloco B na posição M, indo atingir a posição N, 80 cm abaixo, com velocidade de 2,0 m/s. 16

17 A tração no fio que liga os blocos vale, em newtons: a) 1,2 b) 1,5 c) 2,0 d) 3,0 e) 3,2 m pêndulo, constituído por um fio ideal e uma esfera de peso P, oscila entre duas posições extremas A e B, conforme ilustra a figura anterior. Nessas extremidades, a relação correta entre os módulos do peso e da tração (T) no fio é: a) T = P. sen b) T = P. cos c) T = P. tg d) P = T. cos e) P = T. tg Questão 43 (FATEC 98) O corpo A, de massa 10 kg, apoiado sobre uma superfície horizontal, está parado, prestes a deslizar, preso por um fio ao corpo B, de massa 2,0 kg. Questão 42 (CESGRANRIO 99) Considerando-se o fio e a roldana ideais e adotando-se g = 10 m/s, o coeficiente de atrito estático entre o corpo A e a superfície vale a) 2,0 b) 0,10 c) 0,20 d) 0,40 e) 0,50 17

18 Questão 44 Questão 45 (FATEC 99) Uma pequena corrente, formada por três elos de 50g cada, é puxada para cima com movimento acelerado de 2,0m/s. (FATEC 98) Na figura a seguir, fios e polias são ideais, e o sistema está em repouso. Cortado o fio 3, após t segundos o corpo C atinge o solo. Os corpos A, B e C têm massas, respectivamente, 5,0 kg, 8,0 kg e 12,0 kg. Adotando g = 10 m/s e desprezando a resistência do ar, podemos afirmar que o valor de t e a tração no fio 2 valem, respectivamente: a) 2,0 s e 50 N b) 2,0 s e 80 N c) 1,0 s e 50 N d) 1,0 s e 80 N e) 1,0 s e 200 N força F, com que o primeiro elo é puxado para cima, e a força de interação entre o segundo elo e o terceiro elo têm intensidades respectivas, em newtons, iguais a a) 1,8 e 0,60 b) 1,8 e 1,2 c) 1,8 e 1,8 d) 1,2 e 1,2 e) 0,60 e 0,60 Questão 46 (FATEC 2000) Na figura a seguir, fios e polias são ideais. O objeto A de massa 10kg desce com aceleração constante de 2,5m/s, passando pelo ponto P com velocidade de 2m/s. 18

19 dotando g = 10m/s e desprezando todas as forças de resistência, a massa do objeto B e a velocidade com que o corpo A passa pelo ponto S são, respectivamente: a) 2,0 kg e 1,5 m/s b) 3,0 kg e 14 m/s c) 4,0 kg e 13 m/s d) 5,0 kg e 13 m/s. e) 6,0 kg e 12 m/s. Questão 47 aceleração do sistema é de 0,60m/s, e as massas de A e B são respectivamente 2,0kg e 5,0kg. A massa do corpo C vale, em kg, a) 1,0 b) 3,0 c) 5,0 d) 6,0 e) 10 Questão 48 (FATEC 2006) Dois blocos A e B de massas 10 kg e 20 kg, respectivamente, unidos por um fio de massa desprezível, estão em repouso sobre um plano horizontal sem atrito. Uma força, também horizontal, de intensidade F = 60N é aplicada no bloco B, conforme mostra a figura. (FATEC 2002) Três blocos, A, B e C, deslizam sobre uma superfície horizontal cujo atrito com estes corpos é desprezível, puxados por uma força ù de intensidade 6,0N. O módulo da força de tração no fio que une os dois blocos, em newtons, vale a) 60. b) 50. c) 40. d) 30. e)

20 Questão 50 (FEI 95) Quanto à figura a seguir, podemos afirmar que: Questão 49 (FATEC 2006) O bloco da figura, de massa 5,0 kg, move-se com velocidade constante de 1,0 m/s, num plano horizontal, sob a ação da força ù, constante e horizontal. Se o coeficiente de atrito entre o bloco e o plano vale 0,20, e a aceleração da gravidade, 10 m/s, então o módulo de ù, em newtons, vale a) 25 b) 20 c) 15 d) 10 e) 5,0 a) não existe atrito b) a aceleração do corpo B é o dobro da aceleração do corpo A c) a força normal do corpo A é o dobro da força normal em B d) a força que o fio exerce no corpo A é o dobro da força que o fio exerce no corpo B e) a aceleração do corpo B é a metade da aceleração do corpo A Questão 51 (FGV 2005) Dois carrinhos de supermercado podem ser acoplados um ao outro por meio de uma pequena corrente, de modo que uma única pessoa, ao invés de empurrar dois carrinhos separadamente, possa puxar o conjunto pelo interior do supermercado. Um cliente aplica uma força horizontal de intensidade F, sobre o carrinho da frente, dando ao conjunto uma aceleração de intensidade 0,5 m/s. 20

21 Sendo o piso plano e as forças de atrito desprezíveis, o módulo da força F e o da força de tração na corrente são, em N, respectivamente: a) 70 e 20. b) 70 e 40. c) 70 e 50. d) 60 e 20. e) 60 e 50. Questão 53 (FUVEST 2000) Duas jarras iguais A e B, cheias de água até a borda, são mantidas em equilíbrio nos braços de uma balança, apoiada no centro. A balança possui fios flexíveis em cada braço (f e f ) presos sem tensão, mas não frouxos, conforme a figura. Questão 52 (FUVEST 99) Um balão de pesquisa, cheio de gás hélio, está sendo preparado para sua decolagem. A massa do balão vazio (sem gás) é M½ e a massa do gás hélio no balão é M. O balão está parado devido às cordas que o prendem ao solo. Se as cordas forem soltas, o balão iniciará um movimento de subida vertical com aceleração de 0,2m/s. Para que o balão permaneça parado, sem a necessidade das cordas, deve-se adicionar a ele um lastro de massa igual a: a) 0,2 M½ b) 0,2 M c) 0,02 M d) 0,02 (M½+M) e) 0,02 (M½-M) 21

22 oloca-se na jarra B um objeto metálico, de densidade maior que a da água. Esse objeto deposita-se no fundo da jarra, fazendo com que o excesso de água transborde para fora da balança. A balança permanece na mesma posição horizontal devido à ação dos fios. Nessa nova situação, pode-se afirmar que a) há tensões iguais e diferentes de zero nos dois fios b) há tensão nos dois fios, sendo a tensão no fio f maior do que no fio f c) há tensão apenas no fio f d) há tensão apenas no fio f e) não há tensão em nenhum dos dois fios Questão 54 (FUVEST 2006) Uma esfera de massa m³ está pendurada por um fio, ligado em sua outra extremidade a um caixote, de massa M=3 m³, sobre uma mesa horizontal. Quando o fio entre eles permanece não esticado e a esfera é largada, após percorrer uma distância H³, ela atingirá uma velocidade V³, sem que o caixote se mova. Na situação em que o fio entre eles estiver esticado, a esfera, puxando o caixote, após percorrer a mesma distância H³, atingirá uma velocidade V igual a a) 1/4 V³ b) 1/3 V³ c) 1/2 V³ d) 2 V³ e) 3 V³ Questão 55 (FUVEST 2006) Para vencer o atrito e deslocar um grande contêiner C, na direção indicada, é necessária uma força F = 500N. Na tentativa de movê-lo, blocos de massa m = 15kg são pendurados em um fio, que é esticado entre o contêiner e o ponto P na parede, como na figura. Para movimentar o contêiner, é preciso pendurar no fio, no mínimo, a) 1 bloco b) 2 blocos c) 3 blocos d) 4 blocos e) 5 blocos Obs: sen 45 = cos 45 0,7 tan 45 = 1 22

23 Questão 56 e) outra expressão (ITA 96) Fazendo compras num supermercado, um estudante utiliza dois carrinhos. Empurra o primeiro, de massa m, com uma força F, horizontal, o qual, por sua vez, empurra outro de massa M sobre um assoalho plano e horizontal. Se o atrito entre os carrinhos e o assoalho puder ser desprezado, pode-se afirmar que a força que está aplicada sobre o segundo carrinho é: a) F b) MF/(m + M) c) F(m + M)/M d) F/2 e) outra expressão diferente. Questão 58 (ITA 98) Considere um bloco cúbico de lado d e massa m em repouso sobre um plano inclinado de ângulo, que impede o movimento de um cilindro de diâmetro d e massa m idêntica à do bloco, como mostra a figura. Suponha que o coeficiente de atrito estático entre o bloco não deslize pelo plano e que o coeficiente de atrito estático entre o cilindro e o bloco seja desprezível. O valor máximo do ângulo do plano inclinado, para que a base do bloco permaneça em contato com o plano, é tal que: Questão 57 (ITA 96) Dois blocos de massa M estão unidos por um fio de massa desprezível que passa por uma roldana com um eixo fixo. Um terceiro bloco de massa m é colocado suavemente sobre um dos blocos, como mostra a figura. Com que força esse pequeno bloco de massa m pressionará o bloco sobre o qual foi colocado? a) 2mMg/(2M + m) b) mg c) (m - M)g d) mg/(2m + m) 23

24 a) sen = 1/2. b) tan = 1. c) tan = 2. d) tan = 3. e) cotg = 2. Questão 60 (ITA 2002) Uma rampa rolante pesa 120N e se encontra inicialmente em repouso, como mostra a figura. Questão 59 (ITA 99) Um bloco de massa M desliza sobre uma superfície horizontal sem atrito, empurrado por uma força ù, como mostra a figura abaixo. Esse bloco colide com outro de massa m em repouso, suspenso por uma argola de massa desprezível e também sem atrito. Após a colisão, o movimento é mantido pela mesma força ù, tal que o bloco de massa m permanece unido ao de massa M em equilíbrio vertical, devido ao coeficiente de atrito estático e existente entre os dois blocos. Considerando g a aceleração da gravidade e ³ a velocidade instantânea do primeiro bloco logo antes da colisão, a potência requerida para mover o conjunto, logo após a colisão, tal que o bloco de massa m não deslize sobre o outro, é dada pela relação: a) [g(m + m) V³/ e b) (g m V³)/ e c) (g M V³)/[ e(m + m)] d) (g m V³)/[ e(m + m)] e) (g M V³)/ e m bloco que pesa 80N, também em repouso, é abandonado no ponto 1, deslizando a seguir sobre a rampa. O centro de massa G da rampa tem coordenadas: x = 2b/3 e y = c/3. São dados ainda: a = 15,0m sen = 0,6. Desprezando os possíveis atritos e as dimensões do bloco, pode-se afirmar que a distância percorrida pela rampa no solo, até o instante em que o bloco atinge o ponto 2, é a) 16,0m b) 30,0m c) 4,8m d) 24,0m e) 9,6m 24

25 Questão 61 (MACKENZIE 96) O esquema a seguir representa três corpos de massas mû = 2 kg, m½ = 2 kg e mý = 6 kg inicialmente em repouso na posição indicada. Num instante, abandona-se o sistema. Os fios são inextensíveis e de massa desprezível. Desprezando os atritos e considerando g = 10 m/s, o tempo que B leva para ir de P a Q é: a) 0,5 s b) 1,0 s c) 1,5 s d) 2,0 s e) 2,5 s Questão 62 (MACKENZIE 97) No conjunto a seguir, de fios e polias ideais, os corpos A, B e C encontram-se inicialmente em repouso. Num dado instante esse conjunto é abandonado, e após 2,0s o corpo A se desprende, ficando apenas os corpos B e C interligados. O tempo gasto para que o novo conjunto pare, a partir do desprendimento do corpo A, é de: a) 8,0 s b) 7,6 s c) 4,8 s d) 3,6 s e) 2,0 s Questão 63 (MACKENZIE 98) Duas esferas A e B de mesma massa e raio são colocadas no interior de uma caixa como mostra a figura a seguir. A força exercida pelo fundo da caixa sobre a esfera A tem intensidade de 30N. O peso de cada esfera é: a) 5 N b) 10 N c) 15 N d) 20 N e) 25 N 25

26 a) 1 kg b) 2 kg c) 3 kg d) 4 kg e) 5 kg Questão 64 (MACKENZIE 2008) No sistema a seguir, o fio e a polia são considerados ideais e o atrito entre as superfícies em contato é desprezível. Abandonando-se o corpo B a partir do repouso, no ponto M, verifica-se que, após 2 s, ele passa pelo ponto N com velocidade de 8 m/s. Sabendo-se que a massa do corpo A é de 5 kg, a massa do corpo B é Dados: g = 10 m/s cos 37 = 0,8 sen 37 = 0,6 Questão 65 (PUC-RIO 99) Uma corrente tem cinco elos cujas massas, a partir do elo superior, são, respectivamente, m, m, mƒ, m e m. A corrente é mantida em repouso, ao longo da vertical, por uma força ù de intensidade igual a 10N. A força que o terceiro elo faz sobre o quarto é, em newtons, a) (m + m + mƒ)g. b) (m + m )g c) (m + m + mƒ)g d) (m + m + mƒ)g e) (m + m )g. 26

27 Questão 66 (PUC-RIO 2000) Uma locomotiva puxa uma série de vagões, a partir do repouso. Qual é a análise correta da situação? a) A locomotiva pode mover o trem somente se for mais pesada do que os vagões. b) A força que a locomotiva exerce nos vagões é tão intensa quanto a que os vagões exercem na locomotiva; no entanto, a força de atrito na locomotiva é grande e é para frente, enquanto que a que ocorre nos vagões é pequena e para trás. c) O trem se move porque a locomotiva dá um rápido puxão nos vagões, e, momentaneamente, esta força é maior do que a que os vagões exercem na locomotiva. d) O trem se move para frente porque a locomotiva puxa os vagões para frente com uma força maior do que a força com a qual os vagões puxam a locomotiva para trás. e) Porque a ação é sempre igual à reação, a locomotiva não consegue puxar os vagões. Entre A e o apoio existe atrito de coeficiente = 0,5, a aceleração da gravidade vale g = 10 m/s e o sistema é mantido inicialmente em repouso. Liberado o sistema, após 2,0 s de movimento, a distância percorrida por A, em metros, é a) 0,50 b) 1,0 c) 2,0 d) 2,5 e) 5,0 Questão 68 (PUCCAMP 99) O esquema representa um sistema que permite deslocar o corpo Y sobre o tampo horizontal de uma mesa, como conseqüência da diferença das massas dos corpos X e Z. Nesse esquema, considere desprezíveis as massas dos fios e das polias, bem como as forças passivas nas polias e nos corpos X e Z. Questão 67 (PUCCAMP 98) Dois corpos A e B, de massas MÛ = 3,0 kg e M½ = 2,0 kg, estão ligados por uma corda de peso desprezível que passa sem atrito pela polia C, como mostra a figura a seguir. 27

28 endo g=10,0m/s e sabendo-se que, durante o movimento, o corpo Y tem uma aceleração igual a 1,6m/s, o coeficiente de atrito entre Y e o tampo da mesa é igual a a) 0,50 b) 0,40 c) 0,30 d) 0,20 e) 0,10 Questão 69 (PUCCAMP 2000) Três blocos, com massas iguais, foram ligados pelos fios 1 e 2 que passam por duas roldanas dispostas como está indicado no esquema. No esquema, considere desprezíveis as possíveis forças de atrito, as massas das roldanas e as massas dos fios. ângulo entre os fios 1 e 2 é igual a 90 no instante inicial, quando o conjunto é liberado. Pode-se afirmar corretamente que o sistema a) terá movimento com aceleração nula quando for igual a 120. b) terá movimento com aceleração nula quando for igual 150. c) ficará em equilíbrio estático quando tender a 180. d) terá movimento com aceleração sempre diferente de zero. e) ficará sempre em equilíbrio estático. Questão 70 (PUCMG 99) A figura mostra dois blocos idênticos, cada um com massa m, em situações diferentes. Na situação I, eles estão em repouso, presos ao teto ao laboratório por cabos inextensíveis e de massas desprezíveis. Já em II, eles estão em queda livre, presos por um cabo idêntico aos da situação I. Os valores das trações no cabo que une um bloco ao outro, nas situações I e II, são, NESTA ORDEM: a) 0 e mg. b) mg e 0. c) mg e 1/2 mg. d) 1/2 mg e mg. e) mg e mg. 28

29 Questão 71 (PUCMG 99) Uma partícula de chumbo de massa m cai a partir do repouso de uma grande altura acima da superfície da Terra. Sabe-se que o ar exerce sobre ela uma força de atrito proporcional ao quadrado da velocidade, ou seja, F = -cv, onde o sinal negativo indica que a força se opõe ao movimento. Suponha que a aceleração da gravidade seja g, constante ao longo de todo o movimento. A velocidade da bolinha, por maior que seja a altura da queda, não ultrapassará o valor dado pela expressão: a) mg/c b) (mg/c) c) c) mgc d) (mgc) e) Ë(mg/c) Questão 72 (PUCMG 2001) Na figura abaixo, estão representados dois blocos de massas 1,0kg e 2,0kg, sobre uma superfície horizontal. O atrito é desprezível. Os dois blocos estão ligados por um fio de massa desprezível. Sobre o segundo bloco, age uma força horizontal F=6,0N. A aceleração do sistema e a tração no fio valerão, RESPECTIVAMENTE: a) 2,0 m/s e 2,0 N b) 3,0 m/s e 6,0 N c) 6,0 m/s e 6,0 N d) 3,0 m/s e 2,0 N 29

30 Questão 73 (PUCMG 2007) A figura1 representa um bloco de massa m que, após ser lançado com velocidade v, sobe uma rampa de comprimento L, sem atrito, inclinada de um ângulo š. Assinale a opção que corresponde às forças que atuam no bloco enquanto ele estiver subindo a rampa. a) 20 N b) 60 N c) 18 N d) 40 N e) 15 N Questão 75 (PUCPR 2001) Um funcionário está realizando manutenção em uma linha de transmissão de energia elétrica. Dispõe de um equipamento que está ligado à linha, conforme mostra a figura abaixo: Questão 74 (PUCPR 97) O sistema a seguir está em equilíbrio. O bloco A pesa 15 N e o bloco B pesa 60 N. O coeficiente de atrito estático entre o bloco B e o plano horizontal vale 0,3. A força de atrito entre o bloco B e o plano horizontal vale: esprezando o peso do cabo e considerando que o peso do conjunto funcionário-equipamento é igual a 1000N, a tração no cabo tem módulo aproximadamente igual a: (Dados: sen 10 = 0,17 e cos 10 =0,98) a) 1000 N b) 8000 N c) 5900 N d) 2950 N e) N 30

31 Questão 76 (PUCPR 2004) Os corpos A e B de massas mû e m½, respectivamente, estão interligados por um fio que passa pela polia, conforme a figura. A polia pode girar livremente em torno de seu eixo. A massa do fio e da polia são considerados desprezíveis. Questão 77 (PUCSP 99) A mola da figura tem constante elástica 20N/m e encontra-se deformada de 20cm sob a ação do corpo A cujo peso é 5N. Nessa situação, a balança, graduada em newtons, marca a) 1 N b) 2 N c) 3 N d) 4 N e) 5 N e o sistema está em repouso é correto afirmar: I. Se mû = m½, necessariamente existe atrito entre o corpo B e o plano inclinado. II. Independente de existir ou não atrito entre o plano e o corpo B, deve-se ter mû = m½. III. Se não existir atrito entre o corpo B e o plano inclinado, necessariamente mû > m½. IV. Se não existir atrito entre o corpo B e o plano inclinado, necessariamente m½ > mû. Está correta ou estão corretas: a) Somente I. b) Somente II. c) I e III. d) I e IV. e) Somente III. Questão 78 (UDESC 97) Dois blocos, A e B, de massas mû = 2,0 kg e m½ = 3,0 kg estão sobre uma superfície perfeitamente lisa, 31

32 conforme a figura a seguir. O atrito entre os blocos e a superfície é desprezível. Sobre o corpo A é aplicada uma força ù, horizontal e constante, de intensidade igual a 15,0 N. Assinale a alternativa CORRETA: a) a aceleração do bloco B é igual à aceleração do bloco A, porque as forças resultantes sobre o blocos A e B são de mesma intensidade; b) a aceleração do conjunto é igual a 5,0 m/s ; c) a força exercida pelo bloco B sobre o bloco A tem intensidade igual a 9,0 N; d) a força exercida pelo bloco A sobre o bloco B tem intensidade igual a 15,0 N; e) a força exercida pelo bloco A sobre o bloco B e a força exercida pelo bloco B sobre o bloco A têm intensidades diferentes. Questão 79 (UECE 96) Nas figuras aparecem corpos ligados a dinamômetros calibrados em newtons. Admitindo que os dinamômetros não tem massa, os atritos são desprezíveis e g = 10 m/s. Das leituras de cada dinamômetro indicadas nas alternativas a seguir, a errada é: Questão 80 (UEL 94) Os três corpos, A, B e C, representados na figura a seguir têm massas iguais, m = 3,0 kg. O plano horizontal, onde se apóiam A e B, não oferece atrito, a roldana tem massa desprezível e a aceleração local da gravidade pode ser considerada g = 10 m/s. A tração no fio que une os blocos A e B tem módulo a) 10 N b) 15 N c) 20 N d) 25 N e) 30 N 32

33 Questão 81 Questão 82 (UEL 96) Os blocos A e B têm massas mû = 5,0 kg e m½ = 2,0 kg e estão apoiados num plano horizontal perfeitamente liso. Aplica-se ao corpo A a força horizontal ù, de módulo 21 N. (UEL 95) Os corpos A e B são puxados para cima, com aceleração de 2,0 m/s, por meio da força ù, conforme o esquema a seguir. Sendo mû = 4,0 kg, m½ = 3,0 kg e g = 10 m/s, a força de tração na corda que une os corpos A e B tem módulo, em N, de a) 14 b) 30 c) 32 d) 36 e) 44 A força de contato entre os blocos A e B tem módulo, em newtons, a) 21 b) 11,5 c) 9,0 d) 7,0 e) 6,0 Questão 83 (UEL 98) Um corpo de massa 8,0 kg é colocado sobre uma superfície horizontal completamente lisa, preso por um fio ideal a outro corpo, de massa 2,0 kg. Adote g = 10 m/s e considere ideal a roldana. 33

34 A tração no fio tem módulo, em newtons, a) 4,0 b) 12 c) 16 d) 20 e) 24 Questão 84 (UEL 99) Dois blocos A e B, com massas respectivamente iguais a mû=4,0kg e m½=2,0kg, estão unidos conforme mostra a figura a seguir. O fio que prende o corpo A tem a outra extremidade presa a um pino fixo no chão. Despreze as massas dos fios e da roldana, considere que não há atritos e que a intensidade da força aplicada em B é 36 N. Lembrando que, na situação esquematizada, a aceleração do corpo A será igual ao dobro da aceleração do corpo B, a tração no fio, em newtons, será igual a a) 20 b) 16 c) 12 d) 8,0 e) 4,0 Questão 85 (UEL 2005) Partindo do repouso, e utilizando sua potência máxima, uma locomotiva sai de uma estação puxando um trem de 580 toneladas. Somente após 5 minutos, o trem atinge sua velocidade máxima, 50 km/h. Na estação seguinte, mais vagões são agregados e, desta vez, o trem leva 8 minutos para atingir a mesma velocidade limite. Considerando que, em ambos os casos, o trem percorre trajetórias aproximadamente planas e que as forças de atrito são as mesmas nos dois casos, é correto afirmar que a massa total dos novos vagões é: a) 238 ton. b) 328 ton. c) 348 ton. d) 438 ton. e) 728 ton. 34

35 Questão 86 (UERJ 2004) Um passageiro está no interior de um elevador que desce verticalmente, com aceleração constante "a". Se "a" vale 1/5 da aceleração da gravidade, a razão entre a intensidade da força que o piso do elevador exerce sobre o passageiro e o peso do passageiro é igual a: a) 5 b) 6/5 c) 1 d) 4/5 Questão 87 (UFC 2000) O bloco mostrado na figura está em repouso sob a ação da força horizontal F, de módulo igual a 10N, e da força de atrito entre o bloco e a superfície. Se uma outra força horizontai F, de módulo igual a 2N e sentido contrário, for aplicada ao bloco, a força resultante sobre o mesmo será: a) nula b) 2 N c) 8 N d) 10 N e) 12 N Questão 88 (UFC 2003) A figura adiante mostra dois blocos de massas m = 2,5 kg e M = 6,5 kg, ligados por um fio que passa sem atrito por uma roldana. Despreze as massas do fio e da roldana e suponha que a aceleração da gravidade vale g = 10 m/s. O bloco de massa M está apoiado sobre a plataforma P e a força F aplicada sobre a roldana é suficiente apenas para manter o bloco de massa m em equilíbrio estático na posição indicada. Sendo F a intensidade dessa força e R, a intensidade da força que a plataforma exerce sobre M, é correto afirmar que: a) F = 50 N e R = 65 N. b) F = 25 N e R = 65 N. c) F = 25 N e R = 40 N. d) F = 50 N e R = 40 N. e) F = 90 N e R = 65 N. 35

36 Questão 89 (UFES 2001) Dois blocos, A e B, de massas respectivamente mû=2,0kg e m½=3,0kg, estão ligados por um fio inextensível e sem massa. O fio passa por uma polia de massa desprezível, que pode girar livremente sem atrito, fixada a 5,0m de altura do solo. Os blocos são mantidos a uma altura de 1,0m acima do solo, com o fio totalmente esticado, e daí abandonados a partir do repouso. Medida a partir do solo, qual a altura máxima alcançada pelo bloco A, antes de começar a descer? a) 4,0 m b) 3,0 m c) 2,5 m d) 2,2 m e) 2,0 m Questão 90 (UFF 99) Uma caixa é puxada sobre um piso horizontal por uma força (ù), paralela ao piso, cujo módulo é igual ao da força de atrito entre as superfícies em contato, com direção e sentido mostrados na figura. O gráfico velocidade (v) x tempo (t) que melhor descreve o movimento da caixa é: Questão 91 (UFF 2001) Um cubo se encontra em equilíbrio apoiado em um plano inclinado, conforme mostra a figura. Identifique a melhor representação da força que o plano exerce sobre o cubo. 36

37 Questão 92 (UFG 2005) O bloco A da figura desliza sobre uma superfície horizontal sem atrito puxado pelo bloco B. O fio e a polia são ideais. O gráfico que representa qualitativamente a energia cinética do sistema em função do tempo a partir do instante em que o bloco A atinge o ponto P é Questão 93 (UFLAVRAS 2000) Um bloco de peso igual a 50 N, encontra-se sobre uma balança no piso de um elevador. Se o elevador sobe com aceleração igual, em módulo, à metade da aceleração da gravidade local, pode-se afirmar que: a) A leitura da balança será de 25 N. b) A leitura da balança permanecerá inalterada. c) A leitura da balança será de 75 N. d) A leitura da balança será de 100 N. e) A leitura da balança será de 200 N. Questão 94 (UFMG 95) Um homem empurra um caixote para a direita, com velocidade constante, sobre uma superfície horizontal, como mostra a figura a seguir. Desprezando-se a resistência do ar, o diagrama que melhor representa as forças que atuam no caixote é: 37

38 Questão 95 Questão 96 (UFMG 99) Na figura, dois ímãs iguais, em forma de anel, são atravessados por um bastão que está preso em uma base. O bastão e a base são de madeira. Considere que os ímãs se encontram em equilíbrio e que o atrito entre eles e o bastão é desprezível. (UFMG 98) Dois blocos iguais estão conectados por um fio de massa desprezível, como mostra a figura. força máxima que o fio suporta sem se arrebentar é de 70N. Em relação à situação apresentada, assinale a alternativa correta. a) O maior valor para o peso de cada bloco que o fio pode suportar é 35N. b) O fio não arrebenta porque as forças se anulam. c) O maior valor para o peso de cada bloco que o fio suporta é de 140 N. d) O maior valor para o peso de cada bloco que o fio pode suportar é 70 N. essas condições, o módulo da força que a base exerce sobre o ímã de baixo é a) igual ao peso desse ímã. b) nulo. c) igual a duas vezes o peso desse ímã. d) maior que o peso desse ímã e menor que o dobro do seu peso. 38

39 Questão 97 (UFMG 99) As figuras mostram uma pessoa erguendo um bloco até uma altura h em três situações distintas. a situação I, o bloco é erguido verticalmente; na II, é arrastado sobre um plano inclinado; e, na III, é elevado utilizando-se uma roldana fixa. Considere que o bloco se move com velocidade constante e que são desprezíveis a massa da corda e qualquer tipo de atrito. Considerando-se as três situações descritas, a força que a pessoa faz é a) igual ao peso do bloco em II e maior que o peso do bloco em I e III. b) igual ao peso do bloco em I, II e III. c) igual ao peso do bloco em I e menor que o peso do bloco em II e III. d) igual ao peso do bloco em I e III e menor que o peso do bloco em II. Questão 98 (UFPEL 2000) Para garantir o sono tranqüilo de Chico Bento, Rosinha segura a rede, exercendo sobre ela uma força inclinada de 37 em relação à horizontal, como mostra a figura abaixo. esprezando o peso da rede e sabendo que Chico Bento pesa 280N, observamos que Rosinha terá grande dificuldade para permanecer segurando a rede, pois precisa exercer sobre ela uma força de Considere: sen 45 = 0,7 cos 45 = 0,7 sen 37 = 0,6 cos 37 = 0,8 a) 392 N. b) 280 N. c) 200 N. d) 140 N. e) 214 N. Questão 99 (UFPR 2003) Dois blocos de massas iguais a 2,0 kg e 4,0 kg estão presos entre si por um fio inextensível e de massa desprezível. Como representado adiante, o conjunto pode ser puxado de duas formas distintas sobre uma mesa, por uma força paralela à mesa. O coeficiente de atrito estático entre os blocos e a mesa é igual a 0,20. O fio entre os blocos pode suportar uma tração de até 10 N sem se romper. Com base nesses dados, é correto afirmar: 39

40 (01) Se o conjunto for puxado pelo bloco de maior massa, como na figura 2, o fio que une os blocos arrebentará. (02) Se o conjunto for puxado pelo bloco de menor massa, como na figura 1, o fio que une os blocos arrebentará. (04) O conjunto da figura 1 será acelerado se a força ù tiver módulo maior que 12 N. (08) No conjunto da figura 2, as forças de atrito que atuam em cada um dos blocos têm o mesmo módulo. (16) A tração no fio que une os blocos é a mesma, quer o conjunto seja puxado como na figura 1, quer como na figura 2. Soma ( ) Questão 100 (UFRS 96) Dois blocos A e B, com massas mû = 5 kg e m½ = 10 kg, são colocados sobre uma superfície plana horizontal (o atrito entre os blocos e a superfície é nulo) e ligados por um fio inextensível e com massa desprezível (conforme a figura a seguir). O bloco B é puxado para a direita por uma força horizontal F com módulo igual a 30 N. Nessa situação, o módulo da aceleração horizontal do sistema e o módulo da força tensora no fio valem, respectivamente, a) 2 m/s e 30 N. b) 2 m/s e 20 N. c) 3 m/s e 5 N. d) 3 m/s e 10 N. e) 2 m/s e 10 N. Questão 101 (UFRS 2000) Uma pessoa, parada à margem de um lago congelado cuja superfície é perfeitamente horizontal, observa um objeto em forma de disco que, em certo trecho, desliza com movimento retilíneo uniforme, tendo uma de suas faces planas em contato com o gelo. Do ponto de vista desse observador, considerado inercial, qual das alternativas indica o melhor diagrama para representar as forças exercidas sobre o disco nesse trecho? (Supõe-se a ausência total de forças dissipativas, como atrito com a pista ou com o ar.) 40

41 Questão 102 (UFRS 2005) A figura a seguir representa dois objetos, P e Q, cujos pesos, medidos com um dinamômetro por um observador inercial, são 6 N e 10 N, respectivamente. Por meio de dois fios de massas desprezíveis, os objetos P e Q acham-se suspensos, em repouso, ao teto de um elevador que, para o referido observador, se encontra parado. Para o mesmo observador, quando o elevador acelerar verticalmente para cima à razão de 1 m/s, qual será o módulo da tensão no fio 2? (Considere a aceleração da gravidade igual a 10m/s.) a) 17,6 N. b) 16,0 N. c) 11,0 N. d) 10,0 N. e) 9,C N. Questão 103 (UFSC 2001) Um caminhão trafega num trecho reto de uma rodovia, transportando sobre a carroceria duas caixas A e B de massas mû=600kg e m½=1000kg, dispostas conforme a figura. Os coeficientes de atrito estático e de atrito dinâmico entre as superfícies da carroceria e das caixas são, respectivamente, 0,80 e 0,50. O velocímetro indica 90km/h quando o motorista, observando perigo na pista, pisa no freio. O caminhão se imobiliza após percorrer 62,5 metros. 41

42 Assinale a(s) proposição(ões) CORRETA(S): 01. O caminhão é submetido a uma desaceleração de módulo igual a 5,0m/s. 02. O caminhão pára, mas a inércia das caixas faz com que elas continuem em movimento, colidindo com a cabina do motorista. 04. Somente a caixa B escorrega sobre a carroceria porque, além da desaceleração do caminhão, a caixa A exerce uma força sobre ela igual 3.000N. 08. A caixa A não escorrega e, assim, a força que ela exerce sobre a caixa B é nula. 16. As duas caixas não escorregam, permanecendo em repouso com relação à carroceria do caminhão. 32. As caixas escorregariam sobre a superfície da carroceria, se o módulo da desaceleração do caminhão fosse maior do que 8,0m/s. 64. A caixa A não escorrega porque a inércia da caixa B a impede. Questão 104 (UFSC 2006) O andaime suspenso (figura 1), conhecido como máquina pesada ou trec trec, é indicado para serviços de revestimento externo, colocação de pastilhas, mármores, cerâmicas e serviços de pedreiro. Um dispositivo situado no andaime permite que o pedreiro controle o sistema de polias para se movimentar verticalmente ao longo de um prédio. A figura 2 mostra um andaime homogêneo suspenso pelos cabos A, B, C e D, que passam por polias situadas no topo do edifício e formam ângulos de 90 com o estrado do andaime. Chama-se: o peso do andaime de PÛ, e o seu módulo de P'Û; o peso de um pedreiro que está no andaime de P½, e o seu módulo P'½; as tensões exercidas pelos cabos A, B, C e D no andaime de TÛ, T½, TÝ e T, e seus módulos de T'Û, T'½, T'Ý e T', respectivamente. Considerando-se que o segmento de reta auxiliar ST passa pelo centro do estrado dividindo-o em duas partes de comprimentos iguais e que o andaime não apresenta qualquer movimento de rotação, assina-le a(s) proposição(ões) CORRETA(S). (01) T'Û + T'½ + T'Ý + T' = P'Û + P'½ somente se o andaime estiver em repouso. (02) TÛ + T½ + TÝ + T = -(PÛ+ P½) se o andaime estiver descendo e acelerando. (04) T'Û + T'½ = T'Ý + T' se o pedreiro estiver sobre o segmento de reta ST do estrado do andaime e o andaime estiver em movimento uniforme na vertical. (08) T'Ý + T' > T'Û + T'½ somente se o pedreiro estiver mais próximo da extremidade direita do estrado do andaime, independentemente do andaime estar em movimento na vertical. (16) Se o pedreiro estiver mais próximo da extremidade esquerda do estrado do andaime e o andaime estiver em repouso, então T'Û + T'½ > T'Ý + T'. 42

43 Questão 105 (UFSM 99) Uma força ù de módulo igual a 20N é aplicada, verticalmente, sobre um corpo de 10kg, em repouso sobre uma superfície horizontal, como indica a figura. O módulo (em N) da força normal sobre o corpo, considerando o módulo da aceleração gravitacional como 10m/s, é a) 120. b) 100. c) 90. d) 80. e) 0. Questão 106 (UFSM 2001) A figura representa dois corpos A e B que, sendo empurrados por uma força ù, em uma superfície sem atrito, movem-se com a mesma aceleração. Pode-se, então, afirmar que a força que o corpo A exerce sobre o corpo B é, em módulo, a) menor do que a força que B exerce sobre A. b) maior do que a força que B exerce sobre A. c) diretamente proporcional à diferença entre as massas dos corpos. d) inversamente proporcional à diferença entre as massas dos corpos. e) igual à força que B exerce sobre A. Questão 107 (UFSM 2001) 43

44 O bloco da figura está em repouso sobre um plano horizontal e perfeitamente liso. A partir do instante t=0s, passa a atuar sobre o bloco uma força constante de módulo igual a 15N, e esse bloco atinge a velocidade de 20m/s no instante t=4s. A massa do bloco é, em kg, a) 3 b) 6 c) 9 d) 12 e) 15 Questão 108 (UFU 2005) Uma pessoa de massa m está no interior de um elevador de massa M, que desce verticalmente, diminuindo sua velocidade com uma aceleração de módulo a. Se a aceleração local da gravidade é g, a força feita pelo cabo que sustenta o elevador é a) (M+m)(g-a) b) (M+m)(g+a) c) (M+m)(a-g) d) (M-m)(g+a) Questão 109 (UFU 2006) Uma força ù é aplicada a um sistema de dois blocos, A e B, de massas mû e m½, respectivamente, conforme figura a seguir. O coeficiente de atrito estático entre os blocos A e B é igual a ½ e o coeficiente de atrito dinâmico entre o bloco A e o plano horizontal é igual a Û. Considerando a aceleração da gravidade igual a g, assinale a alternativa que representa o valor máximo da força horizontal ù que se pode aplicar ao bloco A, de forma que o bloco B não deslize (em relação ao bloco A). a) F = ( Û + ½)(mÛ + m½)g b) F = ½ (mû + m½)g c) F = ( Û - ½)(mÛ + m½)g d) F = Û (mû + m½)g 44

45 Questão 110 (UFV 2001) Um bloco de massa m encontra-se disposto sobre a parte inclinada de uma rampa, como ilustrado na figura a seguir. O conjunto move-se para a direita aumentando a velocidade a uma aceleração horizontal a constante. Denominando como g o módulo da aceleração gravitacional local, e desprezando-se qualquer tipo de atrito, pode-se afirmar que o módulo da aceleração do conjunto, de modo a não haver movimento relativo entre o bloco e a rampa, deve ser: a) g. sen ( ). cos ( ) b) g. tg ( ) c) g. sen ( ) d) g. cos ( ) e) g. cotg ( ) A intensidades (módulos) das forças que tensionam os fios P e Q são respectivamente, de a) 10 N e 20 N b) 10 N e 30 N c) 30 N e 10 N. d) 30 N e 20 N. e) 30 N e 30 N. Questão 112 (UNESP 2000) Dois blocos A e B, de massas 2,0kg e 6,0kg, respectivamente, e ligados por um fio, estão em repouso sobre um plano horizontal. Quando puxado para a direita pela força ù mostrada na figura, o conjunto adquire aceleração de 2,0m/s. Questão 111 (UNESP 97) Dois corpos, de peso 10 N e 20 N, estão suspensos por dois fios, P e Q, de massas desprezíveis, da maneira mostrada na figura. 45

46 estas condições, pode-se afirmar que o modulo da resultante das forças que atuam em A e o módulo da resultante das forças que atuam em B valem, em newtons, respectivamente, a) 4 e 16. b) 16 e 16. c) 8 e 12. d) 4 e 12. e) 1 e 3. Questão 113 (UNESP 2004) Dois blocos, A e B, de massas m e 2m, respectivamente, ligados por um fio inextensível e de massa desprezível, estão inicialmente em repouso sobre um plano horizontal sem atrito. Quando o conjunto é puxado para a direita pela força horizontal ù aplicada em B, como mostra a figura, o fio fica sujeito à tração T. Quando puxado para a esquerda por uma força de mesma intensidade que a anterior, mas agindo em sentido contrário, o fio fica sujeito à tração T. essas condições, pode-se afirmar que T é igual a a) 2T. b) Ë2 T. c) T. d) T /Ë2. e) T /2. Questão 114 (UNESP 2006) Um bloco de massa mû desliza no solo horizontal, sem atrito, sob ação de uma força constante, quando um bloco de massa m½ é depositado sobre ele. Após a união, a força aplicada continua sendo a mesma, porém a aceleração dos dois blocos fica reduzida à quarta parte da aceleração que o bloco A possuía. Pode-se afirmar que a razão entre as massas, mû/m½, é a) 1/3. b) 4/3. c) 3/2. d) 1. e) 2. Questão 115 (UNIFESP 2006) Suponha que um comerciante inescrupuloso aumente o valor assinalado pela sua balança, empurrando sorrateiramente o prato para baixo com uma força ù de módulo 5,0 N, na direção e sentido indicados na 46

47 figura. Com essa prática, ele consegue fazer com que uma mercadoria de massa 1,5 kg seja medida por essa balança como se tivesse massa de a) 3,0 kg. b) 2,4 kg. c) 2,1 kg. d) 1,8 kg. e) 1,7 kg. Questão 116 (UNIFESP 2006) A figura representa um bloco B de massa m½ apoiado sobre um plano horizontal e um bloco A de massa mû a ele pendurado. O conjunto não se movimenta por causa do atrito entre o bloco B e o plano, cujo coeficiente de atrito estático é ½. Não leve em conta a massa do fio, considerado inextensível, nem o atrito no eixo da roldana. Sendo g o módulo da aceleração da gravidade local, pode-se afirmar que o módulo da força de atrito estático entre o bloco B e o plano a) é igual ao módulo do peso do bloco A. b) não tem relação alguma com o módulo do peso do bloco A. c) é igual ao produto m½. g. ½, mesmo que esse valor seja maior que o módulo do peso de A. d) é igual ao produto m½. g. ½, desde que esse valor seja menor que o módulo do peso de A. e) é igual ao módulo do peso do bloco B. Questão 117 (UNIRIO 95) Considere as duas situações a seguir, representadas na figura, para um cabo ideal e uma roldana de atrito desprezível, estando o sistema em equilíbrio. 47

48 - Um bloco de massa m preso em uma das extremidades do cabo e a outra presa no solo. II - Um bloco de massa m preso em cada extremidade do cabo. A probabilidade de o cabo partir-se é: a) igual nas duas situações, porque a tração é a mesma tanto em I como em II. b) maior na situação I, porque a tração no cabo é maior em I do que em II. c) maior na situação I, mas a tração no cabo é igual tanto em I como em II. d) maior na situação II, porque a tração no cabo é maior em II do que em I. e) maior na situação II, mas a tração no cabo é igual em I e em II. Questão 118 (UNIRIO 96) edro e João estão brincando de cabo de guerra. João está levando a melhor, arrastando Pedro. Verifica-se que o ponto P marcado na corda move-se com velocidade constante de 1m/s, conforme o esquema da figura anterior. Portanto, a força exercida na corda por: a) Pedro tem módulo igual à de João. b) Pedro é menor que o peso de João. c) João é igual ao peso de Pedro. d) João é maior que a de Pedro. e) João corresponde ao peso de Pedro somado à força por este exercida na corda. Questão 119 (UNIRIO 97) Uma força F vetorial de módulo igual a 16 N, paralela ao plano, está sendo aplicada em um sistema constituído por dois blocos, A e B, ligados por um fio inextensível de massa desprezível, como representado na figura a seguir. A massa do bloco A é igual a 3 kg, a massa do bloco B é igual a 5 kg, e não há atrito entre os blocos e a superfície. Calculando-se a tensão no fio, obteremos: 48

49 a) 2 N b) 6 N c) 8 N d) 10 N e) 16 N Questão 120 (UNIRIO 2000) Um corpo de 1,0kg está sendo baixado utilizando-se o sistema mecânico representado na figura anterior. A polia ideal P, de dimensões desprezíveis, encontra-se ligada a um ponto fixo por meio da corda C, também ideal, e que faz um ângulo  de 135 com a horizontal. A roldana R, com diâmetro de 50cm, executa 60 rotações por minuto e nela está enrolado um fio muito fino, com massa desprezível e inextensível. Desprezando-se os atritos, e considerando-se g=10m/s, pode-se afirmar que o valor da tensão na corda C e a distância percorrida pelo corpo em 1,5s são, aproximadamente: a) 10 N e 2,4 m. b) 10 N e 3,1 m c) 14 N e 1,6 m. d) 14 N e 2,4 m. e) 50 N e 1,6 m. Questão 121 (UFU 2007) Um bloco de massa M = 8 kg encontra-se apoiado em um plano inclinado e conectado a um bloco de massa m por meio de polias, conforme figura a seguir

50 Dados: sen 30 = 1/2 cos 30 = Ë3/2 O sistema encontra-se em equilíbrio estático, sendo que o plano inclinado está fixo no solo. As polias são ideais e os fios de massa desprezível. Considerando g = 10 m/s, š = 30 e que não há atrito entre o plano inclinado e o bloco de massa M, marque a alternativa que apresenta o valor correto da massa m, em kg. a) 2Ë3 b) 4Ë3 c) 2 d) 4 Questão 122 (PUC-RIO 2004) Um certo bloco exige uma força F para ser posto em movimento, vencendo a força de atrito estático. Corta-se o bloco ao meio, colocando uma metade sobre a outra. Seja agora F a força necessária para pôr o conjunto em movimento. Sobre a relação F / F, pode-se afirmar que: a) ela é igual a 2. b) ela é igual a 1. c) ela é igual a 1/2. d) ela é igual a 3/2. e) seu valor depende da superfície. Questão 123 (PUCRS 2001) Responder a questão com base na figura abaixo, que representa dois blocos independentes sobre uma mesa horizontal, movendo-se para a direita sob a ação de uma força horizontal de 100N upondo-se que a força de atrito externo atuando sobre os blocos seja 25N, é correto concluir que a aceleração, em m/s, adquirida pelos blocos, vale a) 5 b) 6 c) 7 d) 8 e) 9 Questão 124 (UFES 96) O bloco da figura a seguir está em movimento em uma superfície horizontal, em virtude da aplicação de uma força ù paralela à superfície. O coeficiente de atrito cinético entre o bloco e a superfície é igual a 0,2. A aceleração do objeto é Dado: g = 10,0 m/s 50

51 a) 20,0 m/s b) 28,0 m/s c) 30,0 m/s d) 32,0 m/s e) 36,0 m/s Questão 125 (UNIRIO 2000) Duas esferas A e B estão interligadas por uma corda inextensível e de massa desprezível que passa por polias ideais. Sabe-se que a esfera B é de ferro, e que a soma das massas das esferas é igual a 5,0kg. As esferas estão na presença de um ímã, o qual aplica sobre a B uma força vertical de intensidade F, conforme a figura. Nessa situação, o sistema está em repouso. Quando o ímã é retirado, o sistema passa a se mover com aceleração uniforme e igual a 2,0m/s. O campo gravitacional local é de 10m/s. Desprezando-se todos os atritos, o módulo da força F, em N, e o valor da massa da esfera A, em kg, são, respectivamente: a) 10 N e 2,5 kg b) 10 N e 3,0 kg c) 12 N e 2,0 kg d) 12 N e 3,0 kg e) 50 N e 2,0 kg Questão 126 (PUCSP 2004) Uma criança de massa 25 kg, inicialmente no ponto A, distante 2,4 m do solo, percorre, a partir do repouso, o escorregador esquematizado na figura. O escorregador pode ser considerado um plano inclinado cujo ângulo com a horizontal é de 37. Supondo o coeficiente de atrito cinético entre a roupa da criança e o escorregador igual a 0,5, a velocidade com que a criança chega à base do escorregador (ponto B) é, em m/s, Dados: sen 37 0,6; cos 37 0,8; tg 37 0,75 51

52 a) 4 Ë3 b) 4 Ë5 c) 16 d) 4 e) 2 Ë10 ode-se concluir que velocidade do garoto em m/s, no instante t =16s, é igual a a) 13 b) 16 c) 19 d) 43 e) 163 Questão 127 (PUCCAMP 96) Um garoto de 58kg está sobre um carrinho de rolimã que percorre uma pista em declive. A componente da força resultante que age no garoto, na direção do movimento, tem módulo representado no gráfico, para um pequeno trecho do movimento. Sabe-se que a velocidade do garoto no instante t =2,0s é 3,0m/s

Dinâmica dos bloquinhos 2ª e3ª Leis de Newton

Dinâmica dos bloquinhos 2ª e3ª Leis de Newton Dinâmica dos bloquinhos ª e3ª Leis de Newton 1. (G1 - cftmg 01) Na figura, os blocos A e B, com massas iguais a 5 e 0 kg, respectivamente, são ligados por meio de um cordão inextensível. Desprezando-se

Leia mais

b) a intensidade da força de contato entre A e B.

b) a intensidade da força de contato entre A e B. LISTA DE ATRITO 1. (FGV-SP) O sistema indicado está em repouso devido à força de atrito entre o bloco de massa de 10 kg e o plano horizontal de apoio. Os fios e as polias são ideais e adota-se g = 10 m/s

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA CAMPUS: CURSO: ALUNO:

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA CAMPUS: CURSO: ALUNO: INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA CAMPUS: CURSO: ALUNO: DISCIPLINA: FÍSICA PROFESSOR: EDSON JOSÉ Considere: g = 10 m/s 2 Lista de exercícios 5 1. As figuras abaixo mostram as forças que

Leia mais

ESTUDO DIRIGIDO LEIS DE NEWTON E SUAS APLICAÇÕES 2ª ETAPA

ESTUDO DIRIGIDO LEIS DE NEWTON E SUAS APLICAÇÕES 2ª ETAPA Curso: Engenharia Civil Disciplina: Física Geral Experimental I Período: 1 período Data: 04/16/2014 Prof.a: Érica Estanislau Muniz Faustino ESTUDO DIRIGIDO LEIS DE NEWTON E SUAS APLICAÇÕES 2ª ETAPA 1-

Leia mais

Dinâmica aula 02 Atrito e Plano Inclinado

Dinâmica aula 02 Atrito e Plano Inclinado 1) figura abaixo ilustra três corpos, e C unidos por fio inextensível e de massa desprezível. s massas dos corpos são, respectivamente, iguais a 10 kg, 15 kg e 25 C kg. intensidade da força F é 100 N e

Leia mais

COLÉGIO VISCONDE DE PORTO SEGURO Unidade I Ensino Fundamental e Ensino Médio

COLÉGIO VISCONDE DE PORTO SEGURO Unidade I Ensino Fundamental e Ensino Médio COLÉGIO VISCONDE DE PORTO SEGURO Unidade I - 2008 Ensino Fundamental e Ensino Médio Aluno (a): nº Classe: 2-2 Lista de exercícios para estudos de recuperação de Física Trimestre: 2º Data: / /2008 1. (Ufpr)

Leia mais

Curso: Engenharia Civil Disciplina: Física Geral Experimental I Período: 1 período Data: 05/03/2012 Prof.a: Érica Estanislau Muniz Faustino

Curso: Engenharia Civil Disciplina: Física Geral Experimental I Período: 1 período Data: 05/03/2012 Prof.a: Érica Estanislau Muniz Faustino Curso: Engenharia Civil Disciplina: Física Geral Experimental I Período: 1 período Data: 05/03/2012 Prof.a: Érica Estanislau Muniz Faustino Parte I - Questões de Múltipla Escolha ESTUDO DIRIGIDO 1 1- Desde

Leia mais

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 1 o ano Disciplina: Física Atrito e Trabalho de uma força

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 1 o ano Disciplina: Física Atrito e Trabalho de uma força Lista de Exercícios Pré Universitário Uni-Anhanguera Aluno(a): Nº. Professor: Fabrízio Gentil Série: 1 o ano Disciplina: Física Atrito e Trabalho de uma força 1- (PUC-RIO) Uma caixa cuja velocidade inicial

Leia mais

FÍSICA - 3 o ANO MÓDULO 05 ROLDANAS E ELEVADORES

FÍSICA - 3 o ANO MÓDULO 05 ROLDANAS E ELEVADORES FÍSICA - 3 o ANO MÓDULO 05 ROLDANAS E ELEVADORES T T Como pode cair no enem? (CEFET) Nos sistemas seguintes, em equilíbrio, as roldanas, os fios e as hastes têm massas desprezíveis. Os dinamômetros

Leia mais

LISTA DE EXERCÍCIOS FÍSICA - 1º EM CAPÍTULO 07 LEIS DE NEWTON E APLICAÇÕES PROF. BETO E PH

LISTA DE EXERCÍCIOS FÍSICA - 1º EM CAPÍTULO 07 LEIS DE NEWTON E APLICAÇÕES PROF. BETO E PH LISTA DE EXERCÍCIOS FÍSICA - 1º EM CAPÍTULO 07 LEIS DE NEWTON E APLICAÇÕES PROF. BETO E PH 1) Um paraquedista salta de um avião e cai até sua velocidade de queda se tornar constante. Podemos afirmar que

Leia mais

Prof. Márcio Marinho LEIS DE NEWTON

Prof. Márcio Marinho LEIS DE NEWTON 1º ano FÍSICA Prof. Márcio Marinho 1 2 3 4 1º ano FÍSICA Prof. Márcio Marinho APLICAÇÕES DAS 5 6 MAIS QUESTÕES 01-(UFB) Determine a intensidade, direção e sentido do vetor aceleração de cada corpo a seguir,

Leia mais

5. Complete os espaços a seguir, de acordo com o princípio da ação e reação: a) Se um cavalo puxa uma carroça, então a carroça

5. Complete os espaços a seguir, de acordo com o princípio da ação e reação: a) Se um cavalo puxa uma carroça, então a carroça 1. (UNESP) Considere uma caixa em repouso sobre um plano horizontal na superfície terrestre. Mostre, através de um esquema, as forças que aparecem nos vários corpos, indicando os pares açãoreação. 2. (FEI)

Leia mais

FÍSICA - 3 o ANO MÓDULO 06 PLANO INCLINADO

FÍSICA - 3 o ANO MÓDULO 06 PLANO INCLINADO FÍSICA - 3 o ANO MÓDULO 06 PLANO INCLINADO P T P N θ P Como pode cair no enem? Uma máquina utiliza um carrinho para retirar carvão do interior de uma mina, puxando-o, sobre um plano inclinado, por meio

Leia mais

Colégio Planeta. Lista 03

Colégio Planeta. Lista 03 Colégio Planeta Prof.: Pedrão FÍSICA Data: 27 / 04 / 208 Lista 03 Aluno(a): º ANO Turma: Turno: Questão 0) A empilhadeira, mostrada na figura, está parada sobre uma superfície plana e horizontal de um

Leia mais

A) 50 N B) 100 N C) 200 N D) 300 N E) 400 N

A) 50 N B) 100 N C) 200 N D) 300 N E) 400 N Aplicações das Leis de Newton 1) Na tabela seguinte apresentamos as acelerações adquiridas por três automóveis A, B, C quando sobre eles atuam as forças indicadas abaixo. Utilizando o princípio fundamental

Leia mais

GOVERNO DO ESTADO DE PERNAMBUCO GRÉ MATA NORTE UNIVERSIDADE DE PERNAMBUCO CAMPUS MATA NORTE ESCOLA DE APLICAÇÃO PROFESSOR CHAVES LEIS DE NEWTON I

GOVERNO DO ESTADO DE PERNAMBUCO GRÉ MATA NORTE UNIVERSIDADE DE PERNAMBUCO CAMPUS MATA NORTE ESCOLA DE APLICAÇÃO PROFESSOR CHAVES LEIS DE NEWTON I GOVERNO DO ESTADO DE PERNAMBUCO GRÉ MATA NORTE UNIVERSIDADE DE PERNAMBUCO CAMPUS MATA NORTE ESCOLA DE APLICAÇÃO PROFESSOR CHAVES LEIS DE NEWTON I ALUNO(A): Nº NAZARÉ DA MATA, DE DE 2016 1º ANO 1 2 3 4

Leia mais

Avaliação: EXERCÍCIO ON LINE 2º Bimestre. Curso: 3ª SÉRIE TURMA: 3101 / 3102 DATA:

Avaliação: EXERCÍCIO ON LINE 2º Bimestre. Curso: 3ª SÉRIE TURMA: 3101 / 3102 DATA: Avaliação: EXERCÍCIO ON LINE 2º Bimestre DISCIPLINA: FÍSICA 1 PROFESSOR(A): ANDERSON CUNHA Curso: 3ª SÉRIE TURMA: 3101 / 3102 DATA: NOME: Nº.: 1) (FGV-SP) O sistema indicado está em repouso devido à força

Leia mais

Lista de exercícios: Aplicações das Leis de Newton. 1. (PUC Rio 2009)

Lista de exercícios: Aplicações das Leis de Newton. 1. (PUC Rio 2009) Lista de exercícios: Aplicações das Leis de Newton. 1. (PUC Rio 2009) Dois blocos A e B, cujas massas são m A = 5,0 kg e m B = 10,0 kg, estão posicionados como mostra a figura anterior. Sabendo que a superfície

Leia mais

SEGUNDA LEI DE NEWTON - EXERCÍCIOS DE APOIO

SEGUNDA LEI DE NEWTON - EXERCÍCIOS DE APOIO SEGUND LEI DE NEWTON - EXERÍIOS DE POIO 1) Submete-se um corpo de massa 5000 kg à ação de uma força constante que, a partir do repouso, lhe imprime a uma velocidade de 7 km/h, ao fim de 40 s. Determine:

Leia mais

2ª Lista de Exercícios Fundamentos de Mecânica Clássica Profº. Rodrigo Dias

2ª Lista de Exercícios Fundamentos de Mecânica Clássica Profº. Rodrigo Dias 2ª Lista de Exercícios Fundamentos de Mecânica Clássica Profº. Rodrigo Dias Obs: Esta lista de exercícios é apenas um direcionamento, é necessário estudar a teoria referente ao assunto e fazer os exercícios

Leia mais

a) a velocidade do carrinho no ponto C; b) a aceleração do carrinho no ponto C; c) a força feita pelos trilhos sobre o carrinho no ponto C.

a) a velocidade do carrinho no ponto C; b) a aceleração do carrinho no ponto C; c) a força feita pelos trilhos sobre o carrinho no ponto C. 1. (Fuvest-gv) Na figura a seguir, tem-se uma mola de massa desprezível e constante elástica 200 N/m, comprimida de 20 cm entre uma parede e um carrinho de 2,0 kg. Quando o carrinho é solto, toda a energia

Leia mais

Lista 5 Leis de Newton

Lista 5 Leis de Newton Sigla: Disciplina: Curso: FISAG Física Aplicada a Agronomia Agronomia Lista 5 Leis de Newton 01) Um corpo de massa m sofre ação de duas forças F1 e F2, como mostra a figura. Se m = 5,2 kg, F1 = 3,7 N e

Leia mais

Mecânica da Partícula 2ª lista de exercícios

Mecânica da Partícula 2ª lista de exercícios Mecânica da Partícula 2ª lista de exercícios 1. Um satélite em órbita ao redor da Terra é atraído pelo nosso planeta e, como reação, atrai a Terra. A figura que representa corretamente esse par ação-reação

Leia mais

Fís. Semana. Leonardo Gomes (Guilherme Brigagão)

Fís. Semana. Leonardo Gomes (Guilherme Brigagão) Semana 8 Leonardo Gomes (Guilherme Brigagão) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA

Leia mais

FÍSICA. Prof. Clinton. Recuperação 2º Bimestre

FÍSICA. Prof. Clinton. Recuperação 2º Bimestre Recuperação 2º Bimestre Prof. Clinton FÍSICA 01. (PUC-SP) Os esquemas seguintes mostram um barco sendo retirado de um rio por dois homens. Em (a), são usadas cordas que transmitem ao barco forças paralelas

Leia mais

FÍSICA - 1 o ANO MÓDULO 08 FORÇAS PARTICULARES, POLIAS, ELEVADORES E PLANO INCLINADO REVISÃO

FÍSICA - 1 o ANO MÓDULO 08 FORÇAS PARTICULARES, POLIAS, ELEVADORES E PLANO INCLINADO REVISÃO FÍSICA - 1 o ANO MÓDULO 08 FORÇAS PARTICULARES, POLIAS, ELEVADORES E PLANO INCLINADO REVISÃO Como pode cair no enem? Um vagão, como o mostrado na figura abaixo, é utilizado para transportar minério de

Leia mais

GOIÂNIA, / / ALUNO(a): LISTA DE EXERCÍCIOS DE FÍSICA 3 BI - L1

GOIÂNIA, / / ALUNO(a): LISTA DE EXERCÍCIOS DE FÍSICA 3 BI - L1 GOIÂNIA, / / 2015 PROFESSOR: Fabrízio Gentil Bueno DISCIPLINA: FÍSICA SÉRIE: 1 o ALUNO(a): NOTA: No Anhanguera você é + Enem LISTA DE EXERCÍCIOS DE FÍSICA 3 BI - L1 1. Um trabalhador empurra um conjunto

Leia mais

3 - Calcule a distância percorrida por um móvel em 35 s, sabendo que a medida da sua velocidade é 7 m/s. O movimento do corpo é retilíneo uniforme.

3 - Calcule a distância percorrida por um móvel em 35 s, sabendo que a medida da sua velocidade é 7 m/s. O movimento do corpo é retilíneo uniforme. COLÉGIO SHALOM Ensino Médio 1 Ano Prof.º: Wesley Disciplina Física Aluno (a):. No. Trabalho de Recuperação Data: Valor: Tema: - Movimento uniforme - Movimento uniformemente variado - Os princípios da dinâmica

Leia mais

Sala de Estudos FÍSICA - Lucas 2 trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Força Elástica e Trabalho Mecânico

Sala de Estudos FÍSICA - Lucas 2 trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Força Elástica e Trabalho Mecânico Sala de Estudos FÍSICA - Lucas 2 trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Força Elástica e Trabalho Mecânico 1. (Uern 2013) A tabela apresenta a força elástica e a deformação

Leia mais

Parte I ( Questões de Trabalho Mecânico e Energia )

Parte I ( Questões de Trabalho Mecânico e Energia ) Parte I ( Questões de Trabalho Mecânico e Energia ) 1) Uma força horizontal de 20 N arrasta por 5,0 m um peso de 30 N, sobre uma superfície horizontal. Os trabalhos realizados pela força de 20 N e pela

Leia mais

5ª LISTA DE EXERCÍCIOS

5ª LISTA DE EXERCÍCIOS 5ª LISTA DE EXERCÍCIOS DISCIPLINA: Física Geral e Experimental I CURSO: Engenharia de Produção Noturno. 2º termo Prof. Dr. Elton Aparecido Prado dos Reis 01 - Um grupo de pessoas, por intermédio de uma

Leia mais

EXERCÍCIOS PARA PROVA ESPECÍFICA E TESTÃO 1 ANO 4 BIMESTRE

EXERCÍCIOS PARA PROVA ESPECÍFICA E TESTÃO 1 ANO 4 BIMESTRE 1. (Unesp 89) Um cubo de aço e outro de cobre, ambos de massas iguais a 20 g estão sobre um disco de aço horizontal, que pode girar em torno de seu centro. Os coeficientes de atrito estático para aço-aço

Leia mais

0.1 Forças Horizontais

0.1 Forças Horizontais Dinâmica 0.1 Forças Horizontais 1. (UCS-RS) Uma força de intensidade 20N atua sobre os blocos A e B, de massas ma=3kg e mb=1kg, como mostra a figura 1. A superfície sobre a qual desliza o conjunto é horizontal

Leia mais

Capítulo 1. d) 0,6 e) 0,8

Capítulo 1. d) 0,6 e) 0,8 Capítulo 1 Dinâmica 1. (Fatec-SP) Um motorista conduzia seu automóvel de massa 2 000 kg que trafegava em linha reta, com velocidade constante de 72 km/h, quando avistou uma carreta atravessada na pista.

Leia mais

EXERCÍCIOS SOBRE TRABALHO E ENERGIA.

EXERCÍCIOS SOBRE TRABALHO E ENERGIA. EXERCÍCIOS SOBRE TRABALHO E ENERGIA. QUESTÃO 01 (UFMG) Uma pessoa empurra um armário com uma força F sobre uma superfície horizontal com atrito, colocando-o em movimento. A figura mostra o diagrama das

Leia mais

gira sobre uma mesa horizontal sem atrito. Esse bloco está ligado a outro, de massa m 2

gira sobre uma mesa horizontal sem atrito. Esse bloco está ligado a outro, de massa m 2 1º ANO 1. (UFMS) Um automóvel de massa 10 3 kg percorre, com velocidade escalar de 20m/s, um trecho circular de raio 80m, numa estrada plana horizontal. O mínimo coeficiente de atrito entre os pneus e

Leia mais

Professores: Murilo. Física. 3ª Série. 300 kg, que num determinado ponto está a 3 m de altura e tem energia cinética de 6000 J?

Professores: Murilo. Física. 3ª Série. 300 kg, que num determinado ponto está a 3 m de altura e tem energia cinética de 6000 J? Física Professores: Murilo 3ª Série EXERCÍCIOS DE Trabalho, Potência e Energia 1. Um corpo de massa 150 kg, está posicionado 17 m acima do solo. Sabendo que a aceleração da gravidade vale 10 m/s², qual

Leia mais

Lista 10: Energia. Questões. encontrar razões plausíveis para justificar suas respostas sem o uso de equações.

Lista 10: Energia. Questões. encontrar razões plausíveis para justificar suas respostas sem o uso de equações. Lista 10: Energia Importante: 1. Ler os enunciados com atenção. 2. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. 3. Siga a estratégia para resolução de problemas

Leia mais

Nome: Nº: Turma: Os exercícios a seguir foram retirados do livro Aulas de Física, volume I, da Editora Atual.

Nome: Nº: Turma: Os exercícios a seguir foram retirados do livro Aulas de Física, volume I, da Editora Atual. Física 2ª Lei de Newton I 2 os anos Hugo maio/12 Nome: Nº: Turma: Os exercícios a seguir foram retirados do livro Aulas de Física, volume I, da Editora Atual. 1. Aplica-se uma força F de intensidade 20

Leia mais

Engenharia Elétrica/Facec/CES

Engenharia Elétrica/Facec/CES Engenharia Elétrica/Facec/CES Leis de Newton Revisão - Exercícios Diversos Prof.: Aloísio Elói Considere, quando não especificado, g = 10 m/s 2. I Forças de atrito 01) Um bloco de massa 5 kg repousa inicialmente

Leia mais

LISTA DE EXERCÍCIOS PLANO INCLINADO PROF. PEDRO RIBEIRO

LISTA DE EXERCÍCIOS PLANO INCLINADO PROF. PEDRO RIBEIRO LISTA DE EXERCÍCIOS PLANO INCLINADO PROF. PEDRO RIBEIRO 1 Um bloco de massa m = 10 kg, inicialmente a uma altura de 2 m do solo, desliza em uma rampa de inclinação 30 o com a horizontal. O bloco é seguro

Leia mais

MECÂNICA - DINÂMICA APLICAÇÃO DAS LEIS DE NEWTON BLOCOS

MECÂNICA - DINÂMICA APLICAÇÃO DAS LEIS DE NEWTON BLOCOS 1 MECÂNICA - DINÂMICA APLICAÇÃO DAS LEIS DE NEWTON BLOCOS 1. (Ufrj) Dois blocos de massa igual a 4kg e 2kg, respectivamente, estão presos entre si por um fio inextensível e de massa desprezível. Deseja-se

Leia mais

COLÉGIO MONJOLO ENSINO MÉDIO

COLÉGIO MONJOLO ENSINO MÉDIO COLÉGIO MONJOLO ENSINO MÉDIO Aluno (a): Professor: Jadson Rodrigo Corrêa Data: 11/09/2018 TRABALHO DE UMA FORÇA E ENERGIAS 1ª série 1. Determine o trabalho de uma força constante de 300N a aplicada a um

Leia mais

NOME: N O : TURMA: 1. PROFESSOR: Glênon Dutra

NOME: N O : TURMA: 1. PROFESSOR: Glênon Dutra Apostila de Revisão n 5 DISCIPLINA: Física NOME: N O : TURMA: 1 PROFESSOR: Glênon Dutra DATA: Mecânica - 5. Trabalho e Energia 5.1. Trabalho realizado por forças constantes. 5.2. Energia cinética. 5.3.

Leia mais

Colégio FAAT Ensino Fundamental e Médio

Colégio FAAT Ensino Fundamental e Médio Colégio FAAT Ensino Fundamental e Médio Lista de Exercícios 1_3 BIMESTRE Nome: Nº Turma: 1 EM Profa Kelly Data: Conteúdo: Força gravitacional, força normal e força de tração; Técnicas para a resolução

Leia mais

Colégio FAAT Ensino Fundamental e Médio

Colégio FAAT Ensino Fundamental e Médio Colégio FAAT Ensino Fundamental e Médio Lista de Exercícios 2_3 BIMESTRE Nome: Nº Turma: 1 EM Profa Kelly Data: Conteúdo: Trabalho de uma força; Energia mecânica - trabalho. 1 - Um corpo de massa m desliza

Leia mais

a) 3, e 9, b) 9, e 4, c) 9, e 3, d) 3, e 4, e) 4, e 3,

a) 3, e 9, b) 9, e 4, c) 9, e 3, d) 3, e 4, e) 4, e 3, 1 - - (Anhembi Morumbi SP) - Considere um ônibus espacial, de massa aproximada 1,0 10 5 kg, que, dois minutos após ser lançado, atingiu a velocidade de 1,34 10 3 m/s e a altura de 4,5 10 4 m. Sabendo que

Leia mais

Lista de Exercícios de Física

Lista de Exercícios de Física Lista de Exercícios de Física 1º) Suponha que, na figura ao lado, corpo mostrado tenha, em uma energia potencial EP = 20 J e uma energia cinética EC = 10 J. a) qual a energia mecânica total do corpo em?

Leia mais

LISTA DE EXERCÍCIOS: POTÊNCIA, TRABALHO E ENERGIA TURMAS: 1C01 a 1C10 (PROF. KELLER)

LISTA DE EXERCÍCIOS: POTÊNCIA, TRABALHO E ENERGIA TURMAS: 1C01 a 1C10 (PROF. KELLER) LISTA DE EXERCÍCIOS: POTÊNCIA, TRABALHO E ENERGIA TURMAS: 1C01 a 1C10 (PROF. KELLER) 1) Uma máquina consome 4000 J de energia em 100 segundos. Sabendo-se que o rendimento dessa máquina é de 80%, calcule

Leia mais

Revisão Leis de Newton EsPCEx 2018 Prof. Douglão

Revisão Leis de Newton EsPCEx 2018 Prof. Douglão Revisão Leis de Newton EsPCEx 018 Prof. Douglão 1. Observe a figura abaixo onde duas esferas de massas iguais a m estão eletrizadas com cargas elétricas Q, iguais em módulo, porém de sinais contrários.

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Física Lista de Revisão Física 1. prof. Daniel Kroff e Daniela Szilard 17 de abril de 2015

Universidade Federal do Rio de Janeiro Instituto de Física Lista de Revisão Física 1. prof. Daniel Kroff e Daniela Szilard 17 de abril de 2015 Universidade Federal do Rio de Janeiro Instituto de Física Lista de Revisão Física 1 prof. Daniel Kroff e Daniela Szilard 17 de abril de 2015 1. Uma partícula move-se em linha reta, partindo do repouso

Leia mais

Colégio FAAT Ensino Fundamental e Médio

Colégio FAAT Ensino Fundamental e Médio Colégio FAAT Ensino Fundamental e Médio Recuperação do 3 Bimestre Física Conteúdo: A seguir apresenta-se o conteúdo contemplado no programa de recuperação: Aplicação da 2ª Lei e Newton: Força Peso, Força

Leia mais

Estudo Dirigido de Plano Inclinado

Estudo Dirigido de Plano Inclinado Curso: Engenharia Civil Disciplina: Física Geral e Experimental I Período: 1 período Data: 30/03/2012 Prof.a: Érica Estanislau Muniz Faustino 1ª Etapa Estudo Dirigido de Plano Inclinado 1- O bloco representado

Leia mais

Lista de exercícios (Leis de newton, força de atrito e Plano inclinado)1

Lista de exercícios (Leis de newton, força de atrito e Plano inclinado)1 Lista de exercícios (Leis de newton, força de atrito e Plano inclinado)1 1. (Tipler ex. 7- p.119) Suponha que um corpo tenha sido enviado ao espaço, na direção das galáxias, estrelas ou de outros corpos

Leia mais

Colégio FAAT Ensino Fundamental e Médio

Colégio FAAT Ensino Fundamental e Médio Colégio FAAT Ensino Fundamental e Médio Lista de Exercícios 2_2 BIMESTRE Nome: Nº Turma: 1 EM Profa Kelly Data: Conteúdo: Força elástica; Plano inclinado. 1 Uma criança desliza em um tobogã muito longo,

Leia mais

Importante: Lista 3: Leis de Newton e Dinâmica da Partícula NOME:

Importante: Lista 3: Leis de Newton e Dinâmica da Partícula NOME: Lista 3: Leis de Newton e Dinâmica da Partícula NOME: Matrícula: Turma: Prof. : Importante: i. As cinco páginas seguintes contém problemas para serem resolvidos e entregues. ii. Ler os enunciados com atenção.

Leia mais

Física 1. 1 a prova 23/09/2017. Atenção: Leia as recomendações antes de fazer a prova.

Física 1. 1 a prova 23/09/2017. Atenção: Leia as recomendações antes de fazer a prova. Física 1 1 a prova 23/09/2017 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua

Leia mais

Qual o valor máximo da força F que se poderá aplicar a um dos blocos, na mesma direção do fio, sem romper o fio?

Qual o valor máximo da força F que se poderá aplicar a um dos blocos, na mesma direção do fio, sem romper o fio? TC DE FISICA PROFESSOR ÍTALO REANN CONTEUDO: LEIS DE NEWTON E FORÇA CENTRIPETA 01. Dois blocos idênticos, unidos por um fio de massa desprezível, jazem sobre uma mesa lisa e horizontal conforme mostra

Leia mais

Leis de Newton. Algumas aplicações das leis de Newton

Leis de Newton. Algumas aplicações das leis de Newton Leis de Newton Algumas aplicações das leis de Newton Equilíbrio Uma ginasta com massa 50,0 kg está começando a subir em uma corda presa no teto de uma ginásio. Qual é o peso da ginasta? Qual a força (módulo

Leia mais

EXERCICIOS SISTEMAS CONSERVATIVOS

EXERCICIOS SISTEMAS CONSERVATIVOS 1. (Uece) Um estudo realizado pela Embrapa Agrobiologia demonstrou que a produção do etanol de cana-de-açúcar tem um balanço energético em torno de 9 : 1, o que significa que, para cada unidade de energia

Leia mais

1 IFRN - São Gonçalo do Amarante

1 IFRN - São Gonçalo do Amarante INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA CAMPUS: CURSO: ALUNO: DISCIPLINA: FÍSICA I PROFESSOR: EDSON JOSÉ LISTA DE EXERCÍCIOS 1. (Unesp 2004) A figura mostra um bloco de massa m subindo uma

Leia mais

Fís. Semana. Leonardo Gomes (Arthur Vieira)

Fís. Semana. Leonardo Gomes (Arthur Vieira) Semana 8 Leonardo Gomes (Arthur Vieira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 03/04

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Física Lista de Revisão Física 1. prof. Daniel Kroff e Daniela Szilard 20 de junho de 2015

Universidade Federal do Rio de Janeiro Instituto de Física Lista de Revisão Física 1. prof. Daniel Kroff e Daniela Szilard 20 de junho de 2015 Universidade Federal do Rio de Janeiro Instituto de Física Lista de Revisão Física 1 prof. Daniel Kroff e Daniela Szilard 20 de junho de 2015 OBS: Quando necessário, considere como dados a aceleração da

Leia mais

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: FÍSICA CIOS DE RECUPERAÇÃO FINAL

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: FÍSICA CIOS DE RECUPERAÇÃO FINAL INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (21) 21087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): 1º Ano: C11 Nº Professora: Saionara Chagas Data: / /2016 COMPONENTE

Leia mais

FÍSICA - 1 o ANO MÓDULO 09 EQUILÍBRIO DE PONTOS MATERIAIS

FÍSICA - 1 o ANO MÓDULO 09 EQUILÍBRIO DE PONTOS MATERIAIS FÍSICA - 1 o ANO MÓDULO 09 EQUILÍBRIO DE PONTOS MATERIAIS Mola θ P Fio 1 2 1 T 1 F EL θ P 1 T 1 cos θ T 1 θ F EL T 1 sen θ P 1 (I) (II) T P T F P T P T F P Fixação 1) A estrutura abaixo está em equilíbrio,

Leia mais

Lista 7: Terceira Lei de Newton

Lista 7: Terceira Lei de Newton Lista 7: Terceira Lei de Newton NOME: Matrícula: Turma: Prof. : Importante: i. As cinco páginas seguintes contém problemas para serem resolvidos e entregues. ii. Leia os enunciados com atenção. iii. Responder

Leia mais

LISTA DE EXERCÍCIOS 3ª SÉRIE ESTÁTICA - TORQUE

LISTA DE EXERCÍCIOS 3ª SÉRIE ESTÁTICA - TORQUE 1. (Uerj 2012) Uma balança romana consiste em uma haste horizontal sustentada por um gancho em um ponto de articulação fixo. A partir desse ponto, um pequeno corpo P pode ser deslocado na direção de uma

Leia mais

MATEMÁTICA 1ª QUESTÃO. O valor do número real que satisfaz a equação =5 é. A) ln5. B) 3 ln5. C) 3+ln5. D) ln5 3. E) ln5 2ª QUESTÃO

MATEMÁTICA 1ª QUESTÃO. O valor do número real que satisfaz a equação =5 é. A) ln5. B) 3 ln5. C) 3+ln5. D) ln5 3. E) ln5 2ª QUESTÃO MATEMÁTICA 1ª QUESTÃO O valor do número real que satisfaz a equação =5 é A) ln5 B) 3 ln5 C) 3+ln5 D) ln5 3 E) ln5 ª QUESTÃO O domínio da função real = 64 é o intervalo A) [,] B) [, C), D), E), 3ª QUESTÃO

Leia mais

PRE-VESTIBULAR COMUNITÁRIO DOM HÉLDER CÂMARA PVCDHC 4ª LISTA DE EXERCÍCIOS DE FÍSICA Professor: Aurélio

PRE-VESTIBULAR COMUNITÁRIO DOM HÉLDER CÂMARA PVCDHC 4ª LISTA DE EXERCÍCIOS DE FÍSICA Professor: Aurélio PRE-VESTIBULAR COMUNITÁRIO DOM HÉLDER CÂMARA PVCDHC 4ª LISTA DE EXERCÍCIOS DE FÍSICA 1-2009 Professor: Aurélio 01 - Questão 36 UERJ 1º EQ 2009 Uma pessoa de massa igual a 80 kg encontra-se em repouso,

Leia mais

LEIS DE NEWTON DINÂMICA 3ª LEI TIPOS DE FORÇAS

LEIS DE NEWTON DINÂMICA 3ª LEI TIPOS DE FORÇAS DINÂMICA É a parte da Mecânica que estuda as causas e os movimentos. LEIS DE NEWTON 1ª Lei de Newton 2ª Lei de Newton 3ª Lei de Newton 1ª LEI LEI DA INÉRCIA Quando a resultante das forças que agem sobre

Leia mais

1) Um observador vê um pêndulo preso ao teto de um vagão e deslocado da vertical como mostra a figura a seguir.

1) Um observador vê um pêndulo preso ao teto de um vagão e deslocado da vertical como mostra a figura a seguir. 1) Um observador vê um pêndulo preso ao teto de um vagão e deslocado da vertical como mostra a figura a seguir. Sabendo que o vagão se desloca em trajetória retilínea, ele pode estar se movendo de a) A

Leia mais

Calcule: a) as velocidades da esfera e do pêndulo imediatamente após a colisão; b) a compressão máxima da mola.

Calcule: a) as velocidades da esfera e do pêndulo imediatamente após a colisão; b) a compressão máxima da mola. 1) Um pequeno bloco, de massa m = 0,5 kg, inicialmente em repouso no ponto A, é largado de uma altura h = 0,8 m. O bloco desliza, sem atrito, ao longo de uma superfície e colide com um outro bloco, de

Leia mais

Física 1. 2 a prova 03/06/2017. Atenção: Leia as recomendações antes de fazer a prova.

Física 1. 2 a prova 03/06/2017. Atenção: Leia as recomendações antes de fazer a prova. Física 1 2 a prova 03/06/2017 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua

Leia mais

Física 1. 2 a prova 03/06/2017. Atenção: Leia as recomendações antes de fazer a prova.

Física 1. 2 a prova 03/06/2017. Atenção: Leia as recomendações antes de fazer a prova. Física 1 2 a prova 03/06/2017 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua

Leia mais

Fís. Semana. Leonardo Gomes (Guilherme Brigagão)

Fís. Semana. Leonardo Gomes (Guilherme Brigagão) Semana 9 Leonardo Gomes (Guilherme Brigagão) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA

Leia mais

Unidade Parque Atheneu Professor: Douglas Rezende Aluno (a): Série: 1ª Data: / / LISTA DE FÍSICA II

Unidade Parque Atheneu Professor: Douglas Rezende Aluno (a): Série: 1ª Data: / / LISTA DE FÍSICA II Unidade Parque Atheneu Professor: Douglas Rezende Aluno (a): Série: 1ª Data: / / 2017. LISTA DE FÍSICA II Orientações: - A lista deverá ser respondida na própria folha impressa ou em folha de papel almaço.

Leia mais

FAP151 - FUNDAMENTOS DE MECÂNICA. Junho de a. Lista de Exercícios. Aplicações das leis de Newton

FAP151 - FUNDAMENTOS DE MECÂNICA. Junho de a. Lista de Exercícios. Aplicações das leis de Newton FAP151 - FUNDAMENTOS DE MECÂNICA. Junho de 2017 9 a. Lista de Exercícios. Aplicações das leis de Newton Força conhecida, mas não constante, com cinemática completa. 1. Um carro de uma tonelada está parado

Leia mais

Professor: Janner Matéria: Física

Professor: Janner Matéria: Física Professor: Janner Matéria: Física 1. (Unicamp) Um pêndulo cônico é formado por um fio de massa desprezível e comprimento L = 1,25 m, que suporta uma massa m = 0,5 kg na sua extremidade inferior. A extremidade

Leia mais

Física I Verificação Suplementar 06/08/2016a

Física I Verificação Suplementar 06/08/2016a Física I Verificação Suplementar 06/08/2016a NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 20 questões de múltipla escolha valendo 0,5 ponto cada. Utilize: g = 9,80 m/s 2, exceto se houver alguma

Leia mais

COLEGIO DOMINUS VIVENDI LISTA DE EXERCICIOS DE FISICA PARA ESTUDOS COM RESOLUÇÃO PROFESSOR ANDERSON

COLEGIO DOMINUS VIVENDI LISTA DE EXERCICIOS DE FISICA PARA ESTUDOS COM RESOLUÇÃO PROFESSOR ANDERSON COLEGIO DOMINUS VIVENDI LISTA DE EXERCICIOS DE FISICA PARA ESTUDOS COM RESOLUÇÃO PROFESSOR ANDERSON 3ª Lei de Newton 1. Um martelo acerta um prego com uma força de 4,0 kgf. Existe, neste caso, a reação?

Leia mais

Física I Prova 2 20/02/2016

Física I Prova 2 20/02/2016 Física I Prova 2 20/02/2016 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 3 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 10 questões

Leia mais

1) Quando o cabo de um elevador se quebra, os freios de emergência são acionados contra trilhos

1) Quando o cabo de um elevador se quebra, os freios de emergência são acionados contra trilhos 1) Quando o cabo de um elevador se quebra, os freios de emergência são acionados contra trilhos laterais, de modo que esses passam a exercer, sobre o elevador, quatro forças verticais constantes e iguais

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Física Física 1 - Turmas de 6 horas 2015/2 Oficinas de Física 1 Exercícios E3

Universidade Federal do Rio de Janeiro Instituto de Física Física 1 - Turmas de 6 horas 2015/2 Oficinas de Física 1 Exercícios E3 Universidade Federal do Rio de Janeiro Instituto de Física Física 1 - Turmas de 6 horas 2015/2 Oficinas de Física 1 Exercícios E3 1) Uma pessoa puxa horizontalmente o bloco B da figura 1, fazendo com que

Leia mais

Física I Verificação Suplementar 06/08/2016b

Física I Verificação Suplementar 06/08/2016b Física I Verificação Suplementar 06/08/2016b NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 20 questões de múltipla escolha valendo 0,5 ponto cada. Utilize: g = 9,80 m/s 2, exceto se houver alguma

Leia mais

FACULDADE EDUCACIONAL DE MEDIANEIRA MISSÃO: FORMAR PROFISSIONAIS CAPACITADOS, SOCIALMENTE RESPONSÁVEIS E APTOS A PROMOVEREM AS TRANSFORMAÇÕES FUTURAS

FACULDADE EDUCACIONAL DE MEDIANEIRA MISSÃO: FORMAR PROFISSIONAIS CAPACITADOS, SOCIALMENTE RESPONSÁVEIS E APTOS A PROMOVEREM AS TRANSFORMAÇÕES FUTURAS FACULDADE EDUCACIONAL DE MEDIANEIRA MISSÃO: FORMAR PROFISSIONAIS CAPACITADOS, SOCIALMENTE RESPONSÁVEIS E APTOS A PROMOVEREM AS TRANSFORMAÇÕES FUTURAS Medianeira, de de. Aluno(a): Curso: AGRONOMIA Período:

Leia mais

b) - cinética e elástica - cinética, gravitacional e elástica - cinética e gravitacional

b) - cinética e elástica - cinética, gravitacional e elástica - cinética e gravitacional 1) Na figura abaixo, embora puxe a carroça com uma força horizontal de 1,0 x 10 2 N, o burro não consegue tirá-la do lugar devido ao entrave de uma pedra. Qual o trabalho da força do burro sobre a carroça?

Leia mais

Física 1. 1 a prova 14/04/2018. Atenção: Leia as recomendações antes de fazer a prova.

Física 1. 1 a prova 14/04/2018. Atenção: Leia as recomendações antes de fazer a prova. Física 1 1 a prova 14/04/2018 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua

Leia mais

Parte 2 - PF de Física I NOME: DRE Teste 1

Parte 2 - PF de Física I NOME: DRE Teste 1 Parte 2 - PF de Física I - 2017-1 NOME: DRE Teste 1 Nota Q1 Questão 1 - [2,5 ponto] Um astronauta está ligado a uma nave no espaço através de uma corda de 120 m de comprimento, que está completamente estendida

Leia mais

Lista 12: Rotação de corpos rígidos

Lista 12: Rotação de corpos rígidos Lista 12: Rotação de Corpos Rígidos Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. iv. Siga a estratégia para

Leia mais

Cada questão objetiva vale 0,7 ponto

Cada questão objetiva vale 0,7 ponto Instituto de Física Segunda Prova de Física I 2017/1 Nas questões em que for necessário, considere que: todos os fios e molas são ideais; os fios permanecem esticados durante todo o tempo; a resistência

Leia mais

Lista Geral de Dinâmica Trabalho e Energia. Equipe UFRJ OBF 1 E.M.

Lista Geral de Dinâmica Trabalho e Energia. Equipe UFRJ OBF 1 E.M. Lista Geral de Dinâmica Trabalho e Energia. Equipe UFRJ OBF 1 E.M. Professor: Francisco Schueler. 1) Um bloco de gelo se encontra em repouso no alto de uma rampa sem atrito, sendo sustentado por uma força

Leia mais

FÍSICA - 1 o ANO MÓDULO 24 FORÇA CENTRÍPETA REVISÃO

FÍSICA - 1 o ANO MÓDULO 24 FORÇA CENTRÍPETA REVISÃO FÍSICA - 1 o ANO MÓDULO 24 FORÇA CENTRÍPETA REVISÃO Fixação 1) Um pêndulo é abandonado na posição A e atinge a posição E, como mostra a figura abaixo. Assinale a alternativa que melhor indica a direção

Leia mais

LISTA PARA RECUPERAÇÃO DE FÍSICA 1 PROFESSOR GUSTAVO SABINO

LISTA PARA RECUPERAÇÃO DE FÍSICA 1 PROFESSOR GUSTAVO SABINO LISTA PARA RECUPERAÇÃO DE FÍSICA 1 PROFESSOR GUSTAVO SABINO 1. Sobre uma partícula P agem quatro forças, representadas na figura abaixo. O módulo da força resultante sobre a partícula é de: a) 5 N b) 24

Leia mais

Lista 12: Rotação de corpos rígidos

Lista 12: Rotação de corpos rígidos Lista 12: Rotação de Corpos Rígidos Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. Siga a estratégia para

Leia mais

GOIÂNIA, / / DISCIPLINA: Física SÉRIE: 1. Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações:

GOIÂNIA, / / DISCIPLINA: Física SÉRIE: 1. Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações: GOIÂNIA, / / 2016 PROFESSOR: Douglas Rezende DISCIPLINA: Física SÉRIE: 1 ALUNO(a): No Anhanguera você é + Enem Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações: - É fundamental

Leia mais

1º ano FÍSICA Prof. Márcio Marinho

1º ano FÍSICA Prof. Márcio Marinho 1º) Se a soma das três Forças que atuam em um corpo é zero, então, com base na 1º lei de Newton podemos afirmar que: a) O corpo está obrigatoriamente em repouso; b) O corpo está obrigatoriamente em movimento

Leia mais

Lista 5: Trabalho e Energia

Lista 5: Trabalho e Energia Lista 5: Trabalho e Energia NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a

Leia mais

Fís. Semana. Leonardo Gomes (Guilherme Brigagão)

Fís. Semana. Leonardo Gomes (Guilherme Brigagão) Semana 9 Leonardo Gomes (Guilherme Brigagão) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA

Leia mais

Física 1 VS 16/12/2017. Atenção: Leia as recomendações antes de fazer a prova.

Física 1 VS 16/12/2017. Atenção: Leia as recomendações antes de fazer a prova. Física 1 VS 16/12/2017 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua resposta.

Leia mais