Árvores Equilibradas. Sumário
|
|
|
- Ana Beatriz das Neves da Costa
- 9 Há anos
- Visualizações:
Transcrição
1 Árvores Equilibradas Sumário Splay Vermelho Preto AA e BB Multidimensionais quaternárias k d Pesquisa Lexicográfica tries multivia tries binárias PATRICIA
2 Árvores Equilibradas Sumário Árvores AVL Árvores B Splay Pesquisa Lexicográfica tries multivia tries binárias
3 Árvores equilibradas Árvore de pesquisa binária não garante acesso logarítmico Inserção e eliminação simples podem criar árvores desequilibradas Pior caso é linear: árvore degenera em lista ligada Pior caso ocorre tipicamente para inserções ordenadas Árvores equilibradas Evitam casos degenerados Garantem O(log N) para operações de inserção, remoção e pesquisa Requerem algoritmos mais elaborados para inserção e remoção Condição adicional na árvore condição de equilíbrio, garante que nenhum nó está demasiado profundo
4 Árvores AVL Adelson Velskii e Landis, 1962 Condição de equilíbrio: na altura das sub árvores de cada nó diferença de alturas não pode exceder 1 garante altura logarítmica para a árvore é simples de manter Definição Uma árvore AVL é uma árvore de pesquisa binária que respeita a seguinte condição de equilíbrio: para qualquer nó da árvore, as alturas das sub árvores esquerda e direita diferem no máximo de 1 unidade. Altura de uma árvore 1 + altura da sua sub árvore mais alta 0 para árvore só com 1 nó 1 para árvore vazia
5 Número de nós na árvore AVL Uma árvore AVL de altura H tem pelo menos F H+3 1 nós, em que F i é o número de Fibonacci de ordem i S H : tamanho da menor árvore AVL de altura H (S 0 = 1, S 1 = 2) A árvore mais pequena de altura H tem sub árvores de alturas H 1 e H 2 Cada sub árvore terá, por sua vez, o número mínimo de nós para a sua altura Então será S H = S H 1 + S H 2 +1 S H = F H+3 1, por indução: S 0 =1, é F 3 1 Se S H 1 = F H+2 1 e S H 2 = F H+1 1, então S H = S H 1 + S H 2 +1 = F H F H = F H+2 + F H+1 1 = F H+3 1 F i φ i / 5, com φ= (1+ 5)/ árvore de altura H tem no mínimo φ H+3 / 5 nós H < 1.44 log (N+2) (não mais de 44% acima da mínima)
6 Árvores AVL Inserção com violação da condição em 2 nós 5 Inserções e remoções podem destruir o equilíbrio de alguns dos nós da árvore Necessário verificar condição e reequilibrar se tiver sido destruída
7 Inserção em Árvores AVL Após uma inserção, só os nós no caminho da raiz ao ponto de inserção podem ter a condição de equilíbrio alterada condição só depende das alturas das sub árvores de um nó Para reequilibrar: subir no caminho até à raiz reequilibrar o nó mais profundo onde surge desequilíbrio toda a árvore resulta equilibrada X: nó a reequilibrar devido a inserção em 1 árvore esquerda do filho esquerdo de X 2 árvore direita do filho esquerdo de X 3 árvore esquerda do filho direito de X 4 árvore direita do filho direito de X Casos 1 e 4 simétricos; casos 2 e 3 simétricos
8 Rotação simples k2 Caso 1 k2 A B C A B C k2 é nó mais profundo onde falha o equilíbrio sub árvore esquerda está 2 níveis abaixo da direita B não está no mesmo nível de A, ou k2 estaria desequilibrado antes da inserção B não está no mesmo nível que C, ou seria nó desequilibrado mais fundo
9 Rotação simples A k2 8 C B 16 A 4 2 k B 6 10 C 1 Árvore resultante da rotação é AVL e k2 passam a ter subárvores da mesma altura nova altura da árvore resultante é igual á da árvore anterior à inserção problema fica resolvido com uma só operação
10 Rotação simples com filho esquerdo /** * Rotate binary tree node with left child. * For AVL trees, this is a single rotation * for case 1. */ static BinaryNode withleftchild( BinaryNode { BinaryNode = k2.left; k2.left =.right;.right = k2; return ; }
11 Rotação simples com filho direito /** * Rotate binary tree node with right child * For AVL trees, this is a single rotation * for case 4. */ static BinaryNode withrightchild( BinaryNod { BinaryNode k2 =.right;.right = k2.left; k2.left = ; return k2; }
12 Rotação simples no caso 2 k2 Caso 2 k2 R P P Q Q R Rotação simples não resolve o desequilíbrio! sub árvore Q está a 2 níveis de diferença de R sub árvore Q passa a estar a 2 níveis de diferença de P
13 Rotação dupla no caso 2 k3 k2 Caso 2 k3 k2 A B C D A B C D Uma das subárvores B ou C está 2 níveis abaixo de D (e só uma) k2, a chave intermédia, fica na raiz posições de, k3 e subárvores completamente determinadas pela ordenação
14 Rotação dupla k k D k A 2 k2 6 A 2 B 5 C 10 D B 5 C Rotação dupla pode ser vista como sequência de 2 rotações simples rotação entre o filho e o neto de X rotação entre X e o seu novo filho
15 Rotação dupla com filho esquerdo /** * Double rotate binary tree node: first lef * with its right child; then node k3 with n * left child. * For AVL trees, this is a double rotation * case 2. */ static BinaryNode doublewithleftchild( Binar { k3.left = withrightchild( k3.left ); return withleftchild( k3 ); }
16 Rotação dupla com filho direito } /** * Double rotate binary tree node: first rig * with its left child; then node with ne * right child. * For AVL trees, this is a double rotation * case 3. */ static BinaryNode doublewithrightchild(binar {.right = withleftchild(.right ); return withrightchild( ); }
17 Algoritmo recursivo Inserção em árvore AVL Inserir nó com chave X numa árvore A recursivamente, inserir na subárvore conveniente de A, SA se a altura de AS não se modifica: terminar se a altura de AS é modificada: se ocorre desequilíbrio em A, fazer as rotações necessárias para reequilibrar Comparação de alturas requer cálculo repetido de alturas das árvores: preferível manter o resultado da comparação como um factor de equilíbrio Algoritmo iterativo Especificar paragem logo que uma rotação é realizada
Árvores de pesquisa. Árvores de pesquisa equilibradas
Árvores VL Árvores Splay Árvores Árvores de pesquisa Árvores Vermelho-Preto Árvores e Árvores Multidimensionais quaternárias k-d [Árvores para Pesquisa Lexicográfica tries multivia tries binárias PTRII]
Uma árvore binária de busca não garante acesso em tempo logarítmico.
ÁRVORES LNEDS Uma árvore binária de busca não garante acesso em tempo logarítmico. Inserções ou eliminações podem desbalanceá-la. Pior caso: a árvore degenera em lista ligada, onde a busca passa a gastar
Árvores AVL. Estrutura de Dados II Jairo Francisco de Souza
Árvores AVL Estrutura de Dados II Jairo Francisco de Souza Introdução As árvores binárias de pesquisa são projetadas para um acesso rápido à informação. Idealmente a árvore deve ser razoavelmente equilibrada
Árvores Vermelho-Preto
Árvores Vermelho-Preto SCC0202 - Algoritmos e Estruturas de Dados I Prof. Fernando V. Paulovich http://www.icmc.usp.br/~paulovic [email protected] Instituto de Ciências Matemáticas e de Computação (ICMC)
Estruturas de Dados. Aula 08. Árvores AVL II. Karina Mochetti
Estruturas de Dados 2018.2 Árvore AVL Uma Árvore AVL (Adelson, Velskii e Landis) T é uma Árvore Binária de Busca Balanceada, tal que: T é vazia; T consiste de um nó raiz k e duas subárvores binárias Te
Árvores AVL. O balanceamento da árvore pode ser realizado localmente se apenas uma porção da árvore for afetada por operações de inserção ou remoção.
Árvores Árvores AVL Os algoritmos vistos trabalham sobre a árvore toda. Se houver a necessidade de manter o balanceamento a cada inserção ou remoção, então sua eficiência fica bastante prejudicada. O balanceamento
Árvores AVL e Árvores B. Jeane Melo
Árvores AVL e Árvores B Jeane Melo Roteiro Árvores Binárias Árvores AVL Definição Motivação Balanceamento Operações de rebalanceamento Árvores B Introdução Árvores Binárias Árvores binárias Cada nó tem
Pedro Vasconcelos DCC/FCUP. Programação Funcional 16 a Aula Árvores equilibradas
Programação Funcional 16 a Aula Árvores equilibradas Pedro Vasconcelos DCC/FCUP 2014 Aula anterior Operações sobre árvores binárias ordenadas: 1 pesquisa; 2 inserção; 3 remoção. Estas operações são mais
Linguagem C: Árvores AVL
Instituto de C Linguagem C: Árvores AVL Luis Martí Instituto de Computação Universidade Federal Fluminense [email protected] - http://lmarti.com Árvores Balanceadas As árvores binárias de pesquisa são,
Árvore Vermelho-Preta. Estrutura de Dados II Jairo Francisco de Souza
Árvore Vermelho-Preta Estrutura de Dados II Jairo Francisco de Souza Introdução As árvores Vermelho-preto são árvores binárias de busca Também conhecidas como Rubro-negras ou Red-Black Trees Foram inventadas
INE5408 Estruturas de Dados
INE5408 Estruturas de Dados - Características - Rotações Árvores AVL Características Manter uma árvore binária de busca balanceada sob a presença de constantes inserções e deleções é ineficiente. Para
Dicionários. TAD Orientado a conteúdo
Dicionários TAD Orientado a conteúdo Dicionários efinição: Tipo abstrato de dados orientado a onteúdo. Contrasta com as PILHAs e FILAs que são orientadas a posição. perações implementadas: Inserir(d,x)
ESTRUTURA DE DADOS E ALGORITMOS ÁRVORES BALANCEADAS. Cristina Boeres
ESTRUTURA DE DADOS E ALGORITMOS ÁRVORES BALANCEADAS Cristina Boeres Árvore Binária - altura máxima Seja a árvore A formada com as seguintes inserções! 1, 2, 3, 4, 5, 6 e 7 1 2 3 4! Pior caso: O(n) 5 6
Árvores Binárias de Busca
Árvores AVL Árvores Binárias de Busca Altura de uma árvore binária (AB): igual à profundidade, ou nível máximo, de suas folhas A eficiência da busca em árvore depende do seu balanceamento Algoritmos de
Algoritmos e Estrutura de Dados II. Árvore AVL. Prof a Karina Oliveira. Fonte: Prof a Ana Eliza
Algoritmos e Estrutura de Dados II Árvore AVL Prof a Karina Oliveira [email protected] Fonte: Prof a Ana Eliza Árvores Binárias de Busca Objetivo da Utilização Minimizar o número de comparações efetuadas,
Splaying Tree (Árvore espalhada) Estrutura de Dados II Jairo Francisco de Souza
Splaying Tree (Árvore espalhada) Estrutura de Dados II Jairo Francisco de Souza Introdução Inventada por Adelson Velskii e Landis - 1962. Também chamada de Árvores Auto-Ajustadas ou Árvore de Afunilamento.
Aula 10 Árvores Adelson-Velskii e Landis
MC3305 Algoritmos e Estruturas de Dados II Aula 10 Árvores Adelson-Velskii e Landis Prof. Jesús P. Mena-Chalco [email protected] 2Q-2014 1 Árvores balanceadas 2 Árvores balanceadas As ABB permitem
Splaying Tree (Árvore espalhada) Estrutura de Dados II Jairo Francisco de Souza
Splaying Tree (Árvore espalhada) Estrutura de Dados II Jairo Francisco de Souza Introdução Inventada por Adelson Velskii e Landis - 1962. Também chamada de Árvores Auto-Ajustadas ou Árvore de Afunilamento.
Árvores AVL. Prof. Robinson Alves
Prof. Robinson Alves O que veremos? Conceitos Inserção Remoção Balanceamento Código Java de AVL Árvores Balanceadas As árvores binárias de pesquisa são, em alguns casos, pouco recomendáveis para as operações
Introdução a AVL: teoria e prática. 22/11, 25/11 e 30/11
Introdução a AVL: teoria e prática 22/11, 25/11 e 30/11 Árvores binárias de busca (ABB) Árvores de grau 2, isto é, cada nó tem dois filhos, no máximo Raiz B A C Terminologia: filho esquerdo filho direito
ALGORITMOS AVANÇADOS. UNIDADE V Estruturas de dados dos tipos Árvore Binária e Árvore AVL. Luiz Leão
UNIDADE V Estruturas de dados dos tipos Árvore Binária e Árvore AVL Luiz Leão [email protected] http://www.luizleao.com Conteúdo Programático 5.1 - Árvores, Árvores Binárias e Árvores Binárias de Busca
Árvores Binárias de Busca
Árvores AVL Árvores Binárias de Busca Altura de uma árvore binária (AB): igual à profundidade, ou nível máximo, de suas folhas A eficiência da busca em árvore depende do seu balanceamento Algoritmos de
Árvores binárias de busca
Árvores binárias de busca SCC-214 Projeto de Algoritmos Thiago A. S. Pardo Árvore binárias Árvores de grau 2, isto é, cada nó tem dois filhos, no máximo Raiz D B A E C F Terminologia: filho esquerdo filho
ÁRVORE AVL. Problema do balanceamento
ÁRVORE VL Prof. ndré ackes Problema do balanceamento 2 eficiência da busca em uma árvore binária depende do seu balanceamento. O(log N), se a árvore está balanceada O(N), se a árvore não está balanceada
Árvores. Thiago Martins, Fabio Gagliardi Cozman. PMR2300 / PMR3201 Escola Politécnica da Universidade de São Paulo
PMR2300 / PMR3201 Escola Politécnica da Universidade de São Paulo Árvore: estrutura composta por nós e arestas entre nós. As arestas são direcionadas ( setas ) e: um nó (e apenas um) é a raiz; todo nó
Estrutura de Dados. Carlos Eduardo Batista. Centro de Informática - UFPB
Estrutura de Dados Carlos Eduardo Batista Centro de Informática - UFPB [email protected] Árvores (parte 3) Estruturas de Dados 2 Organização dos dados: Linear: Listas, pilhas, filas. Relação sequencial.
Árvores balanceadas. Aleardo Manacero Jr.
Árvores balanceadas Aleardo Manacero Jr. Árvores Balanceadas Para que uma árvore seja, de fato, um mecanismo eficiente, é preciso que os seus elementos estejam distribuídos de forma relativamente homogênea
Árvores. Prof. Byron Leite Prof. Tiago Massoni Prof. Fernando Buarque. Engenharia da Computação. Poli - UPE
Árvores Prof. Byron Leite Prof. Tiago Massoni Prof. Fernando Buarque Engenharia da Computação Poli - UPE Motivação Para entradas realmente grandes, o acesso linear de listas é proibitivo Estrutura de dados
Árvores. Fabio Gagliardi Cozman. PMR2300 Escola Politécnica da Universidade de São Paulo
PMR2300 Escola Politécnica da Universidade de São Paulo Árvore: estrutura composta por nós e arestas entre nós. As arestas são direcionadas ( setas ) e: um nó (e apenas um) é a raiz; todo nó (exceto a
Árvores binárias de busca
Árvores binárias de busca Introdução à Ciência de Computação II Diego R. Amancio Baseado no material do Prof. Thiago A. S. Pardo Árvore binárias n Árvores de grau 2, isto é, cada nó tem dois filhos, no
Árvores AVL. Nesta aula será apresentado o ADT árvore AVL que são árvores binárias de altura equilibrada. Algoritmos e Estruturas de Dados I
Árvores AVL Nesta aula será apresentado o ADT árvore AVL que são árvores binárias de altura equilibrada Algoritmos e Estruturas de Dados I José Augusto Baranauskas Departamento de Física e Matemática FFCLRP-USP
Algoritmos e Estruturas de Dados II Árvores - AVL. Prof. César Melo DCC/ICE/UFAM
Algoritmos e Estruturas de Dados II Árvores - AVL Prof. César Melo DCC/ICE/UFAM Até mais ABB, muito prazer AVL. Escreva sobre a estrutura de dados Árvore Binária de Busca(ABB). Você terá 10 minutos para
Árvores. Thiago Martins, Fabio Gagliardi Cozman. PMR2300 / PMR3201 Escola Politécnica da Universidade de São Paulo
PMR2300 / PMR3201 Escola Politécnica da Universidade de São Paulo Árvore: estrutura composta por nós e arestas entre nós. As arestas são direcionadas ( setas ) e: um nó (e apenas um) é a raiz; todo nó
Aula 19 Árvores Rubro-Negras
Algoritmos e Estruturas de Dados I Aula 19 Árvores Rubro-Negras Prof. Jesús P. Mena-Chalco [email protected] Q1-2017 1 Árvores de Busca Binária Por que ABBs? São estruturas eficientes de busca (se
Árvores AVL (Adelson-Velskii and Landis)
Árvores VL (delson-velskii and Landis) Universidade Federal do mazonas Departamento de Eletrônica e Computação Introdução (1) Árvore alanceada Uma árvore binária balanceada é aquela em que, para qualquer
PROGRAMAÇÃO III (LTSI)
ESTRUTURAS DE DADOS (LEI, LM, LEE) PROGRAMAÇÃO III (LTSI) Universidade da Beira Interior, Departamento de Informática Hugo Pedro Proença, 2009/2010 Árvores Binárias AVL Tal como visto anteriormente, caso
Problemas com ABP Desbalanceamento progressivo
Árvores Binárias de Pesquisa Árvores Balanceadas Aresentam uma relação de ordem A ordem é definida ela chave Oerações: inserir consultar 5 excluir 3 8 15 4 6 9 Problemas com ABP Exemlo: Problemas com ABP
Árvores Binárias de Busca (ABB) 18/11
Árvores Binárias de Busca (ABB) 18/11 Definição Uma Árvore Binária de Busca possui as mesmas propriedades de uma AB, acrescida da seguintes propriedade: Para todo nó da árvore, se seu valor é X, então:
Árvores AVL. Prof. Othon M. N. Batista Estrutura de Dados
Árvores AVL Prof. Othon M. N. Batista Estrutura de Dados Roteiro (/2) Árvore Binária de Pesquisa - Pior Tempo ABP Balanceada e Não Balanceada Balanceamento de Árvores Balanceamento de ABP Balanceamento
Árvores Binárias Balanceadas Estrutura de Dados I
- entro de iências Exatas, Naturais e de Saúde Departamento de omputação Árvores inárias alanceadas Estrutura de Dados I OM06992 - Estrutura de Dados I Prof. Marcelo Otone guiar [email protected]
Aula 13 Árvores Rubro-Negras
MC3305 Algoritmos e Estruturas de Dados II Aula 13 Árvores Rubro-Negras Prof. Jesús P. Mena-Chalco [email protected] 2Q-2015 1 Árvores de Busca Binária Por que ABBs? São estruturas eficientes de
Programação II. Árvores Binárias (Binary Trees) Bruno Feijó Dept. de Informática, PUC-Rio
Programação II Árvores Binárias (Binary Trees) Bruno Feijó Dept. de Informática, PUC-Rio Árvores Dados organizados de maneira hierárquica Exemplos: arquivos em diretórios, subdivisão de espaço 2D em um
INF1010 Lista de Exercícios 2
INF00 Lista de Exercícios 2 Árvores. Construir algoritmo para dada uma árvore n-ária, transformá-la em uma árvore binária. 2. Qual a maior e menor quantidade de nós que podem existir em uma árvore binária
Aula 28: Listas de Prioridades
28.1 Aula 28: Listas de Prioridades Conceitos básicos Definição de heap Alteração de prioridades 28.2 Listas de Prioridades Motivação: Os dados possuem prioridades. A prioridade de um dado pode variar
UNIVERSIDADE DE SÃO PAULO ICMC SCC 202 Algoritmos e Estrutura de Dados I - 2º Semestre 2010 Profa. Sandra Maria Aluísio;
UNIVERSIDADE DE SÃO PAULO ICMC SCC 202 Algoritmos e Estrutura de Dados I - 2º Semestre 2010 Profa. Sandra Maria Aluísio; e-mail: [email protected] Lista de Exercícios Árvores, Árvores Binárias, Árvores
DAINF - Departamento de Informática
DAINF - Departamento de Informática Algoritmos 2 - Árvore binária de busca Prof. Alex Kutzke ( http://alex.kutzke.com.br/courses ) 30 de Novembro de 2015 Slides adaptados do material produzido pelo Prof.
ESTRUTURA DE DADOS E ALGORITMOS. Árvores Binárias de Busca. Cristina Boeres
ESTRUTURA DE DADOS E ALGORITMOS Árvores Binárias de Busca Cristina Boeres Árvore Binária de Busca 30! construída de tal forma que, para cada nó: nós com chaves menores estão na sub-árvore esquerda nós
Árvores B. Prof. Márcio Bueno. / Fonte: Material da Prof a Ana Eliza Lopes Moura
Árvores B Prof. Márcio Bueno [email protected] / [email protected] Fonte: Material da Prof a Ana Eliza Lopes Moura Situação Problema Memória Principal Volátil e limitada Aplicações Grandes
INF 1010 Estruturas de Dados Avançadas. Árvores binárias
INF 1010 Estruturas de Dados Avançadas Árvores binárias 1 Árvore estrutura hierárquica: A B E F C D G A B C E F D G A B C D E F G (A (B (E, F)), C, (D (G))) 05/09/16 2 Árvore - definições árvore: nó raiz
Árvores Rubro-Negras. Árvores Rubro-Negras. (Vermelho-Preta) Estrutura da Árvore. Estrutura da Árvore
Árvores Rubro-Negras Árvores Rubro-Negras (Vermelho-Preta) Árvore Binária de Pesquisa (ABP) com nodos coloridos de vermelho e preto Árvore balanceada Qualquer caminho da raiz até as folhas, nenhum caminho
Árvores Binárias de Busca
Árvores Binárias de Busca SCC0202 - Algoritmos e Estruturas de Dados I Prof. Fernando V. Paulovich *Baseado no material do Prof. Gustavo Batista http://www.icmc.usp.br/~paulovic [email protected] Instituto
SUMÁRIO. Fundamentos Árvores Binárias Árvores Binárias de Busca
ÁRVORES SUMÁRIO Fundamentos Árvores Binárias Árvores Binárias de Busca 2 ÁRVORES Utilizadas em muitas aplicações Modelam uma hierarquia entre elementos árvore genealógica Diagrama hierárquico de uma organização
AED1 - Árvores. Hebert Coelho. Instituto de Informática Universidade Federal de Goiás. HC AED1-Árvores 1/49
AED1 - Árvores Hebert Coelho Instituto de Informática Universidade Federal de Goiás HC AED1-Árvores 1/49 Roteiro Árvore; Árvores - Representações; Árvores - Conceitos; Árvores Binárias; Árvores Binárias
Árvores Binárias de Busca
0. Um breve comentário sobre os algoritmos de busca em tabelas De uma maneira geral, realizam-se operações de busca, inserção e remoção de elementos numa tabela. A busca sequencial tradicional é O(N).
ESTRUTURA DE DADOS DCC013. Árvore Binária de Busca
ESTRUTURA DE DADOS DCC013 Árvore Binária de Busca Árvore Binária de Busca Propriedade fundamental da árvore binária de busca Valor da chave da raiz é Maior do que o valor da chave da subárvore da esquerda
ÁRVORES E ÁRVORE BINÁRIA DE BUSCA
ÁRVORES E ÁRVORE BINÁRIA DE BUSCA Prof. André Backes Definição 2 Diversas aplicações necessitam que se represente um conjunto de objetos e as suas relações hierárquicas Uma árvore é uma abstração matemática
Árvores B. Árvore B (ou melhor B+)
Motivação: pesquisa em disco Árvores B Tempo de acesso a disco determinante nas operações Com disco de 10 ms de tempo de acesso: 100 acessos por segundo em máquina de 25 MIPS, 1 acesso custa tanto como
Árvores Binárias de Busca (ABB) 18/11
Árvores Binárias de Busca (ABB) 18/11 Definição Uma Árvore Binária de Busca possui as mesmas propriedades de uma AB, acrescida da seguintes propriedade: Para todo nó da árvore, se seu valor é X, então:
Árvores. Prof. César Melo ICOMP/UFAM
Árvores Prof. César Melo ICOMP/UFAM Introdução v Árvore é uma estrutura adequada para representar hierarquias Diretórios em um computador Serviço de resolução de nomes na Internet v A forma mais natural
Árvores Rubro-Negra IFRN
Árvores Rubro-Negra IFRN Árvores Rubro-Negra Seja T uma árvore binária de pesquisa Cada nó deve estar associado a uma cor rubro ou negra Uma árvore é rubro-negra quando as seguintes condições são satisfeitas:
Exemplo Árvore Binária
Árvores Rohit Gheyi Para entradas realmente grandes, o acesso linear O(n) de listas é proibi9vo Estrutura de dados não linear, cujas operações tem custos em geral O(log n) 1 2 Exemplo Como seria pesquisar
Árvores Binárias. SCC Algoritmos e Estruturas de Dados I. Prof. Fernando V. Paulovich
Árvores Binárias SCC0202 - Algoritmos e Estruturas de Dados I Prof. Fernando V. Paulovich *Baseado no material do Prof. Gustavo Batista. Figuras editadas por Isadora Maria Mendes http://www.icmc.usp.br/~paulovic
Árvores & Árvores Binárias
Árvores & Árvores Binárias Problema Implementações do TAD Lista Linear Lista encadeada eficiente para inserção e remoção dinâmica de elementos, mas ineficiente para busca Lista seqüencial (ordenada) Eficiente
Árvores AVL (Balanceadas) Profª.Drª. Roseli Ap. Francelin Romero Fonte: Profa. Patrícia Marchetti Revisão: Gedson Faria
SCE 182 SCC122 Algoritmos Estruturas e Estruturas de Dados de Dados I Árvores AVL (Balanceadas) Profª.Drª. Roseli Ap. Francelin Romero Fonte: Profa. Patrícia Marchetti Revisão: Gedson Faria Árvores AVL
Árvores. Estruturas de Dados. Prof. Vilson Heck Junior
Árvores Estruturas de Dados Prof. Vilson Heck Junior Árvores INTRODUÇÃO Introdução Árvores são estruturas de dados utilizadas para armazenar e recuperar dados de forma rápida e eficiente; Árvores não são
Árvores Binárias Balanceadas
Árvores Binárias Balanceadas Elisa Maria Pivetta Cantarelli [email protected] Árvores Balanceadas Uma árvore é dita balanceada quando as suas subárvores à esquerda e à direita possuem a mesma altura. Todos
Mo:vação. Árvore AVL. Caracterís:cas. Origem. Exemplo. Exercício 1 Qual é a altura dos nodos 50 e 44?
Mo:vação Árvore AVL Árvores binárias de Pesquisa possuem uma tendência natural de desbalancear 1 2 Rohit Gheyi [email protected] 6 8 1 2 Origem Adelson Velskii, G.; E. M. Landis (1962). "An algorithm
