Árvores binárias de busca

Tamanho: px
Começar a partir da página:

Download "Árvores binárias de busca"

Transcrição

1 Árvores binárias de busca Introdução à Ciência de Computação II Diego R. Amancio Baseado no material do Prof. Thiago A. S. Pardo

2 Árvore binárias n Árvores de grau 2, isto é, cada nó tem dois filhos, no máximo Raiz B A C Terminologia: filho esquerdo filho direito informação D E F

3 Árvores binárias de busca (ABB) n Também chamadas árvores de pesquisa ou árvores ordenadas n Definição n Uma árvore binária com raiz R é uma ABB se: n a chave (informação) de cada nó da subárvore esquerda de R é menor do que a chave do nó R (em ordem alfabética, por exemplo) n a chave de cada nó da subárvore direita de R é maior do que a chave do nó R n as subárvores esquerda e direita também são ABBs

4 ABB n Exemplos R1 R2 D D B F A F A C é ABB E G B C E não é ABB G

5 ABB n Por que uma ABB é boa? n Imagine a situação n Sistema de votação por telefone ( Você decide ) n Cada número só pode votar uma vez n Um sistema deve armazenar todos os números que já ligaram n A cada nova ligação, deve-se consultar o sistema para verificar se aquele número já votou; o voto é computado apenas se o número ainda não votou n A votação deve ter resultado on-line

6 ABB n Por que uma ABB é boa? n Solução com ABBs n Cada número de telefone é armazenado em uma ABB n Suponha que em um determinado momento, a ABB tenha 1 milhão de telefones armazenados n Surge nova ligação e é preciso saber se o número está ou não na árvore (se já votou ou não)

7 ABB n Por que uma ABB é boa? n Considere uma ABB com chaves uniformemente distribuídas (árvore cheia)

8 ABB n Por que uma ABB é boa? n Responda n Quantos elementos cabem em uma árvore de N níveis, como a anterior? n Como achar um elemento em uma árvore assim a partir da raiz? n Quantos nós se tem que visitar, no máximo, para achar o telefone na árvore, ou ter certeza de que ele não está na árvore?

9 ABB n Por que uma ABB é boa? nível 1 nível 2 nível 3 nível 4 nível 5 nível N Nível Quantos cabem N 2 N milhão 30 1 bilhão...

10 ABB n Por que uma ABB é boa? n Para se buscar em uma ABB n Em cada nó, compara-se o elemento buscado com o elemento presente n Se menor, percorre-se a subárvore esquerda n Se maior, percorre-se subárvore direita n Desce-se verticalmente até as folhas, no pior caso, sem passar por mais de um nó em um mesmo nível n Portanto, no pior caso, a busca passa por tantos nós quanto for a altura da árvore

11 ABB n Exemplo: busca pelo elemento E nas árvores abaixo R1 R2 D D B F A F A C é ABB E G B C E não é ABB G 3 consultas 6 consultas

12 ABB n Por que uma ABB é boa? n Buscas muito rápidas!!!

13 ABB n Representação B D Raiz F Raiz ABB vazia A C G

14 ABB n Declaração similar às árvores binárias convencionais n Manipulação diferente typedef struct no { int info; } no; struct no *esq, *dir; no *raiz;

15 ABB n Operações sobre a ABB n Devem considerar a ordenação dos elementos da árvore n Por exemplo, na inserção, deve-se procurar pelo local certo na árvore para se inserir um elemento n Exercício n Construa a partir do início uma ABB com os elementos K, E, C, P, G, F, A, T, M, U, V, X, Z

16 ABB n Operações básicas n Está na árvore? n Inserção n Remoção

17 ABB n Está na árvore? n Comparando o parâmetro chave com a informação no nó raiz, 4 casos podem ocorrer n A árvore é vazia => a chave não está na árvore => fim do algoritmo n Elemento da raiz = chave => achou o elemento (está no nó raiz) => fim do algoritmo n Chave < elemento da raiz => chave pode estar na subárvore esquerda n chave > info(raiz) => chave pode estar na subárvore direita n Pergunta: quais os casos que podem ocorrer para a subárvore esquerda? E para a subárvore direita?

18 ABB n Exercício n Implementação da sub-rotina de busca de um elemento na árvore

19 Busca em árvore binária int busca(no *p, int x) { if (p==null) } return 0; else if (x==p->info) return 1; else if (x<p->info) return(busca(p->esq,x)); else return(busca(p->dir,x));

20 ABB n Inserção n Estratégia geral n Inserir elementos como nós folha (sem filhos) n Procurar o lugar certo e então inserir n Comparando o parâmetro chave com a informação no nó raiz, 4 casos podem ocorrer n A árvore é vazia => insere o elemento, que passará a ser a raiz; fim do algoritmo n Elemento da raiz = chave => o elemento já está na árvore; fim do algoritmo n Chave < elemento da raiz => insere na subárvore esquerda n Chave > elemento da raiz => insere na subárvore direita

21 ABB n Exercício n Implementação da sub-rotina de inserção de um elemento na árvore

22 Inserção int inserir(no *p, int x) { } if (p==null) { p=(no*) malloc(sizeof(no)); } p->info=x; p->esq=null; p->dir=null; return 1; else if (p->info==x) return 0; else if (x<p->info) return(inserir(p->esq,x)); else return(inserir(p->dir,x));

23 ABB n Remoção n Para a árvore abaixo, remova os elementos T, C e K, nesta ordem K R E P C G M T A F

24 ABB n Remoção n Caso 1 (remover T): o nó a ser removido (R) não tem filhos n n Remove-se o nó R aponta para NULL n Caso 2 (remover C): o nó a ser removido tem 1 único filho n Remove-se o nó n Puxa-se o filho para o lugar do pai n Caso 3 (remover K): o nó a ser removido tem 2 filhos n n n Acha-se a maior chave da subárvore esquerda R recebe o valor dessa chave Remove-se a maior chave da subárvore esquerda

25 ABB n Exercício para casa n Implementação da sub-rotina de remoção de um elemento da árvore

26 ABB n Vantagens n Se nós espalhados uniformemente, consulta rápida para grande quantidade de dados n Divide-se o espaço de busca restante em dois em cada passo da busca n O(Log N)

27 ABB n Análise do algoritmo: O(Log N) N=8 4 2 Log N + 1 vezes Log 8 +1 = 4 1

28 ABB n Contra-exemplo n Inserção dos elementos na ordem em que aparecem n A, B, C, D, E,..., Z n 1000, 999, 998,..., 1

29 ABB n O desbalanceamento da árvore pode tornar a busca tão ineficiente quanto a busca seqüencial (no pior caso) n O(N) n Solução?

30 ABB n O desbalanceamento da árvore pode tornar a busca tão ineficiente quanto a busca seqüencial (no pior caso) n O(N) n Solução? Balanceamento da árvore quando necessário!

31 Conceitos n Árvore estritamente binária n Os nós tem 0 ou 2 filhos A n Todo nó interno tem 2 filhos n Somente as folhas têm 0 filhos B G C D E F

32 Conceitos n Árvore binária completa (ou cheia) n Árvore estritamente binária n Todos os nós folha no mesmo nível A B G C D E F

33 Conceitos n Uma árvore binária é dita balanceada se, para cada nó, as alturas de suas duas subárvores diferem de, no máximo, 1 A A B C B C D E D E F

34 AVL n Árvore binária de busca balanceada n Para cada nó, as alturas das subárvores diferem em 1, no máximo n Proposta em 1962 pelos matemáticos russos G.M. Adelson-Velskki e E.M. Landis n Métodos de inserção e remoção de elementos da árvore de forma que ela fique balanceada

35 AVL: quem é e quem não é? (a) (b) (c) (d) (e)

36 AVL: quem é e quem não é? (a) (b) (c) (d) (e)

37 Pergunta: a árvore abaixo é AVL?

38 Exercício: onde se pode incluir um nó para a AVL continuar sendo AVL?

39 AVL n Como é que se sabe quando é necessário balancear a árvore? n Se a diferença de altura das subárvores deve ser 1, no máximo, então temos que procurar diferenças de altura maior do que isso n Possível solução: cada nó pode manter a diferença de altura de suas subárvores n Convencionalmente chamada de fator de balanceamento do nó

40 AVL n Fatores de balanceamento dos nós n Altura da subárvore direita menos altura da subárvore esquerda n Hd-He n Atualizados sempre que a árvore é alterada (elemento é inserido ou removido) n Quando um fator é 0, 1 ou -1, a árvore está balanceada n Quando um fator se torna 2 ou -2, a árvore está desbalanceada n Operações de balanceamento!

41 AVL: quem é e quem não é (a) (b) (c) (d) 0 0 (e)

42 AVL: exemplo de desbalanceamento Novo nó 0 0 Novo nó Novo nó 1 1 Novo nó 1 2 Desbalanceou!!!

43 AVL n Controle do balanceamento n Altera-se o algoritmo de inserção para balancear a árvore quando ela se tornar desbalanceada após uma inserção (nó com FB 2 ou -2) n Rotações Se árvore pende para esquerda (FB negativo), rotaciona-se para a direita Se árvore pende para direita (FB positivo), rotacionase para a esquerda n 2 casos podem acontecer

44 AVL: primeiro caso n Raiz de uma subárvore com FB -2 (ou 2) e um nó filho com FB -1 (ou 1) n Os fatores de balanceamento têm sinais iguais: subárvores de nó raiz e filho pendem para o mesmo lado inserção

45 AVL: primeiro caso Rotação do nó pai para a direita (nó com FB=-2 ou 2) desce 4 sobe 6 é realocado Pendendo para a esquerda Árvore balanceada!!!

46 AVL: primeiro caso n Quando subárvores do pai e filho pendem para um mesmo lado n Rotação simples para o lado oposto n Às vezes, é necessário realocar algum elemento, pois ele perde seu lugar na árvore

47 AVL: segundo caso n Raiz de uma subárvore com FB -2 (ou 2) e um nó filho com FB 1 (ou -1) n Os fatores de balanceamento têm sinais opostos: subárvore de nó raiz pende para um lado e subárvore de nó filho pende para o outro (ou o contrário) inserção

48 AVL: segundo caso Rotação do nó filho para a esquerda (nó com FB=1 ou -1) Rotação do nó pai para a direita (nó com FB=-2 ou 2) Árvore balanceada!!!

49 AVL: segundo caso n Quando subárvores do pai e filho pendem para lados opostos n Rotação dupla n Primeiro, rotaciona-se o filho para o lado do desbalanceamento do pai n Em seguida, rotaciona-se o pai para o lado oposto do desbalanceamento n Às vezes, é necessário realocar algum elemento, pois ele perde seu lugar na árvore

50 AVL n As transformações dos casos anteriores diminuem em 1 a altura da subárvore com raiz desbalanceada p n Assegura-se o rebalanceamento de todos os ancestrais de p e, portanto, o rebalanceamento da árvore toda

51 AVL n Novo algoritmo de inserção n A cada inserção, verifica-se o balanceamento da árvore n Se necessário, fazem-se as rotações de acordo com o caso (sinais iguais ou não) n Em geral, armazena-se uma variável de balanceamento em cada nó para indicar o FB

52 AVL n Declaração typedef struct no { int info; struct no *esq, *dir; int FB; } no; no *raiz;

53 AVL n Exercício n Inserir os elementos 10, 3, 2, 5, 7 e 6 em uma árvore e balancear quando necessário

54 AVL n Exercício n Inserir os elementos A, B, C,..., J em uma árvore e balancear quando necessário

Árvores binárias de busca

Árvores binárias de busca Árvores binárias de busca SCC-214 Projeto de Algoritmos Thiago A. S. Pardo Árvore binárias Árvores de grau 2, isto é, cada nó tem dois filhos, no máximo Raiz D B A E C F Terminologia: filho esquerdo filho

Leia mais

Introdução a AVL: teoria e prática. 22/11, 25/11 e 30/11

Introdução a AVL: teoria e prática. 22/11, 25/11 e 30/11 Introdução a AVL: teoria e prática 22/11, 25/11 e 30/11 Árvores binárias de busca (ABB) Árvores de grau 2, isto é, cada nó tem dois filhos, no máximo Raiz B A C Terminologia: filho esquerdo filho direito

Leia mais

Árvores Binárias de Busca (ABB) 18/11

Árvores Binárias de Busca (ABB) 18/11 Árvores Binárias de Busca (ABB) 18/11 Definição Uma Árvore Binária de Busca possui as mesmas propriedades de uma AB, acrescida da seguintes propriedade: Para todo nó da árvore, se seu valor é X, então:

Leia mais

Árvores Binárias de Busca (ABB) 18/11

Árvores Binárias de Busca (ABB) 18/11 Árvores Binárias de Busca (ABB) 18/11 Definição Uma Árvore Binária de Busca possui as mesmas propriedades de uma AB, acrescida da seguintes propriedade: Para todo nó da árvore, se seu valor é X, então:

Leia mais

Árvores Binárias de Busca

Árvores Binárias de Busca Árvores AVL Árvores Binárias de Busca Altura de uma árvore binária (AB): igual à profundidade, ou nível máximo, de suas folhas A eficiência da busca em árvore depende do seu balanceamento Algoritmos de

Leia mais

Árvores Binárias de Busca

Árvores Binárias de Busca Árvores AVL Árvores Binárias de Busca Altura de uma árvore binária (AB): igual à profundidade, ou nível máximo, de suas folhas A eficiência da busca em árvore depende do seu balanceamento Algoritmos de

Leia mais

Árvores AVL e Árvores B. Jeane Melo

Árvores AVL e Árvores B. Jeane Melo Árvores AVL e Árvores B Jeane Melo Roteiro Árvores Binárias Árvores AVL Definição Motivação Balanceamento Operações de rebalanceamento Árvores B Introdução Árvores Binárias Árvores binárias Cada nó tem

Leia mais

Algoritmos e Estrutura de Dados II. Árvore AVL. Prof a Karina Oliveira. Fonte: Prof a Ana Eliza

Algoritmos e Estrutura de Dados II. Árvore AVL. Prof a Karina Oliveira. Fonte: Prof a Ana Eliza Algoritmos e Estrutura de Dados II Árvore AVL Prof a Karina Oliveira [email protected] Fonte: Prof a Ana Eliza Árvores Binárias de Busca Objetivo da Utilização Minimizar o número de comparações efetuadas,

Leia mais

Estruturas de Dados. Aula 08. Árvores AVL II. Karina Mochetti

Estruturas de Dados. Aula 08. Árvores AVL II. Karina Mochetti Estruturas de Dados 2018.2 Árvore AVL Uma Árvore AVL (Adelson, Velskii e Landis) T é uma Árvore Binária de Busca Balanceada, tal que: T é vazia; T consiste de um nó raiz k e duas subárvores binárias Te

Leia mais

INF 1010 Estruturas de Dados Avançadas. Árvores binárias

INF 1010 Estruturas de Dados Avançadas. Árvores binárias INF 1010 Estruturas de Dados Avançadas Árvores binárias 1 Árvore estrutura hierárquica: A B E F C D G A B C E F D G A B C D E F G (A (B (E, F)), C, (D (G))) 05/09/16 2 Árvore - definições árvore: nó raiz

Leia mais

Árvores AVL (Balanceadas) Profª.Drª. Roseli Ap. Francelin Romero Fonte: Profa. Patrícia Marchetti Revisão: Gedson Faria

Árvores AVL (Balanceadas) Profª.Drª. Roseli Ap. Francelin Romero Fonte: Profa. Patrícia Marchetti Revisão: Gedson Faria SCE 182 SCC122 Algoritmos Estruturas e Estruturas de Dados de Dados I Árvores AVL (Balanceadas) Profª.Drª. Roseli Ap. Francelin Romero Fonte: Profa. Patrícia Marchetti Revisão: Gedson Faria Árvores AVL

Leia mais

Linguagem C: Árvores AVL

Linguagem C: Árvores AVL Instituto de C Linguagem C: Árvores AVL Luis Martí Instituto de Computação Universidade Federal Fluminense [email protected] - http://lmarti.com Árvores Balanceadas As árvores binárias de pesquisa são,

Leia mais

Estrutura de Dados. Carlos Eduardo Batista. Centro de Informática - UFPB

Estrutura de Dados. Carlos Eduardo Batista. Centro de Informática - UFPB Estrutura de Dados Carlos Eduardo Batista Centro de Informática - UFPB [email protected] Árvores (parte 3) Estruturas de Dados 2 Organização dos dados: Linear: Listas, pilhas, filas. Relação sequencial.

Leia mais

ALGORITMOS AVANÇADOS. UNIDADE V Estruturas de dados dos tipos Árvore Binária e Árvore AVL. Luiz Leão

ALGORITMOS AVANÇADOS. UNIDADE V Estruturas de dados dos tipos Árvore Binária e Árvore AVL. Luiz Leão UNIDADE V Estruturas de dados dos tipos Árvore Binária e Árvore AVL Luiz Leão [email protected] http://www.luizleao.com Conteúdo Programático 5.1 - Árvores, Árvores Binárias e Árvores Binárias de Busca

Leia mais

Árvores & Árvores Binárias

Árvores & Árvores Binárias Árvores & Árvores Binárias Problema Implementações do TAD Lista Linear Lista encadeada eficiente para inserção e remoção dinâmica de elementos, mas ineficiente para busca Lista seqüencial (ordenada) Eficiente

Leia mais

DAINF - Departamento de Informática

DAINF - Departamento de Informática DAINF - Departamento de Informática Algoritmos 2 - Árvore binária de busca Prof. Alex Kutzke ( http://alex.kutzke.com.br/courses ) 30 de Novembro de 2015 Slides adaptados do material produzido pelo Prof.

Leia mais

ÁRVORES BINÁRIAS DE BUSCA. Vanessa Braganholo Estruturas de Dados e Seus Algoritmos

ÁRVORES BINÁRIAS DE BUSCA. Vanessa Braganholo Estruturas de Dados e Seus Algoritmos ÁRVORES BINÁRIAS DE BUSCA Vanessa Braganholo Estruturas de Dados e Seus Algoritmos REFERÊNCIA Szwarcfiter, J.; Markezon, L. Estruturas de Dados e seus Algoritmos, 3a. ed. LTC. Cap. 4 INSTITUTO DE COMPUTAÇÃO

Leia mais

Algoritmos e Estruturas de Dados II Árvores - AVL. Prof. César Melo DCC/ICE/UFAM

Algoritmos e Estruturas de Dados II Árvores - AVL. Prof. César Melo DCC/ICE/UFAM Algoritmos e Estruturas de Dados II Árvores - AVL Prof. César Melo DCC/ICE/UFAM Até mais ABB, muito prazer AVL. Escreva sobre a estrutura de dados Árvore Binária de Busca(ABB). Você terá 10 minutos para

Leia mais

Árvores. Prof. César Melo ICOMP/UFAM

Árvores. Prof. César Melo ICOMP/UFAM Árvores Prof. César Melo ICOMP/UFAM Introdução v Árvore é uma estrutura adequada para representar hierarquias Diretórios em um computador Serviço de resolução de nomes na Internet v A forma mais natural

Leia mais

Árvores Binárias. SCC Algoritmos e Estruturas de Dados I. Prof. Fernando V. Paulovich

Árvores Binárias. SCC Algoritmos e Estruturas de Dados I. Prof. Fernando V. Paulovich Árvores Binárias SCC0202 - Algoritmos e Estruturas de Dados I Prof. Fernando V. Paulovich *Baseado no material do Prof. Gustavo Batista. Figuras editadas por Isadora Maria Mendes http://www.icmc.usp.br/~paulovic

Leia mais

Árvores Binárias Balanceadas Estrutura de Dados I

Árvores Binárias Balanceadas Estrutura de Dados I - entro de iências Exatas, Naturais e de Saúde Departamento de omputação Árvores inárias alanceadas Estrutura de Dados I OM06992 - Estrutura de Dados I Prof. Marcelo Otone guiar [email protected]

Leia mais

ÁRVORE AVL. Problema do balanceamento

ÁRVORE AVL. Problema do balanceamento ÁRVORE VL Prof. ndré ackes Problema do balanceamento 2 eficiência da busca em uma árvore binária depende do seu balanceamento. O(log N), se a árvore está balanceada O(N), se a árvore não está balanceada

Leia mais

Estruturas de Dados com Jogos. Capítulo 9 Árvores Balanceadas

Estruturas de Dados com Jogos. Capítulo 9 Árvores Balanceadas Estruturas de Dados com Jogos Capítulo 9 Árvores Balanceadas 1 Seus Objetivos neste Capítulo Entender o conceito de Balanceamento, e sua importância para a eficiência das Árvores Binárias de Busca; Desenvolver

Leia mais

Árvores Estrutura de Dados. Universidade Federal de Juiz de Fora Departamento de Ciência da Computação

Árvores Estrutura de Dados. Universidade Federal de Juiz de Fora Departamento de Ciência da Computação 1 Árvores Estrutura de Dados Universidade Federal de Juiz de Fora Departamento de Ciência da Computação 2 Árvore Binária de Busca Definição: uma árvore binária de busca (ABB) é uma árvore binária na qual

Leia mais

Árvores Vermelho-Preto

Árvores Vermelho-Preto Árvores Vermelho-Preto SCC0202 - Algoritmos e Estruturas de Dados I Prof. Fernando V. Paulovich http://www.icmc.usp.br/~paulovic [email protected] Instituto de Ciências Matemáticas e de Computação (ICMC)

Leia mais

ESTRUTURA DE DADOS E ALGORITMOS. Árvores Binárias de Busca. Cristina Boeres

ESTRUTURA DE DADOS E ALGORITMOS. Árvores Binárias de Busca. Cristina Boeres ESTRUTURA DE DADOS E ALGORITMOS Árvores Binárias de Busca Cristina Boeres Árvore Binária de Busca 30! construída de tal forma que, para cada nó: nós com chaves menores estão na sub-árvore esquerda nós

Leia mais

ÁRVORES E ÁRVORE BINÁRIA DE BUSCA

ÁRVORES E ÁRVORE BINÁRIA DE BUSCA ÁRVORES E ÁRVORE BINÁRIA DE BUSCA Prof. André Backes Definição 2 Diversas aplicações necessitam que se represente um conjunto de objetos e as suas relações hierárquicas Uma árvore é uma abstração matemática

Leia mais

Dicionários. TAD Orientado a conteúdo

Dicionários. TAD Orientado a conteúdo Dicionários TAD Orientado a conteúdo Dicionários efinição: Tipo abstrato de dados orientado a onteúdo. Contrasta com as PILHAs e FILAs que são orientadas a posição. perações implementadas: Inserir(d,x)

Leia mais

Árvores. SCC-202 Algoritmos e Estruturas de Dados I. Lucas Antiqueira

Árvores. SCC-202 Algoritmos e Estruturas de Dados I. Lucas Antiqueira Árvores SCC-202 Algoritmos e Estruturas de Dados I Lucas Antiqueira Listas e árvores Listas lineares Um nó após o outro, adjacentes Nó sucessor e antecessor Diversas aplicações necessitam de estruturas

Leia mais

Árvores AVL. Prof. Robinson Alves

Árvores AVL. Prof. Robinson Alves Prof. Robinson Alves O que veremos? Conceitos Inserção Remoção Balanceamento Código Java de AVL Árvores Balanceadas As árvores binárias de pesquisa são, em alguns casos, pouco recomendáveis para as operações

Leia mais

Árvore Binária de Busca. Prof. César Melo

Árvore Binária de Busca. Prof. César Melo Árvore Binária de Busca Prof. César Melo Introdução O algoritmo de busca binária em vetores tem bom desempenho e deve ser usado quando temos os dados já ordenados. No entanto, se precisarmos inserir e

Leia mais

Módulo 9. Pesquisa em Memória Primária. Algoritmos e Estruturas de Dados II C++ (Rone Ilídio)

Módulo 9. Pesquisa em Memória Primária. Algoritmos e Estruturas de Dados II C++ (Rone Ilídio) Módulo 9 Pesquisa em Memória Primária Algoritmos e Estruturas de Dados II C++ (Rone Ilídio) Árvore Binária Estrutura baseada em ponteiros Os elementos são chamados nós Cada nó é ligado a, 1 ou 2 elementos

Leia mais

Árvores Binárias de Busca

Árvores Binárias de Busca 0. Um breve comentário sobre os algoritmos de busca em tabelas De uma maneira geral, realizam-se operações de busca, inserção e remoção de elementos numa tabela. A busca sequencial tradicional é O(N).

Leia mais

Árvores Binária de Busca. Prof. César Melo DCC/ICE/UFAM

Árvores Binária de Busca. Prof. César Melo DCC/ICE/UFAM Árvores Binária de Busca Prof. César Melo DCC/ICE/UFAM Introdução O algoritmo de busca binária em vetores tem bom desempenho e deve ser usado quando temos os dados já ordenados. No entanto, se precisarmos

Leia mais

Árvores. Thiago Martins, Fabio Gagliardi Cozman. PMR2300 / PMR3201 Escola Politécnica da Universidade de São Paulo

Árvores. Thiago Martins, Fabio Gagliardi Cozman. PMR2300 / PMR3201 Escola Politécnica da Universidade de São Paulo PMR2300 / PMR3201 Escola Politécnica da Universidade de São Paulo Árvore: estrutura composta por nós e arestas entre nós. As arestas são direcionadas ( setas ) e: um nó (e apenas um) é a raiz; todo nó

Leia mais

Árvores AVL. Nesta aula será apresentado o ADT árvore AVL que são árvores binárias de altura equilibrada. Algoritmos e Estruturas de Dados I

Árvores AVL. Nesta aula será apresentado o ADT árvore AVL que são árvores binárias de altura equilibrada. Algoritmos e Estruturas de Dados I Árvores AVL Nesta aula será apresentado o ADT árvore AVL que são árvores binárias de altura equilibrada Algoritmos e Estruturas de Dados I José Augusto Baranauskas Departamento de Física e Matemática FFCLRP-USP

Leia mais

Árvores. Fabio Gagliardi Cozman. PMR2300 Escola Politécnica da Universidade de São Paulo

Árvores. Fabio Gagliardi Cozman. PMR2300 Escola Politécnica da Universidade de São Paulo PMR2300 Escola Politécnica da Universidade de São Paulo Árvore: estrutura composta por nós e arestas entre nós. As arestas são direcionadas ( setas ) e: um nó (e apenas um) é a raiz; todo nó (exceto a

Leia mais

ÁRVORE BINÁRIA DE BUSCA

ÁRVORE BINÁRIA DE BUSCA ÁRVORE BINÁRIA DE BUSCA Introdução O algoritmo de busca binária em vetores tem bom desempenho e deve ser usado quando temos os dados já ordenados. No entanto, se precisarmos inserir e remover elementos

Leia mais

ESTRUTURA DE DADOS E ALGORITMOS ÁRVORES BALANCEADAS. Cristina Boeres

ESTRUTURA DE DADOS E ALGORITMOS ÁRVORES BALANCEADAS. Cristina Boeres ESTRUTURA DE DADOS E ALGORITMOS ÁRVORES BALANCEADAS Cristina Boeres Árvore Binária - altura máxima Seja a árvore A formada com as seguintes inserções! 1, 2, 3, 4, 5, 6 e 7 1 2 3 4! Pior caso: O(n) 5 6

Leia mais

Estruturas de Dados I

Estruturas de Dados I UFES - Curso de verão 2011 Estruturas de Dados I Profa. Juliana Pinheiro Campos [email protected] Árvores binárias de busca (ou São árvores projetadas para dar suporte a operações de busca de forma eficiente.

Leia mais

Árvores Binárias de Busca

Árvores Binárias de Busca Árvores Binárias de Busca SCC0202 - Algoritmos e Estruturas de Dados I Prof. Fernando V. Paulovich *Baseado no material do Prof. Gustavo Batista http://www.icmc.usp.br/~paulovic [email protected] Instituto

Leia mais

Árvore Vermelho-Preta. Estrutura de Dados II Jairo Francisco de Souza

Árvore Vermelho-Preta. Estrutura de Dados II Jairo Francisco de Souza Árvore Vermelho-Preta Estrutura de Dados II Jairo Francisco de Souza Introdução As árvores Vermelho-preto são árvores binárias de busca Também conhecidas como Rubro-negras ou Red-Black Trees Foram inventadas

Leia mais

Estruturas de Dados. Módulo 17 - Busca. 2/6/2005 (c) Dept. Informática - PUC-Rio 1

Estruturas de Dados. Módulo 17 - Busca. 2/6/2005 (c) Dept. Informática - PUC-Rio 1 Estruturas de Dados Módulo 17 - Busca 2/6/2005 (c) Dept. Informática - PUC-Rio 1 Referências Waldemar Celes, Renato Cerqueira, José Lucas Rangel, Introdução a Estruturas de Dados, Editora Campus (2004)

Leia mais

UNIVERSIDADE DE SÃO PAULO ICMC SCC 202 Algoritmos e Estrutura de Dados I - 2º Semestre 2010 Profa. Sandra Maria Aluísio;

UNIVERSIDADE DE SÃO PAULO ICMC SCC 202 Algoritmos e Estrutura de Dados I - 2º Semestre 2010 Profa. Sandra Maria Aluísio; UNIVERSIDADE DE SÃO PAULO ICMC SCC 202 Algoritmos e Estrutura de Dados I - 2º Semestre 2010 Profa. Sandra Maria Aluísio; e-mail: [email protected] Lista de Exercícios Árvores, Árvores Binárias, Árvores

Leia mais

Árvore AVL A seguir estudaremos árvore AVL e árvore 234. Os slides que versão sobre as árvores retro aludidas foram baseados nos slides gerados pela

Árvore AVL A seguir estudaremos árvore AVL e árvore 234. Os slides que versão sobre as árvores retro aludidas foram baseados nos slides gerados pela 488 Árvore AVL A seguir estudaremos árvore AVL e árvore 234. Os slides que versão sobre as árvores retro aludidas foram baseados nos slides gerados pela professora Elisa Maria Pivetta Cantarelli intitulados

Leia mais

Algoritmos e Estrutura de Dados II. Árvore. Prof a Karina Oliveira.

Algoritmos e Estrutura de Dados II. Árvore. Prof a Karina Oliveira. Algoritmos e Estrutura de Dados II Árvore Prof a Karina Oliveira [email protected] Introdução Estruturas de dados lineares (pilha, fila) são estruturas que guardam coleções de elementos que são acessados

Leia mais

Árvores Binárias. 16/11 Representação e Implementação: Encadeada Dinâmica O TAD

Árvores Binárias. 16/11 Representação e Implementação: Encadeada Dinâmica O TAD Árvores Binárias 16/11 Representação e Implementação: Encadeada Dinâmica O TAD ED AB, encadeada dinâmica Para qualquer árvore, cada nó é do tipo info esq dir typedef int elem; typedef struct arv *Arv;

Leia mais

Árvores AVL. O balanceamento da árvore pode ser realizado localmente se apenas uma porção da árvore for afetada por operações de inserção ou remoção.

Árvores AVL. O balanceamento da árvore pode ser realizado localmente se apenas uma porção da árvore for afetada por operações de inserção ou remoção. Árvores Árvores AVL Os algoritmos vistos trabalham sobre a árvore toda. Se houver a necessidade de manter o balanceamento a cada inserção ou remoção, então sua eficiência fica bastante prejudicada. O balanceamento

Leia mais

Árvores. Estruturas de Dados. Prof. Vilson Heck Junior

Árvores. Estruturas de Dados. Prof. Vilson Heck Junior Árvores Estruturas de Dados Prof. Vilson Heck Junior Árvores INTRODUÇÃO Introdução Árvores são estruturas de dados utilizadas para armazenar e recuperar dados de forma rápida e eficiente; Árvores não são

Leia mais

Árvores B. Prof. Márcio Bueno. / Fonte: Material da Prof a Ana Eliza Lopes Moura

Árvores B. Prof. Márcio Bueno. / Fonte: Material da Prof a Ana Eliza Lopes Moura Árvores B Prof. Márcio Bueno [email protected] / [email protected] Fonte: Material da Prof a Ana Eliza Lopes Moura Situação Problema Memória Principal Volátil e limitada Aplicações Grandes

Leia mais

1. Proponha algoritmos para: a. Calcular a altura dos nós de uma árvore binária dada, armazenando o valor da altura no nó.

1. Proponha algoritmos para: a. Calcular a altura dos nós de uma árvore binária dada, armazenando o valor da altura no nó. 1. Proponha algoritmos para: a. Calcular a altura dos nós de uma árvore binária dada, armazenando o valor da altura no nó. b. Achar o maior elemento (campo numérico) de uma árvore binária dada. c. Trocar

Leia mais

UNILASALLE Curso de Bacharelado em Ciência da Computação. Estrutura de Dados II Prof. Magalí T. Longhi. Árvores AVL*

UNILASALLE Curso de Bacharelado em Ciência da Computação. Estrutura de Dados II Prof. Magalí T. Longhi. Árvores AVL* UNILASALLE Curso de Bacharelado em Ciência da Computação Estrutura de Dados II Prof. Magalí T. Longhi Árvores AVL* * Material preparado para a disciplina de Estrutura de Dados II do Curso de Bacharelado

Leia mais

Árvores Binárias. 9/11 e 11/11 Conceitos Representação e Implementação

Árvores Binárias. 9/11 e 11/11 Conceitos Representação e Implementação Árvores Binárias 9/11 e 11/11 Conceitos Representação e Implementação Árvore Binárias (AB) Uma Árvore Binária (AB) T é um conjunto finito de elementos, denominados nós ou vértices, tal que: (i) Se T =,

Leia mais

Heaps. Estrutura de Dados. Universidade Federal de Juiz de Fora Departamento de Ciência da Computação 1 / 35

Heaps. Estrutura de Dados. Universidade Federal de Juiz de Fora Departamento de Ciência da Computação 1 / 35 Heaps Estrutura de Dados Universidade Federal de Juiz de Fora Departamento de Ciência da Computação 1 / 35 Conteúdo Introdução Definição de Heap Heap Binária Implementação com vetor Fila de Prioridades

Leia mais

Árvores Binárias de Busca

Árvores Binárias de Busca Árvores Binárias de Busca Algoritmos e Estruturas de Dados I Nesta aula será apresentado o ADT árvore binária de busca, também conhecidas como dicionários binários Uma árvore binária de busca é uma estrutura

Leia mais

Edital de Seleção 024/2017 PROPESP/UFAM. Prova de Conhecimento. Caderno de Questões

Edital de Seleção 024/2017 PROPESP/UFAM. Prova de Conhecimento. Caderno de Questões Edital de Seleção 024/2017 PROPESP/UFAM Prova de Conhecimento Caderno de Questões CANDIDATO: «Nome» INSCRIÇÃO: «Inscrição» Assinatura conforme identidade INSTRUÇÕES PARA O CANDIDATO: Verifique o seu nome

Leia mais

Árvores AVL. Estrutura de Dados II Jairo Francisco de Souza

Árvores AVL. Estrutura de Dados II Jairo Francisco de Souza Árvores AVL Estrutura de Dados II Jairo Francisco de Souza Introdução As árvores binárias de pesquisa são projetadas para um acesso rápido à informação. Idealmente a árvore deve ser razoavelmente equilibrada

Leia mais

Programação II. Árvores Binárias (Binary Trees) Bruno Feijó Dept. de Informática, PUC-Rio

Programação II. Árvores Binárias (Binary Trees) Bruno Feijó Dept. de Informática, PUC-Rio Programação II Árvores Binárias (Binary Trees) Bruno Feijó Dept. de Informática, PUC-Rio Árvores Dados organizados de maneira hierárquica Exemplos: arquivos em diretórios, subdivisão de espaço 2D em um

Leia mais

Árvores. Thiago Martins, Fabio Gagliardi Cozman. PMR2300 / PMR3201 Escola Politécnica da Universidade de São Paulo

Árvores. Thiago Martins, Fabio Gagliardi Cozman. PMR2300 / PMR3201 Escola Politécnica da Universidade de São Paulo PMR2300 / PMR3201 Escola Politécnica da Universidade de São Paulo Árvore: estrutura composta por nós e arestas entre nós. As arestas são direcionadas ( setas ) e: um nó (e apenas um) é a raiz; todo nó

Leia mais

Exercícios: Árvores. Universidade Federal de Uberlândia - UFU Faculdade de Computação - FACOM Lista de exercícios de estrutura de dados em linguagem C

Exercícios: Árvores. Universidade Federal de Uberlândia - UFU Faculdade de Computação - FACOM Lista de exercícios de estrutura de dados em linguagem C Universidade Federal de Uberlândia - UFU Faculdade de Computação - FACOM Lista de exercícios de estrutura de dados em linguagem C Exercícios: Árvores 1. Utilizando os conceitos de grafos, defina uma árvore.

Leia mais

INE5408 Estruturas de Dados

INE5408 Estruturas de Dados INE5408 Estruturas de Dados - Características - Rotações Árvores AVL Características Manter uma árvore binária de busca balanceada sob a presença de constantes inserções e deleções é ineficiente. Para

Leia mais

Pesquisa em memória primária

Pesquisa em memória primária Pesquisa em memória primária Pesquisa em memória primária Recuperar informação a partir de uma grande massa de informação previamente armazenada. Existem vários métodos de pesquisa, depende de: Tamanho

Leia mais

1. Proponha algoritmos para: a. Calcular a altura dos nós de uma árvore binária dada, armazenando o valor da altura no nó.

1. Proponha algoritmos para: a. Calcular a altura dos nós de uma árvore binária dada, armazenando o valor da altura no nó. 1. Proponha algoritmos para: a. Calcular a altura dos nós de uma árvore binária dada, armazenando o valor da altura no nó. b. Achar o maior elemento (campo numérico) de uma árvore binária dada. c. Trocar

Leia mais

Árvores-B (Parte I) SCC-503 Algoritmos e Estruturas de Dados II. Thiago A. S. Pardo Leandro C. Cintra M.C.F. de Oliveira

Árvores-B (Parte I) SCC-503 Algoritmos e Estruturas de Dados II. Thiago A. S. Pardo Leandro C. Cintra M.C.F. de Oliveira Árvores-B (Parte I) SCC-503 Algoritmos e Estruturas de Dados II Thiago A. S. Pardo Leandro C. Cintra M.C.F. de Oliveira Problema Cenário até então Acesso a disco é caro (lento) Pesquisa binária é útil

Leia mais

Árvores Binárias e AVL Felipe Barros Pontes Gustavo Márcio de Morais Cunha Márcio de Medeiros Ribeiro

Árvores Binárias e AVL Felipe Barros Pontes Gustavo Márcio de Morais Cunha Márcio de Medeiros Ribeiro Universidade Federal de Alagoas - UFAL Departamento de Tecnologia da Informação - TCI Ciência da Computação Árvores Binárias e AVL Felipe Barros Pontes Gustavo Márcio de Morais Cunha Márcio de Medeiros

Leia mais

Árvores de Pesquisa. A árvore de pesquisa é uma estrutura de dados muito eficiente para armazenar informação.

Árvores de Pesquisa. A árvore de pesquisa é uma estrutura de dados muito eficiente para armazenar informação. Árvores de Pesquisa A árvore de pesquisa é uma estrutura de dados muito eficiente para armazenar informação. Particularmente adequada quando existe necessidade de considerar todos ou alguma combinação

Leia mais

Estruturas de Dados. Árvores AVL: Partes I e II. Desempenho de ABBs (Revisão)

Estruturas de Dados. Árvores AVL: Partes I e II. Desempenho de ABBs (Revisão) Estruturas de Dados Árvores AVL: Partes I e II Prof. Ricardo J. G. B. Campello Parte deste material é baseado em adaptações e extensões de slides disponíveis em http://ww3.datastructures.net (Goodrich

Leia mais

Filas de Prioridade & Heaps

Filas de Prioridade & Heaps Filas de Prioridade & SCC0202 - Algoritmos e Estruturas de Dados I Prof. Fernando V. Paulovich *Baseado no material do Prof. Gustavo Batista http://www.icmc.usp.br/~paulovic [email protected] Instituto

Leia mais

Linguagem Haskell. Maria Adriana Vidigal de Lima

Linguagem Haskell. Maria Adriana Vidigal de Lima em Haskell Linguagem Haskell Faculdade de Computação - UFU Dezembro - 2009 em Haskell 1 em Haskell Noções sobre Fundamentos em Haskell Noções sobre Uma árvore é uma estrutura de dados baseada em listas

Leia mais