Árvores AVL. Prof. Robinson Alves
|
|
|
- Renata Pinheiro Teixeira
- 8 Há anos
- Visualizações:
Transcrição
1 Prof. Robinson Alves
2 O que veremos? Conceitos Inserção Remoção Balanceamento Código Java de AVL
3 Árvores Balanceadas As árvores binárias de pesquisa são, em alguns casos, pouco recomendáveis para as operações básicas (inserção, remoção e busca) Árvores binárias de pesquisa degeneradas tornam as operações básicas lentas O(n)
4 Árvores Balanceadas Árvore binária completamente balanceada Ocorre quando a árvore está cheia ou quase cheia com o nível n-1 completo Uma árvore binária completa leva um tempo na ordem de O(log n) para operações de inserção, remoção e pesquisa. O que é, sem dúvida, muito bom
5 Árvores Balanceadas Árvore binária completamente balanceada Após uma inserção ou remoção a árvore pode deixar de ser completa. A solução seria aplicar um algoritmo que tornasse a árvore novamente completa, porém o custo para realizar está operação seria de O(n)
6 Árvores Balanceadas Árvore binária completamente balanceada Percebe-se que todos os nós tiveram sua posição na estrutura alterados Na maioria dos casos, utiliza-se árvores quase balanceadas
7 Critérios para definir balanceamento Vários são os critérios (métodos) para definir balanceamento. Alguns são: Restrições imposta na diferença das alturas das subárvores de cada nó. Ex. AVL Todos os nós folhas no mesmo nível
8 Foram introduzidas por Adel`son-Vel skii e landis em 1962 São baseadas em árvore binárias de pesquisa A medida em que as operações de inserção e remoção são efetuadas a árvore é balanceada
9 Definição: Uma árvore binária T é dita AVL quando, para qualquer nó v de T, a diferença entre a altura das subárvores esquerda h e (v) e direita h d (v) é no máximo em módulo igual a 1.
10
11 OBS.: se uma árvore T é dita AVL, então todas as suas subárvores também são AVL
12 Balanceamento de um nó O fator de balanceamento: É dado pela altura da subárvores da esquerda h e (v) menos a altura da subárvore da direita h d (v). FB(v)= h e (v) - h d (v)
13 Nós balanceados São aqueles onde os valores de FB são -1, 0 ou 1 FB(v): +1: subárvore esquerda mais alta que a direita 0: subárvore esquerda igual a direita -1: subárvore direita mais alta do que a esquerda
14 Nós desregulados ou desbalanceados São aqueles onde os valores de FB são diferentes de -1, 0 ou 1 FB(v): >1: subárvore esquerda está desbalanceando o nó v <-1: subárvore direita está desbalanceando o nó v
15 Exemplos Árvores AVL
16 Exercício 6 Árvores AVL Colocar o balanceamento de cada nó Dizer se a árvore é AVL Verificar quais as possíveis posições para a inserção de elementos e em quais posições de inserção, a árvore é AVL
17 Exercício Colocar o balanceamento de cada nó Dizer se a árvore é AVL Verificar quais as possíveis posições para a inserção de elementos e em quais posições de inserção, a árvore é AVL 11
18 Verificando a ocorrência do desbalanceamento de um nó
19 Verificando a ocorrência do desbalanceamento de um nó Quando Ocorre? Se um nó tem FB(v)=0 e é feita uma inserção no lado direito, o FB=-1, ou seja, subtrai uma unidade (na remoção é invertido) 3 3 4
20 Verificando a ocorrência do desbalanceamento de um nó Quando Ocorre? Se um nó tem FB(v)=0 e é feita uma inserção no lado esquerdo, o FB=1, ou seja, soma uma unidade(na remoção é invertido) 3 1 3
21 Resumo ArvEsq ArvDir Inserção +1-1 Remoção -1 +1
22 Atualização do FB dos antecessores ArvEsq ArvDir Critério(atualiza FB antecessor e aplica regra abaixo) Inserção +1-1 Se FB(Vantecessor)==0 pare Remoção Se FB(Vantecessor)!=0 pare
23 Rebalanceando nós desregulados Quando uma inserção ou remoção realizada em um nó altera o balanceamento da árvore, é necessário efetuar uma transformação na árvore, tal que: O percurso em ordem fique inalterado em relação a árvore desbalanceada. Isto é, a árvore continua a ser uma árvore binária de pesquisa A árvore transformada saiu de um estado de desbalanceamento para um estado de balanceamento
24 Rotações Operação que altera o balanceamento de uma árvore T, mantendo a seqüência de percurso em-ordem
25 Rotações Tipos de rotações Esquerda Simples Direita Simples Esquerda Dupla Direita Dupla
26 Rotação Esquerda Simples (RES) Percurso em ordem: 6, 8 e 9 Percurso em ordem: 6, 8 e 9 Após a rotação a esquerda a árvore ficou balanceada e o percurso em-ordem permanece o mesmo
27 Exemplo Rotação Esquerda Simples
28 Passos para efetuar a RES Guarde a subárvore direita Subárvore a ser guardada 38
29 Passos para efetuar a RES Troque a subárvore guardada pela subárvore esquerda da árvore guardada Subárvore a ser guardada 38
30 Passos para efetuar a RES Ponha na subárvore esquerda da subárvore guardada a árvore restante verifique o balanceamento
31 Rotação Simples a Direita(RSD) A rotação a direita simples é simétrica a rotação esquerda simples Os quatro passos realizados na rotação esquerda simples se aplicam da mesma forma à rotação direita simples
32 Rotação Simples a Direita(RSD) Exemplo
33 Rotação Dupla a Esquerda(RDE) Passos: Efetua-se uma rotação simples direita na subárvore direita do nó desbalanceado Realiza-se uma rotação simples esquerda no nó desbalanceado
34 Rotação Dupla a Esquerda(RDE) Exemplo:
35 Rotação Dupla a Direita(RDD) É simétrica a rotação esquerda dupla Efetuar uma rotação simples esquerda na subárvore esquerda do nó desbalanceado Realizar uma rotação simples direita no nó desregulado
36 Rotação Dupla a Direita(RDD) Exemplo:
37 Quando fazer Rotações Quando uma árvore ou subárvore tem um fator de balanceamento FB=2, deve-se fazer uma rotação a direita
38 Quando fazer Rotações Quando uma árvore ou subárvore tem um fator de balanceamento FB=-2, deve-se fazer uma rotação a esquerda
39 Quando fazer Rotações Quando uma árvore ou subárvore tem um fator de balanceamento FB=2 e sua subárvore esquerda tem um FB>=0, faz-se uma rotação direita simples. Caso o FB<0 na subárvore esquerda do nó desregulado uma rotação dupla direita é necessária.
40 EX.:
41 Quando fazer Rotações Quando uma árvore ou subárvore tem um fator de balanceamento FB=-2 e sua subárvore direita tem um FB<=0, faz-se uma rotação esquerda simples. Caso o FB>0 na subárvore direita do nó desbalanceado uma rotação dupla esquerda é necessária.
42 Atualizando FB após rotações Após alguma rotação os fatores de balanceamento dos nós A e B sofrem alterações B A
43 Atualizando FB após rotações Rotação Esquerda FB_B_novo= FB_B min(fb_a, 0); FB_A_novo= FB_A + 1 +max(fb_b_novo, 0); B A
44 Atualizando FB após rotações Rotação Direita FB_B_novo= FB_B max(fb_a, 0); FB_A_novo= FB_A min(fb_b_novo, 0); Referência: Balance factor changes after local rotations in AVL tree /balance-factor-changes-after-
45 Inserção de elementos Procedimentos: percorrer a árvore até o ponto de inserção (usando a operação de busca) Inserir o novo elemento Balancear a árvore (quando necessário fazer rotações)
46 Exemplo Inserir na árvore AVL abaixo os seguintes elementos: 3,33,11 e
47 Exemplo Inserir na árvore AVL inicialmente vazia os seguintes elementos: 10,20,30,40,50,25,60,70,80 e 90
48 Exemplo Inserir na árvore AVL inicialmente vazia os seguintes elementos: 10,20,30,40,50,25,60,70,80 e 90
49 Remoção de Elementos Procedimentos Percorrer a árvore até o nó a ser removido (usando a operação de busca) Retirar o elemento (igual a árvore binária de pesquisa) Balancear a árvore (quando necessário fazer rotação)
50 Exemplo: remover 22,31,12,7 e
51 Ex2: remover: Árvores AVL 40,25,50,10,35,30,20,70 e
52 Dúvidas
Árvores Balanceadas. Árvore binária completamente balanceada. Ocorre quando a árvore está cheia ou quase cheia com o nível n-1 completo
Árvores Balanceadas As árvores binárias de pesquisa são, em alguns casos, pouco recomendáveis para as operações básicas (inserção, remoção e busca) Árvores binárias de pesquisa degeneradas tornam as operações
Árvores AVL e Árvores B. Jeane Melo
Árvores AVL e Árvores B Jeane Melo Roteiro Árvores Binárias Árvores AVL Definição Motivação Balanceamento Operações de rebalanceamento Árvores B Introdução Árvores Binárias Árvores binárias Cada nó tem
Árvores binárias de busca
Árvores binárias de busca Introdução à Ciência de Computação II Diego R. Amancio Baseado no material do Prof. Thiago A. S. Pardo Árvore binárias n Árvores de grau 2, isto é, cada nó tem dois filhos, no
Árvores AVL (Balanceadas) Profª.Drª. Roseli Ap. Francelin Romero Fonte: Profa. Patrícia Marchetti Revisão: Gedson Faria
SCE 182 SCC122 Algoritmos Estruturas e Estruturas de Dados de Dados I Árvores AVL (Balanceadas) Profª.Drª. Roseli Ap. Francelin Romero Fonte: Profa. Patrícia Marchetti Revisão: Gedson Faria Árvores AVL
Árvores AVL. O balanceamento da árvore pode ser realizado localmente se apenas uma porção da árvore for afetada por operações de inserção ou remoção.
Árvores Árvores AVL Os algoritmos vistos trabalham sobre a árvore toda. Se houver a necessidade de manter o balanceamento a cada inserção ou remoção, então sua eficiência fica bastante prejudicada. O balanceamento
ESTRUTURA DE DADOS E ALGORITMOS ÁRVORES BALANCEADAS. Cristina Boeres
ESTRUTURA DE DADOS E ALGORITMOS ÁRVORES BALANCEADAS Cristina Boeres Árvore Binária - altura máxima Seja a árvore A formada com as seguintes inserções! 1, 2, 3, 4, 5, 6 e 7 1 2 3 4! Pior caso: O(n) 5 6
Problemas com ABP Desbalanceamento progressivo
Árvores Binárias de Pesquisa Árvores Balanceadas Aresentam uma relação de ordem A ordem é definida ela chave Oerações: inserir consultar 5 excluir 3 8 15 4 6 9 Problemas com ABP Exemlo: Problemas com ABP
Árvore Vermelho-Preta. Estrutura de Dados II Jairo Francisco de Souza
Árvore Vermelho-Preta Estrutura de Dados II Jairo Francisco de Souza Introdução As árvores Vermelho-preto são árvores binárias de busca Também conhecidas como Rubro-negras ou Red-Black Trees Foram inventadas
INF1010 Lista de Exercícios 2
INF00 Lista de Exercícios 2 Árvores. Construir algoritmo para dada uma árvore n-ária, transformá-la em uma árvore binária. 2. Qual a maior e menor quantidade de nós que podem existir em uma árvore binária
Árvores Vermelho-Preto
Árvores Vermelho-Preto SCC0202 - Algoritmos e Estruturas de Dados I Prof. Fernando V. Paulovich http://www.icmc.usp.br/~paulovic [email protected] Instituto de Ciências Matemáticas e de Computação (ICMC)
Árvores Rubro-Negra IFRN
Árvores Rubro-Negra IFRN Árvores Rubro-Negra Seja T uma árvore binária de pesquisa Cada nó deve estar associado a uma cor rubro ou negra Uma árvore é rubro-negra quando as seguintes condições são satisfeitas:
Estruturas de Dados. Árvores AVL: Partes I e II. Desempenho de ABBs (Revisão)
Estruturas de Dados Árvores AVL: Partes I e II Prof. Ricardo J. G. B. Campello Parte deste material é baseado em adaptações e extensões de slides disponíveis em http://ww3.datastructures.net (Goodrich
Algoritmos e Estruturas de Dados II Árvores - AVL. Prof. César Melo DCC/ICE/UFAM
Algoritmos e Estruturas de Dados II Árvores - AVL Prof. César Melo DCC/ICE/UFAM Até mais ABB, muito prazer AVL. Escreva sobre a estrutura de dados Árvore Binária de Busca(ABB). Você terá 10 minutos para
Uma árvore binária de busca não garante acesso em tempo logarítmico.
ÁRVORES LNEDS Uma árvore binária de busca não garante acesso em tempo logarítmico. Inserções ou eliminações podem desbalanceá-la. Pior caso: a árvore degenera em lista ligada, onde a busca passa a gastar
PROGRAMAÇÃO III (LTSI)
ESTRUTURAS DE DADOS (LEI, LM, LEE) PROGRAMAÇÃO III (LTSI) Universidade da Beira Interior, Departamento de Informática Hugo Pedro Proença, 2009/2010 Árvores Binárias AVL Tal como visto anteriormente, caso
UNILASALLE Curso de Bacharelado em Ciência da Computação. Estrutura de Dados II Prof. Magalí T. Longhi. Árvores AVL*
UNILASALLE Curso de Bacharelado em Ciência da Computação Estrutura de Dados II Prof. Magalí T. Longhi Árvores AVL* * Material preparado para a disciplina de Estrutura de Dados II do Curso de Bacharelado
Árvores AVL. Estrutura de Dados II Jairo Francisco de Souza
Árvores AVL Estrutura de Dados II Jairo Francisco de Souza Introdução As árvores binárias de pesquisa são projetadas para um acesso rápido à informação. Idealmente a árvore deve ser razoavelmente equilibrada
Árvores Equilibradas. Sumário
Árvores Equilibradas Sumário Splay Vermelho Preto AA e BB Multidimensionais quaternárias k d Pesquisa Lexicográfica tries multivia tries binárias PATRICIA Árvores Equilibradas Sumário Árvores AVL Árvores
Árvore AVL A seguir estudaremos árvore AVL e árvore 234. Os slides que versão sobre as árvores retro aludidas foram baseados nos slides gerados pela
488 Árvore AVL A seguir estudaremos árvore AVL e árvore 234. Os slides que versão sobre as árvores retro aludidas foram baseados nos slides gerados pela professora Elisa Maria Pivetta Cantarelli intitulados
Árvores. Prof. César Melo ICOMP/UFAM
Árvores Prof. César Melo ICOMP/UFAM Introdução v Árvore é uma estrutura adequada para representar hierarquias Diretórios em um computador Serviço de resolução de nomes na Internet v A forma mais natural
Árvores Rubro-Negras. Árvores Rubro-Negras. (Vermelho-Preta) Estrutura da Árvore. Estrutura da Árvore
Árvores Rubro-Negras Árvores Rubro-Negras (Vermelho-Preta) Árvore Binária de Pesquisa (ABP) com nodos coloridos de vermelho e preto Árvore balanceada Qualquer caminho da raiz até as folhas, nenhum caminho
Árvores balanceadas. Aleardo Manacero Jr.
Árvores balanceadas Aleardo Manacero Jr. Árvores Balanceadas Para que uma árvore seja, de fato, um mecanismo eficiente, é preciso que os seus elementos estejam distribuídos de forma relativamente homogênea
Árvores. Thiago Martins, Fabio Gagliardi Cozman. PMR2300 / PMR3201 Escola Politécnica da Universidade de São Paulo
PMR2300 / PMR3201 Escola Politécnica da Universidade de São Paulo Árvore: estrutura composta por nós e arestas entre nós. As arestas são direcionadas ( setas ) e: um nó (e apenas um) é a raiz; todo nó
GGI026 - Árvore balanceada
GGI06 - Árvore balanceada Marcelo K. Albertini 11 de Setembro de 013 /1 Trabalho 1 implementar programa para resolver o problema entregue programa deve funcionar conforme pedido na descrição 3 fazer apresentação
ÁRVORES E ÁRVORE BINÁRIA DE BUSCA
ÁRVORES E ÁRVORE BINÁRIA DE BUSCA Prof. André Backes Definição 2 Diversas aplicações necessitam que se represente um conjunto de objetos e as suas relações hierárquicas Uma árvore é uma abstração matemática
Listas de Prioridade. Fonte de consulta: Szwarcfiter, J.; Markezon, L. Estruturas de Dados e seus Algoritmos, 3a. ed. LTC.
Listas de Prioridade Fonte de consulta: Szwarcfiter, J.; Markezon, L. Estruturas de Dados e seus Algoritmos, 3a. ed. LTC. Capítulo 6 Prioridade } Algumas aplicações precisam recuperar rapidamente um dado
SUMÁRIO. Fundamentos Árvores Binárias Árvores Binárias de Busca
ÁRVORES SUMÁRIO Fundamentos Árvores Binárias Árvores Binárias de Busca 2 ÁRVORES Utilizadas em muitas aplicações Modelam uma hierarquia entre elementos árvore genealógica Diagrama hierárquico de uma organização
Pedro Vasconcelos DCC/FCUP. Programação Funcional 16 a Aula Árvores equilibradas
Programação Funcional 16 a Aula Árvores equilibradas Pedro Vasconcelos DCC/FCUP 2014 Aula anterior Operações sobre árvores binárias ordenadas: 1 pesquisa; 2 inserção; 3 remoção. Estas operações são mais
Árvores Binárias de Busca
0. Um breve comentário sobre os algoritmos de busca em tabelas De uma maneira geral, realizam-se operações de busca, inserção e remoção de elementos numa tabela. A busca sequencial tradicional é O(N).
Árvores Binárias de Busca (ABB) 18/11
Árvores Binárias de Busca (ABB) 18/11 Definição Uma Árvore Binária de Busca possui as mesmas propriedades de uma AB, acrescida da seguintes propriedade: Para todo nó da árvore, se seu valor é X, então:
Árvores AVL. Prof. Othon M. N. Batista Estrutura de Dados
Árvores AVL Prof. Othon M. N. Batista Estrutura de Dados Roteiro (/2) Árvore Binária de Pesquisa - Pior Tempo ABP Balanceada e Não Balanceada Balanceamento de Árvores Balanceamento de ABP Balanceamento
Árvores B. Prof. Márcio Bueno. / Fonte: Material da Prof a Ana Eliza Lopes Moura
Árvores B Prof. Márcio Bueno [email protected] / [email protected] Fonte: Material da Prof a Ana Eliza Lopes Moura Situação Problema Memória Principal Volátil e limitada Aplicações Grandes
ÁRVORE RUBRO- NEGRA. Prof. André Backes. Também conhecida como árvore vermelhopreto
ÁRVORE RUBRO- NEGR Prof. ndré Backes Árvore rubro-negra 2 Também conhecida como árvore vermelhopreto ou red-black Tipo de árvore binária balanceada Originalmente criada por Rudolf Bayer em 1972 Chamadas
Linguagem Haskell. Maria Adriana Vidigal de Lima
em Haskell Linguagem Haskell Faculdade de Computação - UFU Dezembro - 2009 em Haskell 1 em Haskell Noções sobre Fundamentos em Haskell Noções sobre Uma árvore é uma estrutura de dados baseada em listas
Programação II. Árvores Binárias (Binary Trees) Bruno Feijó Dept. de Informática, PUC-Rio
Programação II Árvores Binárias (Binary Trees) Bruno Feijó Dept. de Informática, PUC-Rio Árvores Dados organizados de maneira hierárquica Exemplos: arquivos em diretórios, subdivisão de espaço 2D em um
1. Proponha algoritmos para: a. Calcular a altura dos nós de uma árvore binária dada, armazenando o valor da altura no nó.
1. Proponha algoritmos para: a. Calcular a altura dos nós de uma árvore binária dada, armazenando o valor da altura no nó. b. Achar o maior elemento (campo numérico) de uma árvore binária dada. c. Trocar
Estruturas de Dados com Jogos. Capítulo 9 Árvores Balanceadas
Estruturas de Dados com Jogos Capítulo 9 Árvores Balanceadas 1 Seus Objetivos neste Capítulo Entender o conceito de Balanceamento, e sua importância para a eficiência das Árvores Binárias de Busca; Desenvolver
Splaying Tree (Árvore espalhada) Estrutura de Dados II Jairo Francisco de Souza
Splaying Tree (Árvore espalhada) Estrutura de Dados II Jairo Francisco de Souza Introdução Inventada por Adelson Velskii e Landis - 1962. Também chamada de Árvores Auto-Ajustadas ou Árvore de Afunilamento.
Estruturas de Dados. Módulo 17 - Busca. 2/6/2005 (c) Dept. Informática - PUC-Rio 1
Estruturas de Dados Módulo 17 - Busca 2/6/2005 (c) Dept. Informática - PUC-Rio 1 Referências Waldemar Celes, Renato Cerqueira, José Lucas Rangel, Introdução a Estruturas de Dados, Editora Campus (2004)
Árvores B. Prof. Leandro C. Fernandes. Estruturas de Dados. Adaptado de: Leandro C. Cintra e M.C.F. de Oliveira
Árvores B Prof. Leandro C. Fernandes Estruturas de Dados Adaptado de: Leandro C. Cintra e M.C.F. de Oliveira A invenção da árvore-b Bayer and McGreight, 1972, publicaram o artigo: "Organization and Maintenance
Árvores Binárias. 9/11 e 11/11 Conceitos Representação e Implementação
Árvores Binárias 9/11 e 11/11 Conceitos Representação e Implementação Árvore Binárias (AB) Uma Árvore Binária (AB) T é um conjunto finito de elementos, denominados nós ou vértices, tal que: (i) Se T =,
EAD ARVORE BINÁRIA - ARMAZENAMENTO NÃO SEQUENCIAL COM VETORES
EAD ARVORE BINÁRIA - ARMAZENAMENTO NÃO SEQUENCIAL COM VETORES Árvores Binárias de Pesquisa (ABP) - Definição Árvore binária em que os elementos dos seus nodos têm associado uma chave, que - determina a
Árvores. Prof. Byron Leite Prof. Tiago Massoni Prof. Fernando Buarque. Engenharia da Computação. Poli - UPE
Árvores Prof. Byron Leite Prof. Tiago Massoni Prof. Fernando Buarque Engenharia da Computação Poli - UPE Motivação Para entradas realmente grandes, o acesso linear de listas é proibitivo Estrutura de dados
DAINF - Departamento de Informática
DAINF - Departamento de Informática Algoritmos 2 - Árvore binária de busca Prof. Alex Kutzke ( http://alex.kutzke.com.br/courses ) 30 de Novembro de 2015 Slides adaptados do material produzido pelo Prof.
Árvores B. Prof. Flávio Humberto Cabral Nunes
Árvores B Prof. Flávio Humberto Cabral Nunes Conteúdo 1. Introdução 2. Busca 3. Inserção 4. Remoção 5. B* 6. B+ Capítulo: 8 (APOSTILA). Introdução Em muitas aplicações, a tabela considerada é muito grande
Métodos de Pesquisa de Dados (II) Árvore N-ária de Pesquisa
UFSC-CTC-INE INE5384 - Estruturas de Dados Métodos de Pesquisa de Dados (II) Prof. Ronaldo S. Mello 2002/2 Árvore N-ária de Pesquisa Uma Árvore N-ária de Pesquisa (ANP) é uma árvore que: contém m subárvores
GGI026 - Árvore rubro-negra - Remoção
GGI026 - Árvore rubro-negra - Remoção Marcelo K. Albertini 11 de Setembro de 2013 2/28 Aula de hoje Nesta aula veremos Remoção em Árvores rubro-negras 3/28 Remoção em árvores rubro-negras Metodologia Possibilidade
Algoritmos e Estruturas de Dados I
Algoritmos e Estruturas de Dados I Aula 19: - Comparação empírica de algoritmos de ordenação - Árvores Prof. Jesús P. Mena-Chalco [email protected] 1Q-2016 1 Comparação empírica de algoritmos de
Aula 3 Listas Lineares Sequenciais Ordenadas. prof Leticia Winkler
Aula 3 Listas Lineares Sequenciais Ordenadas prof Leticia Winkler 1 Listas Lineares Sequenciais Ordenadas Elementos da lista estão dispostos num vetor (contíguos na memória) e ordenado de acordo com alguma
BC1424 Algoritmos e Estruturas de Dados I. Aula 16: Árvores (introdução) Prof. Jesús P. Mena-Chalco. [email protected]
BC1424 Algoritmos e Estruturas de Dados I Aula 16: Árvores (introdução) Prof. Jesús P. Mena-Chalco [email protected] 1Q-2015 1 2 Árvores Uma árvore é uma estrutura de dados mais geral que uma lista
ÁRVORE BINÁRIA DE BUSCA TDA-ABB
ÁRVORE BINÁRIA DE BUSCA TDA-ABB Conceitos Gerais sobre Árvores Uma árvore é uma estrutura hierárquica dividida em níveis, que ou está vazia, ou contém elementos chamados nós; Diferentemente da árvore natural,
Árvores Binárias de Pesquisa Com Balanceamento
Árvores Binárias de Pesquisa Com Balanceamento Árvore completamente balanceada nós externos aparecem em no máximo dois níveis adjacentes. Minimiza tempo médio de pesquisa para uma distribuição uniforme
Exemplo Árvore Binária
Árvores Rohit Gheyi Para entradas realmente grandes, o acesso linear O(n) de listas é proibi9vo Estrutura de dados não linear, cujas operações tem custos em geral O(log n) 1 2 Exemplo Como seria pesquisar
4ª Lista de Exercícios de Programação I
4ª Lista de Exercícios de Programação I Instrução As questões devem ser implementadas em C. 1. Faça um algoritmo que leia 10 valores inteiros armazenando-os em um vetor e depois calcule a soma dos valores
Árvores Binárias Balanceadas
Árvores Binárias Balanceadas Elisa Maria Pivetta Cantarelli Árvores Balanceadas Uma árvore é dita balanceada quando as suas subárvores à esquerda e à direita possuem a mesma altura. Todos os links vazios
Árvore Binária de Busca Ótima
MAC 5710 - Estruturas de Dados - 2008 Referência bibliográfica Os slides sobre este assunto são parcialmente baseados nas seções sobre árvore binária de busca ótima do capítulo 4 do livro N. Wirth. Algorithms
Tabelas Hash. informação, a partir do conhecimento de sua chave. Hashing é uma maneira de organizar dados que:
Tabelas Hash Tabelas Hash O uso de listas ou árvores para organizar informações é interessante e produz bons resultados. Porem, em nenhuma dessas estruturas se obtém o acesso direto a alguma informação,
Estruturas de Dados Árvores
Estruturas de Dados Árvores Prof. Eduardo Alchieri Árvores (introdução) Importância de estruturas unidimensionais ou lineares (vetores e listas) é inegável Porém, estas estruturas não são adequadas para
Compactação de Dados. Fonte de consulta: Szwarcfiter, J.; Markezon, L. Estruturas de Dados e seus Algoritmos, 3a. ed. LTC. Seção 12.5 em diante.
Compactação de Dados Fonte de consulta: Szwarcfiter, J.; Markezon, L. Estruturas de Dados e seus Algoritmos, 3a. ed. LTC. Seção 12.5 em diante. Compactação de Dados } Armazenar arquivos grandes (backup)
Pedro Vasconcelos DCC/FCUP. Programação Funcional 15 a Aula Árvores de pesquisa
Programação Funcional 15 a Aula Árvores de pesquisa Pedro Vasconcelos DCC/FCUP 2014 Árvores binárias Um árvore binária é um grafo dirigido, conexo e acíclico em que cada vértice é de um de dois tipos:
Árvores Binárias. 16/11 Representação e Implementação: Encadeada Dinâmica O TAD
Árvores Binárias 16/11 Representação e Implementação: Encadeada Dinâmica O TAD ED AB, encadeada dinâmica Para qualquer árvore, cada nó é do tipo info esq dir typedef int elem; typedef struct arv *Arv;
Aula T20 BCC202 Pesquisa (Parte 2) Árvores de Pesquisa. Túlio Toffolo www.decom.ufop.br/toffolo
Aula T20 BCC202 Pesquisa (Parte 2) Árvores de Pesquisa Túlio Toffolo www.decom.ufop.br/toffolo Árvore AVL n Árvore binária de busca tal que, para qualquer nó interno v, a diferença das alturas dos filhos
Aula 7 e 8 Filas e suas Aplicações. Prof. Leticia Winkler
Aula 7 e 8 Filas e suas Aplicações Prof. Leticia Winkler 1 Definição de Fila (Queue) São estruturas de dados do tipo FIFO (first-in first-out) - o primeiro elemento a ser inserido, será o primeiro a ser
ESTRUTURAS DE DADOS II MSc. Daniele Carvalho Oliveira
ESTRUTURAS DE DADOS II MSc. Daniele Carvalho Oliveira ÁRVORES ED2: MSc. Daniele Oliveira 2 Introdução Filas, pilhas» Estruturas Lineares Um dos exemplos mais significativos de estruturas não-lineares são
CT-234. Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches
CT-234 Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural Carlos Alberto Alonso Sanches CT-234 4) Árvores balanceadas AVL, Rubro-Negras, B-Trees Operações em árvores binárias de busca
Cálculo Numérico Noções básicas sobre erros
Cálculo Numérico Noções básicas sobre erros Profa. Vanessa Rolnik 1º semestre 2015 Fases da resolução de problemas através de métodos numéricos Problema real Levantamento de Dados Construção do modelo
Teoria da Computação. Aula 9 Pesquisa em Memória Secundária 5COP096. Aula 9 Prof. Dr. Sylvio Barbon Junior. Sylvio Barbon Jr
5COP096 Teoria da Computação Aula 9 Prof. Dr. Sylvio Barbon Junior Sylvio Barbon Jr [email protected] 1 Sumário 1) Introdução à Pesquisa em Memória Secundária 2) Modelo de Computação para Memória Secundária
Mo:vação. Árvore AVL. Caracterís:cas. Origem. Exemplo. Exercício 1 Qual é a altura dos nodos 50 e 44?
Mo:vação Árvore AVL Árvores binárias de Pesquisa possuem uma tendência natural de desbalancear 1 2 Rohit Gheyi [email protected] 6 8 1 2 Origem Adelson Velskii, G.; E. M. Landis (1962). "An algorithm
Lista de Exercícios. Av. Trabalhador São-carlense, 400. centro. São Carlos - SP cep Brasil.
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Ciências de Computação Disciplina de Organização de Arquivos Profa. Dra. Cristina Dutra de Aguiar Ciferri Lista
Árvores. Algoritmos e Estruturas de Dados 2005/2006
Árvores Algoritmos e Estruturas de Dados 2005/2006 Árvores Conjunto de nós e conjunto de arestas que ligam pares de nós Um nó é a raiz Com excepção da raiz, todo o nó está ligado por uma aresta a 1 e 1
Árvores Binárias de Busca
Árvores Binárias de Busca Uma Árvore Binária de Busca T (ABB) ou Árvore Binária de Pesquisa é tal que ou T = 0 e a árvore é dita vazia ou seu nó contém uma chave e: 1. Todas as chaves da sub-árvore esquerda
Estruturas lineares. Capítulo 13. Para os exercícios deste capítulo, considere definidos os tipos:
Capítulo 13 Estruturas lineares Para os exercícios deste capítulo, considere definidos os tipos: pilha implementado como a classe pilha com os métodos pilha, empurra, topo, tira, pilha_vazia e repr fila
Lista de Figuras Figura 1 1: Figura 1 2: Figura 1 3: Figura 1 4: Figura 1 5: Figura 1 6: Figura 1 7: Figura 1 8: Figura 1 9: Figura 1 10:
Lista de Figuras Figura 1 1: Módulo de Memória DRAM 26 Figura 1 2: Um Disco Magnético com Três Pratos e Seis Superfícies 28 Figura 1 3: Geometria de uma Superfície de Disco Magnético 29 Figura 1 4: Um
Acesso Sequencial Indexado
Acesso Sequencial Indexado Utiliza o princípio da pesquisa seqüencial cada registro é lido seqüencialmente até encontrar uma chave maior ou igual a chave de pesquisa. Providências necessárias para aumentar
A inserção da chave 6 da árvore acima resulta na árvore abaixo.
149 Árvores B+ As operações nas árvores B+ não são muito diferentes das operações das árvores B. Inserir uma chave em uma folha que ainda tenha algum espaço exige que se coloque as chaves desta folha em
Árvores. Algoritmos e Estruturas de Dados I. José Augusto Baranauskas Departamento de Física e Matemática FFCLRP-USP
Árvores lgoritmos e Estruturas de Dados I Nesta aula veremos conceitos e definições sobre árvores Diferentemente das estruturas de pilhas, filas e listas que são lineares, uma árvore é uma estrutura de
Árvore Binária de Busca. Algoritmos e Estrutura de Dados II. Operações Busca e Sucessor. Árvore Binária de Busca. Árvores Rubro-Negras
Árvore Binária de Busca Algoritmos e Estrutura de Dados II Árvores Rubro-Negras Prof. Marco Aurélio Stefanes marco em dct.ufms.br Propriedades Se está na subárvore esquerda de então chave() chave() Se
Árvores de Pesquisa (Parte I)
Árvores de Pesquisa (Parte I) Prof. Túlio Toffolo http://www.toffolo.com.br BCC202 Aulas 20 e 21 Algoritmos e Estruturas de Dados I Pesquisa em Memória Primária Introdução - Conceitos Básicos Pesquisa
/* percorreu todo o vetor e não encontrou elemento */ return -1;
16. Busca W. Celes e J. L. Rangel Neste capítulo, discutiremos diferentes estratégias para efetuarmos a busca de um elemento num determinado conjunto de dados. A operação de busca é encontrada com muita
Exercícios sobre algoritmos
Exercícios sobre algoritmos Exercícios envolvendo estruturas de decisão Fazer um algoritmo para: 1) Receber um número do usuário e mostrar se esse número é par ou não par 2) Receber 3 valores numéricos,
Árvore B UNITINS ANÁLISE E DESENVOLVIMENTO DE SISTEMAS 3º PERÍODO 43
AULA A 3 ESTRUTURA RA DE DADOS Árvore B Esperamos que, ao final desta aula, você seja capaz de: identificar as vantagens da árvore B em relação às árvores binária de busca e AVL; conhecer as funções de
Lista de exercícios sobre contagem de operações Prof. João B. Oliveira
Lista de exercícios sobre contagem de operações Prof. João B. Oliveira 1. metodo m ( Vetor V ) int i, res = 0; para i de 1 a V.size res = res + V[i]; return res; Soma de elementos de um vetor, O( ). 2.
