Memória. Atenção com a eletricidade estática

Tamanho: px
Começar a partir da página:

Download "Memória. Atenção com a eletricidade estática"

Transcrição

1 Memória Não importa se o seu PC é novo ou antigo, aumentar a sua memória normalmente é um upgrade que melhora o desempenho, principalmente na execução de programas mais "pesados". Um dos upgrades mais comuns é o de memória. Em geral quando é realizado, o computador se torna mais rápido, mas isso depende muito dos programas e da quantidade original de memória. Por exemplo, aumentar de 64 MB para 128 MB em um PC moderno, resultará em aumento de desempenho. Já uma expansão de 256 MB para 512 MB provavelmente não trará melhoramentos, a menos que sejam usados muitos programas de forma simultânea, que exijam muita memória. Felizmente temos como verificar previamente se uma expansão de memória se faz necessária. Quando um PC tem muita memória, o sistema operacional pode usar uma parte desta memória como cache de disco, o que aumenta bastante o desempenho do disco rígido. Muitos usuários têm dificuldades para conseguir memórias que já se tornaram raras. Em alguns locais se vendem memórias PC133, mas não se vendem PC100 nem PC66. Em micros um pouco mais antigos, a inexistência de módulos FPM e EDO impede o upgrade. Uma solução definitiva para o problema é comprar memórias através da Kingston ( Suas memórias são um pouco mais caras que as genéricas mais vendidas no Brasil, mas têm garantia lifetime e são disponíveis em todos os modelos, até os mais antigos. Desta forma não é necessário recorrer ao mercado de peças de segunda mão, que é pouco confiável. Atenção com a eletricidade estática As memórias, assim como todos os componentes eletrônicos usados nos computadores, são extremamente sensíveis à eletricidade estática, podendo ser danificados com facilidade. Tome as precauções usuais ao manusear as memórias: Descarregando a eletricidade estática das mãos. 1) Antes de manusear as memórias, descarregue a eletricidade estática das suas mãos. Isto pode ser feito tocando as duas mãos na carcaça metálica da fonte de alimentação (não pintada) ou da chapa metálica interna do gabinete do computador. Se você trabalhar profissionalmente, é recomendável usar uma pulseira anti-estática. Pulseira anti-estática. 2) Ao manusear os módulos de memória, não toque nos seus chips nem no seu conector. A figura seguinte mostra as formas correta e errada de manusear as memórias. Página 1 de 35

2 Formas correta e errada de manusear módulos de memória. Leitura e escrita Dividem-se as memórias em duas grandes categorias: ROM e RAM. Em todos os computadores encontramos ambos os tipos. Cada um desses dois tipos é por sua vez, dividido em várias outras categorias. ROM ROM significa read only memory, ou seja, memória para apenas leitura. É um tipo de memória que, em uso normal, aceita apenas operações de leitura, não permitindo a realização de escritas. Outra característica da ROM é que seus dados não são perdidos quando ela é desligada. Ao ligarmos novamente, os dados estarão lá, exatamente como foram deixados. Dizemos então que a ROM é uma memória não volátil. Alguns tipos de ROM aceitam operações de escrita, porém isto é feito através de programas apropriados, usando comandos de hardware especiais. Uma típica aplicação da ROM é o armazenamento do BIOS do PC, aquele programa que entra em ação assim que o ligamos. Este programa testa a memória, inicializa o hardware e inicia a carga do sistema operacional. Normalmente não fazemos o upgrade de ROMs, mas é comum um upgrade de software nessas memórias, que consiste na atualização do seu programa armazenado. Podemos citar o caso mais comum, que é o upgrade de BIOS. RAM Significa random access memory, ou seja, memória de acesso aleatório. Além de permitir leituras e escritas, a RAM tem outra característica típica: trata-se de uma memória volátil, ou seja, seus dados são apagados quando é desligada. Resumindo, as principais características da ROM e da RAM são: ROM RAM Significado Read only memory Random access memory Faz leituras SIM SIM Faz escritas Normalmente NÃO SIM Perde dados ao ser desligada NÃO SIM O que é encapsulamento? O chip de memória é um circuito elétrico integrado em uma minúscula fatia de silício contendo impurezas. É um pouco mais espesso que uma folha de papel e é muito delicado, não podendo suportar exposição ao ar. Portanto, o que é denominado chip de memória, é o encapsulamento, ou seja, o invólucro protetor do circuito, que é feito de material plástico ou resina epóxi. A memória está lá dentro e se liga ao mundo exterior por fios metálicos que saem do invólucro e se conectam a contatos metálicos que se encaixarão nos soquetes ou slots (fendas com contatos elétricos) da placa-mãe. Encapsulamentos de memórias ROMs Quase sempre se encontrarão memórias ROMs fabricadas com encapsulamento DIP cerâmico ou plástico, conforme exemplo na figura abaixo. Página 2 de 35

3 ROM com encapsulamento DIP. O encapsulamento DIP (dual in-line package) cerâmico é mais utilizado pelas ROMs do tipo EPROM (ou UV-EPROM). Essas ROMs possuem uma janela de vidro, através da qual os dados podem ser apagados através de raios ultra-violeta. Depois de apagadas, podem ser novamente gravadas. Em uso normal esta janela deve permanecer tampada por uma etiqueta. Portanto nunca retire a etiqueta da ROM expondo sua janela de vidro, pois ela pode ser apagada por exposição prolongada à luz natural. Podemos ainda encontrar ROMs com outros encapsulamentos diferentes do DIP, como o PLCC (plastic leadless chip carrier), mostrado na figura seguinte. Este tipo de ROM é muito encontrado em modems e nas placas de CPU modernas. ROM com encapsulamento PLCC. Encapsulamento das memórias RAMs Os chips de memória RAM também podem ser encontrados em diversos formatos, sendo que o mais comum é o encapsulamento SOJ (small outline package J-lead), mostrado logo abaixo. Você encontrará com freqüência este encapsulamento nos chips que formam os módulos de memória e nos que forma a memória de vídeo, encontrados em placas de vídeo. Chips de RAM com encapsulamento SOJ. Também é comum encontrar chips de RAM com encapsulamento QFP (quad flatpack). São usados por chips que formam a cache L2 em placas de CPU com cache externa, e nos chips que formam a memória de vídeo. Página 3 de 35

4 Chips de RAM com encapsulamento QFP. Comenta-se sobre esses chips por razões meramente ilustrativas. Quem está preocupado apenas em realizar upgrades não precisará se envolver diretamente com esses chips de memória. Encapsulamento de módulos de memória Até o início dos anos 90, as memórias dos PCs usavam encapsulamento DIP e eram instaladas, chip por chip. Os módulos de memória foram criados para facilitar a sua instalação. É muito mais rápido conectar um módulo de memória que instalar um grande número de chips avulsos. Chip de memória com encapsulamento DIP e módulos de memória SIPP e SIMM. Os primeiros módulos de memória eram chamados SIPP (single inline pin package), e foram lançados em meados dos anos 80. Este módulo era uma pequena placa com chips de memória e terminais ( perninhas ) para encaixe no soquete apropriado. Mais tarde surgiram os módulos SIMM (single inline memory module). Ao invés de utilizar terminais de contato como o SIPP, esses módulos têm um conector na sua borda. Os módulos SIPP caíram em desuso já no início dos anos 90. Os módulos SIPP e os primeiros módulos SIMM forneciam 8 bits simultâneos e precisavam ser usados em grupos para formar o número total de bits exigidos pelo processador. Processadores 386 e 486 utilizam memórias de 32 bits, portanto os módulos SIMM eram usados em grupos de 4. Por exemplo, 4 módulos iguais, com 4 MB cada um, formavam um banco de 16 MB, com 32 bits. Os módulos SIMM usados até então tinham 30 contatos, portanto eram chamados de SIMM/30, ou módulos SIMM de 30 vias (ou 30 pinos). Ainda eram bastante comuns em meados dos anos 90, mas já existiam na época, módulos SIMM de 72 vias (SIMM/72), que forneciam 32 bits simultâneos. Em placas de CPU 486, um único módulo SIMM/72 formava um banco de memória com 32 bits. Os módulos SIMM/72, apesar de serem mais práticos que os SIMM/30, eram pouco utilizados, até o lançamento do processador Pentium. O Pentium trabalha com memórias de 64 bits, portanto dois módulos SIMM/72 iguais formam um banco de 64 bits. Já em 1996 era praticamente impossível encontrar à venda módulos SIMM/30, exceto no mercado de peças usadas. Página 4 de 35

5 Módulos SIMM/30 e SIMM/72. Visando uma integração de componentes ainda maior, foram criados módulos que fornecem 64 bits simultâneos. Esses módulos são chamados DIMM/168 (dual inline memory module), e possuem 168 vias. Um único módulo DIMM/168 forma um banco de memória com 64 bits. Módulo DIMM/168. Muitas placas de CPU Pentium produzidas entre 1995 e 1997 usavam módulos COAST (Cache on a Stick). Este tipo de módulo era usado para formar a memória cache de algumas placas de CPU Pentium, e também de algumas placas de CPU 486 e 586 produzidas naquela época. Note que os módulos COAST para placas de CPU Pentium são um pouco diferentes dos utilizados para placas de CPU 486/586, porém com chips diferentes. A diferença é visualizada na figura seguinte. Módulos COAST. Dois novos tipos de memória passaram a ser comuns a partir de São as memórias RAMBUS (RDRAM) e as memórias DDR SDRAM. Memórias RAMBUS usam o o encapsulamento RIMM de 184 vias (figura A). Este tipo de módulo pode ter uma chapa metálica cobrindo seus chips. Esses módulos têm tamanho similar ao dos módulos DIMM/168, cerca de 13 centímetros. Entretanto não existe risco de conexão em um soquete errado, já que as duas fendas existentes do conector só se ajustam aos soquetes apropriados. (Figura A) Módulo RIMM/184. Página 5 de 35

6 Também bastante parecidos são os módulos DIMM/184, utilizados pelas memórias DDR SDRAM. A medida é similar à dos módulos DIMM/168 e RIMM/184, mas esses módulos também possuem um chanfro característico que impede o seu encaixe em um soquete errado. Módulo DIMM/184. Observe que antes de fazer um upgrade de memória, temos que saber quais são os tipos de memórias suportadas pela placa de CPU. Por exemplo, muitas placas de CPU para Pentium 4 operam com RDRAM, outras com DDR SDRAM, e outras com SDRAM. Podemos encontrar placas de CPU para processadores Athlon e Duron que operam com SDRAM, outras com DDR SDRAM, outras com ambos os tipos. As placas para Pentium III e Celeron normalmente aceitam apenas SDRAM. Placas de CPU para processadores mais antigos podem operar com SDRAM, outras com memórias SIMM/72 (FPM ou EDO), outras aceitam ambos os tipos. Quando uma placa de CPU suporta mais de um tipo de memória, o ideal é que seja escolhido para uma expansão, aquele de maior desempenho. (O ideal é seguir o ditado: cada caso é um caso ). RAMs estáticas e dinâmicas RAMs podem ser divididas em duas grandes categorias: RAMs estáticas (SRAM) e RAMs dinâmicas (DRAM). A DRAM é a memória usada em larga escala nos PCs. Quando dizemos que um PC possui, por exemplo, 128 MB, tratam-se de 128 MB de DRAM. São memórias baratas e compactas, o que é um grande atrativo. Por outro lado, são relativamente lentas, o que é uma grande desvantagem. Por esta razão, os PCs utilizam em conjunto com a DRAM, uma memória especial, mais veloz, chamada cache, que serve para acelerar o desempenho da DRAM. A SRAM (cache) tem como objetivo o aumento do desempenho através de um processo de aceleração de troca de informações entre memória principal (DRAM) e processador. Antigamente a memória cache localizava-se na placa-mãe. Atualmente ela encontra-se embutida no processador e também na placamãe em alguns casos. No momento existem 03 (três) tipos de memória cache: L1 (level 1 nível 1 interna): - Localizada dentro do processador. - Extremamente importante para performance do processador. - Varia de 16 Kb a 512 Kb em média. L2 (level 2 nível 2 externa): - Localizada na placa-mãe. - Controlador desta memória se encontra embutido no chipset. - Tamanhos mais comuns: 256 Kb, 512 Kb, 1 Mb. L3 (level 3 nível 3): - Determinados processadores acabaram embutindo a cache L2 para acelerar sua performance. Isto possibilitou que a cache localizada na placa-mãe pudesse ser utilizada como um terceiro nível de memória cache. Segue um exemplo simples de funcionamento de uma memória cache: Imagine que o serviço deste secretário seja atender clientes da seguradora que ligam esporadicamente. Cada cliente possui uma ficha, sendo que todas as fichas estão organizadas num grande arquivo do outro lado da sala. Quando um cliente liga, o secretário precisa de se levantar e procurar a ficha do cliente no arquivo, antes que possa atendê-lo, fazendo com que cliente precise esperar um tempo razoável. Com o passar do tempo, o secretário percebe que dos clientes, 50 ligam com mais freqüência. Ele então resolve colocar um pequeno fichário sobre a mesa, e nele guarda as fichas destes 50 clientes que são responsáveis pela maioria das chamadas. Quando um destes clientes ligar, o Página 6 de 35

7 secretário poderá localizar a sua ficha em muito menos tempo, já que elas já estarão sobre a sua mesa. Enquanto estiver atendendo o cliente, ele manterá a ficha deste à mão, para que possa atender imediatamente a qualquer solicitação. O grande arquivo ilustra a memória RAM, onde todos os programas abertos são carregados. O pequeno fichário sobre a mesa ilustra a cache L2, que armazena os dados usados com mais freqüência pelo processador. Finalmente, a ficha mantida à mão enquanto o cliente é atendido ilustra a cache L1, que é brutalmente mais rápido do que a memória RAM e até mesmo que a cache L2, apesar do seu tamanho reduzido não permitir a armazenagem de muitos dados, assim como não é possível (pelo menos no exemplo) manter mais que uma ficha à mão ao mesmo tempo. A DRAM por sua vez pode ser subdividida em outras categorias, sendo as principais (em ordem cronológica): DRAM FPM DRAM EDO DRAM SDRAM DDR SDRAM RDRAM A DRAM não é caracterizada pela rapidez, e sim pelo baixo custo, aliado à alta capacidade, em comparação com a SRAM. A alta capacidade é devida ao fato das suas células de memória serem mais simples. Com células mais simples, é possível criar chips com maior número de células de memória. As RAMs estáticas são muito utilizadas para formar a cache L2 externa, em placas de CPU para processadores que não possuem esta cache intergrada. Os módulos COAST, por exemplo, já citados neste capítulo, são formados por chips de RAM estática. Comparando SRAM e DRAM Como mostra a tabela, a DRAM leva vantagem em todos os pontos, exceto na velocidade. Esta desvantagem é compensada com o uso de memória cache. A lentidão da DRAM é resultado da sua natureza capacitiva. SRAM DRAM * Rápida Lenta Baixa densidade * Alta densidade Alto custo * Baixo custo Alto consumo * Baixo consumo DRAMs FPM e EDO As memórias dinâmicas usadas nos PCs produzidos nos últimos anos dividem-se em várias categorias. Nos PCs mais recentes, encontramos memórias SDRAM, DDR SDRAM e RDRAM. Nos PCs um pouco mais antigos ( ), encontramos memórias DRAM dos tipos FPM (Fast Page Mode) e EDO (Extended Data Out). FPM DRAM A principal característica da FPM DRAM é que os seus acessos são feitos em grupos de 4 transferências. A primeira transferência é tão demorada quanto a de uma DRAM comum, mas as três transferências seguintes são mais rápidas. Por exemplo, pode demorar 100 ns para acessar o primeiro dado, e 40 ns para acessar cada um dos três dados seguintes. O tempo de acesso de uma FPM DRAM deve estar relacionado com o clock do processador. A duração de um ciclo de clock depende do clock utilizado pelo chipset, que em geral é o mesmo clock externo do processador: Página 7 de 35

8 Clock Período Clock Período 33 MHz 30 ns 95 MHz 10,5 ns 40 MHz 25 ns 100 MHz 10 ns 50 MHz 20 ns 133 MHz 7,5 ns 60 MHz 16,6 ns 166 MHz 6 ns 66 MHz 15 ns 200 MHz 5 ns 75 MHz 13,3 ns 266 MHz 3,75 ns 83 MHz 12 ns 400 MHz 2,5 ns De um modo geral, para obter o valor do período, dado em ns, basta dividir 1000 pelo número de MHz. Considere por exemplo um Pentium-200, operando com clock externo de 66 MHz, ou seja, ciclos de 15 ns. Todas as suas operações são feitas em múltiplos de 15 ns, ou seja, 15ns é a sua unidade básica de tempo. Aquela FPM DRAM que precisa operar com a temporização 100/40/40/40, será controlada pelo chipset com a temporização São 7x15 = 105 ns para o primeiro acesso e 3x15 = 45 ns para cada um dos acessos seguintes. EDO DRAM Bastante comum a partir de 1995, a EDO (Extended Data Out) DRAM é obtida a partir de um melhoramento de engenharia nas memórias FPM DRAM. A idéia é bastante simples. Após completar um ciclo de leitura e fornecer os dados lidos, pode dar início a um novo ciclo de leitura, mas mantendo em suas saídas, os dados da leitura anterior. O resultado é uma economia de tempo, o que equivale a um aumento de velocidade. É suportada por todas as placas de CPU Pentium, a partir das que apresentam o chipset i430fx. As primeiras placas de CPU Pentium II também as suportavam, porém essas memórias caíram em desuso, sendo logo substituídas pela SDRAM tão logo o Pentium II se tornou comum (1998). Módulos de memória EDO DRAM utilizaram muito o encapsulamento SIMM/72 (assim como a FPM DRAM). Também é possível encontrar módulos de memória EDO DRAM usando o encapsulamento DIMM/168, porém são mais raras nesta versão. Reconhecendo a diferença entre FPM DRAM e EDO DRAM Nem sempre é fácil reconhecer à primeira vista, a diferença entre memórias FPM e EDO. Se o módulo for do tipo SIMM/30 ou SIPP/30, é do tipo FPM. A confusão ocorre com módulos SIMM/72 produzidos entre 1994 e 1997, comuns em placas de CPU 386, 486 e nas primeiras placas de CPU Pentium. Placas de CPU 386 não funcionavam com memórias EDO, e placas de CPU 486 também normalmente não, mas existem alguns modelos que suportam tanto FPM quanto EDO. Já as primeiras placas de CPU Pentium com soquetes SIMM/72 suportavam tanto memórias FPM quanto EDO. O BIOS dessas placas era capaz de detectar o tipo de memória instalado em cada banco e configurar o chipset para acessos de acordo com o tipo detectado. Página 8 de 35

9 figura EDO Alguns módulos apresentavam uma etiqueta EDO. Alguns módulos de EDO DRAM apresentam uma etiqueta indicadora EDO, como na figura acima. Este é um indício para diferenciar memórias EDO das memórias FPM, mas não nos deixa livres de falsificações, já que qualquer revendedor inescrupuloso pode produzir etiquetas falsas. Felizmente esta falsificação não é comum, já que as memórias EDO e FPM têm preços similares. Em alguns casos é possível diferenciar entre FPM e EDO de acordo com a numeração dos chips. Muitos fabricantes usam para os chips FPM DRAM, números terminandos com 0, enquanto os chips EDO têm seus números terminados com 5. A tabela abaixo mostra os principais fabricantes e os sufixos utilizados para cada tipo de DRAM: Fabricante Inscrições Sigla Exemplos nos Chips OKI MSM MSM51V17400B MD MSM51V17405D Samsung KM KM48V8100C KM48V8104B Texas Instruments TMS TMS417400A TMS416409A Fujitsu MB MB A MB A Mitsubishi M5M M5M417800D M5M4V17405C LG GM GM71V65160C Electronics GM71V65163C Hyundai HY HY51V17800B HY51V17804B Siemens HYB HYB AJ HYB AJ IBM IBM IBM01164DOT3E IBM BJ3E Micron MT MT4C1M16C3DJ MT4LC1M16E5DJ Motorola MCM MCM218160B MCM218165B Diferença entre FPM e EDO FPM termina com 0 EDO termina com 5 ou 8 FPM termina com 0 ou 3 EDO termina com 4 ou 5 FPM termina com 0 EDO termina com 9 FPM termina com 0 EDO termina com 5 FPM termina com 0 EDO termina com 5 FPM termina com 0 EDO termina com 3 FPM termina com 0 EDO termina com 4 FPM termina com 0 EDO termina com 5 FPM termina com 0 EDO termina com 5 Normalmente o 4 º dígito antes do - é E nas memórias EDO. FPM termina com 0 EDO termina com 5 Página 9 de 35

10 NEC NEC G G5 NPNX NN NN51V17800BJ NN51V17805BJ Panasonic MN MN41V18160ASJ MN41V18165ASJ Toshiba TC TC BJ TC AJ Hitachi HM HM A HM A FPM termina com 0 EDO termina com 5 FPM termina com 0 EDO termina com 5 FPM termina com 0 EDO termina com 5 FPM termina com 0 EDO termina com 5 FPM termina com 0 EDO termina com 5 Velocidade de memórias FPM e EDO As memórias FPM e EDO, muito usadas entre 1994 e 1997, apresentam em geral o encapsulamento SIMM/72. O tempo de acesso dessas memórias é medido em ns (nano-segundos). Em geral os tempos de acesso são de 50, 60, 70 e 80 ns, sendo que as de 60 e 70 ns são as mais comuns. Os fabricantes utilizam ao lado do número de cada chip, um indicador de tempo de acesso. Por exemplo, 60 ns pode ser indicado como 60, 06, -06 ou similar. A figura EDO mostra chips de um módulo SIMM/72, com tempo de acesso de 60 ns. As marcações usadas para memórias FPM e EDO são: Tempo de acesso Marcações 80 ns -80, -8, -08, -X8 70 ns -70, -7, -07, -X7 60 ns -60, -6, -06, -X6 50 ns -50, -5, -05, -X5 Por exemplo, os chips MT4C4007JDJ-6, mostrados na figura EDO, são de 60 ns. Note que as marcações que indicamos dizem respeito a memórias FPM e EDO, encontradas em módulos SIMM/72 (e também em SIMM/30). Memórias SDRAM possuem marcações parecidas, mas os significados são outros. Por exemplo, uma SDRAM com marcação -8 não é de 80 ns, e sim, de 8 ns. Se um módulo de memória é SIMM/30, então certamente é FPM. Se é um módulo SIMM/72, então certamente é FPM ou EDO. Se o módulo é do tipo DIMM/168, então provavelmente trata-se de uma SDRAM, mas existem alguns raros casos de memórias FPM e EDO que usam o encapsulamento DIMM/168. DRAMs síncronas No final dos anos 90 surgiram as DRAMs síncronas (Synchronous DRAM, ou SDRAM), ideais para barramentos de 66 a 133 MHz, e alguns modelos chegando a 166 MHz. Para barramentos mais velozes, como 200, 266 e até 400 MHz, foram criadas novas versões ainda mais velozes, como a DDR SDRAM (Double Data Rate SDRAM) e a RDRAM (Rambus DRAM). SDRAM Esta é a DRAM síncrona (Synchronous DRAM), muito utilizada nas placas de CPU produzidas entre 1997 e A principal diferença em relação às DRAMs dos tipos EDO e FPM é que seu funcionamento é sincronizado com o do chipset (e normalmente também com o processador), através de um clock. Por exemplo, em um processador com clock externo de 133 MHz, o chipset também opera a 133 MHz, assim como a SDRAM. Existem exceções, como as primeiras placas para processadores Athlon, com clock externo de 200 MHz mas com memórias SDRAM operando com apenas 100 ou 133 MHz. De qualquer forma, sempre existirá uma sincronização entre o chipset e a SDRAM. A SDRAM é mais veloz que a EDO DRAM, é suportada por todas as placas de CPU produzidas a partir de meados de 1997, e seus módulos usam o encapsulamento DIMM/168. Página 10 de 35

11 Memórias SDRAM modernas operam com temporizações como ou Significa que levam 3 ou 2 ciclos para fazer o primeiro acesso (isto é o que chamamos de CL, ou latência do CAS) e 1 ciclo para cada um dos três acessos seguintes. O valor de CL pode ser ajustado pelo CMOS Setup, de forma manual ou então de forma automática. Para usar o ajuste automático basta programar o item SDRAM timing com a opção by SPD. O SPD (Serial Presence Detect) é uma pequena ROM de configuração existente nos módulos de SDRAM, através da qual o BIOS pode identificar automaticamente as características da memória. PC66, PC100, PC133 Inicialmente surgiram chips de SDRAM com clocks de 66, 100 e 125 MHz. Teoricamente eram destinados a operar com barramentos externos de 66, 100 e 125 MHz, respectivamente. Como existiam várias diferenças entre as temporizações das várias versões de SDRAM de vários fabricantes, algumas incompatibilidades passaram a ocorrer. Visando resolver esses problemas, a Intel criou os padrões PC66, PC100 (e mais tarde o PC133). São normas que definem todos os parâmetros de tempo que as memórias deveriam obedecer para operar seguramente a 66 e a 100 MHz, o que acabou com os problemas de compatibilidade. Os módulos de 100 MHz já existentes no mercado não atendiam plenamente às especificações do padrão PC100, por isso esses módulos passaram a ser designados como PC66. Já os módulos de 125 MHz existentes tinham temporizações compatíveis com o PC100, e passaram a ser assim designados. Portanto um módulo com marcação de 10 ns ou 100 MHz é PC66. Pode ser usado com barramentos externos de 66 MHz, e possivelmente também a 75 ou 83 MHz, mas não a 100 MHz. Os módulos com marcação de 8 ns ou 125 MHz são classificados como PC100. Os primeiros módulos para 133 MHz já foram criados obedecendo ao padrão PC133, portanto podem ser seguramente usados em barramentos de 133 MHz. Esses módulos têm tempos de acesso de 7,5 ns ou menores. DDR SDRAM Apesar de envolver um grande esforço de engenharia na sua implementação, a idéia da DDR (Double Data Rate) SDRAM é bastante simples. Ao invés de uma única SDRAM, coloque duas iguais, lado a lado. Quando uma for acessada, a outra também será. Cada SDRAM poderá entregar um dado a cada pulso de clock. Como temos duas memórias em paralelo, o conjunto poderá entregar dois dados a cada pulso de clock. O resultado é uma taxa de transferência duas vezes maior. Agora, ao invés de utilizar dois chips SDRAM iguais, lado a lado, constrói-se um único chip com os circuitos equivalentes aos das duas SDRAMs, e adiciona-se a ele, os circuitos necessários para fazer a transmissão dupla a cada pulso de clock. O chip resultante é uma DDR SDRAM. Operação da SDRAM e da DDR SDRAM. A figura acima mostra a diferença, do ponto de vista externo, entre a SDRAM e a DDR SDRAM. Os períodos de clock são representados por T0, T1, T2 e T3. A SDRAM fornece um dado a cada período de clock, e o instante da subida deste clock (transição de 0 para 1 ) indica que o dado está pronto para ser lido. Na DDR SDRAM, utilizando períodos iguais, cada transição de subida ou de descida indica a presença de um dado pronto. Portanto são dois dados a cada clock. As memórias DDR são oficialmente encontradas em versões de 266 MHz, 333 MHz e 400 MHz, DDR2 SDRAM Memórias do tipo DDR2 já são aceitas em algumas placas-mãe topo de linha. Segue abaixo uma pequena lista das principais diferenças entre as memórias DDR2 e DDR: As memórias DDR2 são encontradas em versões de 400 MHz, 533 MHz, 667 MHz e 800 MHz. Assim como as memórias DDR, transferem dois dados por pulso de clock. Por conta disso, os clocks listados são os clocks nominais e não os clocks reais. Para obter o clock real divida o clock nominal por dois. Por exemplo, a memória DDR2-667 na realidade trabalha a 333 MHz. Página 11 de 35

12 As memórias DDR2 têm menor consumo elétrico comparadas às memórias DDR. As memórias DDR são alimentadas com 2,5V enquanto as memórias DDR2 são alimentadas com 1,8V. Nas memórias DDR a terminação resistiva necessária para a memória funcionar está localizada na placa-mãe. Já na DDR2 este circuito está localizado dentro do chip de memória. É por este motivo que não é possível instalar memórias DDR2 em soquetes de memória DDR e vice-versa. Os módulos de memória DDR têm 184 terminais, enquanto os módulos de memória DDR2 têm 240 terminais. Nas memórias DDR o parâmetro latência do CAS (CL), também conhecido como tempo de acesso que é o tempo que a memória demora em entregar um dado solicitado, pode ser de 2, 2,5 ou 3 pulsos de clock. Nas memórias DDR2 o tempo de acesso pode ser de 3, 4 ou 5 pulsos de clock. Nas memórias DDR2, dependendo do chip, há uma latência adicional (chamada AL, additional latency ) de 0, 1, 2, 3, 4 ou 5 pulsos de clock. Ou seja, em uma memória DDR2 com CL4 e AL1, o tempo de acesso (latência) é de 5 pulsos de clock. Nas memórias DDR2 a latência de escrita é igual à latência de leitura (CL + AL) menos 1. Internamente o controlador das memórias DDR trabalha carregando antecipadamente dois bits de dados da área de armazenamento (tarefa conhecida como prefetch ou pré-busca ), já o controlador das memórias DDR2 trabalha carregando quatro bits. Aparência Física Os módulos de memória DDR e DDR2 possuem o mesmo tamanho físico, porém módulos DDR têm 184 terminais, enquanto módulos DDR2 têm 240 terminais. Abaixo se pode comparar os terminais de um módulo DDR2 com um módulo DDR. Diferença entre o contato de borda dos módulos DDR para os módulos DDR2. Desta forma, não há como instalar um módulo DDR2 em um soquete DDR e vice-versa. Todo chip DDR2 usa encapsulamento BGA (Ball Grid Array), enquanto chips DDR normalmente usam encapsulamento TSOP (Thin Small-Outline Package). Existem chips DDR com encapsulamento BGA (como é o caso dos chips da Kingmax), mas não são comuns. Na Figura A pode ser conferida a aparência de um chip DDR com encapsulamento TSOP, usado em módulos DDR, enquanto na Figura B pode ser observada a aparência de um chip DDR2 com encapsulamento BGA, usado em módulos DDR2. Página 12 de 35

13 Figura A: Chips DDR normalmente usam encapsulamento TSOP. Figura B: Chips DDR2 normalmente usam encapsulamento BGA. Terminação Resistiva Nos módulos DDR a terminação resistiva necessária para a memória funcionar está localizada na placamãe. Já nos módulos DDR2 esta terminação está dentro dos chips de memória técnica chamada ODT, On-Die Termination. Isto foi feito para que o sinal a ser lido e escrito pela memória ficasse mais limpo. Observando a próxima figura se nota uma comparação do sinal que chega à memória. Do lado esquerdo estão os sinais no sistema onde a terminação está na placa-mãe (memórias DDR). Já do lado direito surgem os sinais no sistema onde a terminação está na memória (memórias DDR2). Mesmo um leigo é capaz de facilmente identificar que o sinal do lado direito está mais limpo e estável que o sinal do lado esquerdo. No quadrado amarelo é possível realizar a comparação da diferença de janela de tempo que a memória tem para ler ou gravar um dado. Com o uso da terminação resistiva, esta janela de tempo aumentou, significando que clocks maiores podem ser atingidos, já que a memória tem mais tempo para ler ou escrever um dado. Página 13 de 35

14 Latências Comparação entre a terminação resistiva na placa-mãe e a terminação resistiva na memória. As memórias DDR2 trabalham com latências maiores do que as memórias DDR. Em outras palavras, elas demoram mais pulsos de clock para entregarem um dado solicitado. Isso significa que as memórias DDR2 são mais lentas do que as memórias DDR? Não necessariamente. Elas demoram mais pulsos de clock, mas não necessariamente mais tempo. Se for realizada uma comparação de uma memória DDR com uma memória DDR2 rodando sob um mesmo clock, a que tiver menor latência será mais rápida. Portanto, caso se apresente uma memória DDR400 com CL3 e uma memória DDR2-400 com CL4, a memória DDR400 será mais rápida. Lembrando que as memórias DDR2 têm um parâmetro adicional chamado AL (latência adicional) que deve ser somada à sua latência nominal (CL) para obter a latência total. No caso de comparações de memória com velocidades diferentes, deve ser levado em conta o clock. No caso de uma memória DDR400 com CL3, este 3 significa que a memória demora 3 pulsos de clock para começar a entregar os dados solicitados. Como esta memória roda a 200 MHz, cada pulso de clock dura 5 ns (T = 1/f). Ou seja, sua latência é de 15 ns. Já uma memória DDR2-533 com CL3 e AL0, este 3 também significa que a memória demora 3 pulsos de clock, só que como esta memória roda a 266 MHz, cada pulso de clock dura 3,75 ns, ou seja, sua latência é de 11,25 ns sendo, portanto, mais rápida para entregar dados do que uma memória DDR400 CL3. Ou seja, uma memória DDR2-533 com CL4 e AL0 tem a mesma latência de uma memória DDR400 CL3. Note que estamos assumindo a latência adicional como zero, caso contrário teríamos de incluí-la nas contas. Isto é, uma memória DDR2 com CL3 e AL1 na realidade possui latência de quatro pulsos de clock. Alguns fabricantes divulgam a latência de seus módulos de memória através de quatro números, como ou ou A latência referida (CL) é o primeiro número da seqüência. Já a latência adicional (AL) em geral é encontrada na documentação técnica da memória, normalmente disponível em um arquivo do tipo PDF para download no site do fabricante. Para facilitar as contas e comparações, segue uma tabela abaixo contendo a duração de cada pulso de clock dependendo do tipo de memória. Assim somente é necessário pegar o número apresentado abaixo de acordo com o tipo de memória a ser comparada e multiplicar pelo valor da sua latência para saber a duração da latência em nanossegundos, podendo, assim, comparar a latência de memórias com clocks diferentes para saber qual memória é efetivamente mais rápida. Memória DDR266 Duração de Cada Pulso de Clock 7,5 ns Página 14 de 35

15 DDR333 DDR400 e DDR2-400 DDR2-533 DDR2-667 DDR ns 5 ns 3,75 ns 3 ns 2,5 ns Em relação a preço, a Intel acredita, baseada em estudos mercadológicos, que somente no final de 2006 chips DDR2-667 de 512 Megabits terão o mesmo preço que hoje os chips DDR-400 de mesma densidade têm. De acordo com os mesmos estudos, a paridade de preços entre DDR2-533 e DDR-400 deve ocorrer no terceiro trimestre do ano de 2006, enquanto a paridade entre DDR2-400 e DDR-400 deve ocorrer no início de DDR3 SDRAM As memórias DDR3 estão no momento em estágio de protótipo. O JDEC, órgão que padroniza as memórias RAM, ainda não finalizou as especificações deste padrão. Aliás, o grande problema atualmente é que os protótipos de cada fabricante estão usando parâmetros diferentes, o que dificulta os testes deste novo tipo de memória. Este problema só será resolvido quando os fabricantes e o JDEC acordarem sobre um padrão comum a ser seguido por todos. As primeiras velocidades das memórias DDR3 serão 800 MHz e 1067 MHz, subindo para 1333 MHz e 1667 MHz no futuro. Lembrando que as memórias DDR3, assim como as DDR2 e DDR, transferem dois dados por pulso de clock e estes valores são os clocks nominais. Para obter o clock real, divida estes valores por 2. RDRAM Nas memórias RDRAM, é usado um agrupamento de bancos operando em paralelo para obter uma taxa de transferência ainda mais elevada. São 16 ou 32 bancos, dependendo dos chips. Um típico chip de memória RDRAM opera com dados de 16 bits. Também são comuns os chips de 18 bits. Os dois bits adicionais são usados como paridade, e servem para implementar mecanismos de detecção e correção de erros. A maioria das DRAMs atuais são oferecidas em versões entre 300 e 400 MHz. Para simplificar nossa explicação, consideremos os chips de 400 MHz. Assim como a DDR SDRAM, a RDRAM também realiza duas transferências por cada ciclo de clock, portanto tudo se passa como se a operação fosse em 800 MHz. Esses 800 milhões de transferências por segundo, sendo cada uma de 16 bits (2 bytes), resultam na taxa de transferência de 1,6 GB/s. Note que esta taxa é bem maior que a exigida pela maioria dos processadores: Processador bits clock Banda Pentium III MHz 800 MB/s Pentium III B MHz 1,07 GB/s Athlon MHz 1,6 GB/s Athlon MHz 2,13 GB/s Pentium MHz 3,2 GB/s Um único canal de memória RDRAM oferece uma taxa de transferência suficiente para atender à maioria dos processadores, exceto os mais avançados. O Pentium 4, por exemplo, com seu barramento de 400 MHz e 64 bits, exige 3,2 GB/s, o dobro da taxa de transferência da RDRAM. Portanto nas placas de CPU para Pentium 4, são utilizados dois canais de RDRAM com 1,6 GB/s cada um (dois módulos), totalizando os 3,2 GB/s necessários. Página 15 de 35

16 Os processadores modernos operam com 64 bits simultâneos, enquanto a RDRAM fornece apenas 16. Cabe ao chipset, que faz a ligação entre o processador e a memória, obter 4 grupos consecutivos de 16 bits vindos da RDRAM, formando os 64 bits exigidos pelo processador. Nas placas de CPU para Pentium 4, são dois canais de 16 bits, ambos a 800 MHz (lembre-se que são na verdade 400 MHz, mas com duas transferências por cada clock). Juntos formam 32 bits por 800 MHz. O chipset faz a composição para 64 bits e 400 MHz, exatamente como exige o Pentium 4. O futuro da RDRAM Enquanto a AMD incentivava o uso da DDR SDRAM, a Intel apostava na RDRAM. Esta memória foi usada sem sucesso em algumas placas de CPU para Pentium III, e foi usada pelas primeiras placas de CPU para Pentium 4. Sendo uma memória muito cara, tornava difícil a popularização do Pentium 4. Enquanto a Intel, obrigada por contrato, produzia apenas placas de CPU e chipsets para Pentium 4 com suporte a RDRAM, outros fabricantes de chipsets como a SiS e a VIA produziram chipsets para Pentium 4 com suporte a DDR SDRAM. Alguns meses depois do lançamento do Pentium 4, a Intel produziu um chipset para Pentium 4 com suporte a memórias SDRAM. O uso desse tipo de memória não é o ideal para o Pentium 4, já que sua taxa de transferência é 3 vezes menor que a exigida. Terminado o prazo legal do contrato com a Rambus, empresa que detém as patentes da RDRAM, a Intel lançou um novo chipset para Pentium 4 com suporte a DDR SDRAM. Apesar da redução de preços, a DDR SDRAM é bem mais barata que a RDRAM. Este tipo de memória já é muito difícil de ser encontrado atualmente. SPD Serial Presence Detect O SPD permite ao BIOS identificar as características dos módulos de memória, e desta forma configurar o chipset para realizar o acesso da forma mais eficiente. Encontramos o SPD nos módulos de memória SDRAM, DDR SDRAM e RDRAM. É implementado através de um minúsculo chip de memória EEPROM existente nos módulos, onde estão armazenadas todas as suas características (figura a seguir). Figura 16 O chip SPD de um módulo de SDRAM. Antes de existir o SPD, o BIOS precisava determinar através de contagem, a quantidade de memória instalada. Vários parâmetros relacionados com a temporização de acesso às memórias deviam ser obrigatoriamente programados no BIOS. Como existem módulos com características bem diferentes, os BIOS precisavam utilizar temporizações longas, compatíveis com maior variedade de módulos, e desta forma o desempenho não era otimizado. O usuário mais experiente tinha que ajustar manualmente as temporizações, visando obter maior desempenho. Escolhendo a DDR SDRAM correta A DDR SDRAM é um produto bastante recente, começou a ser produzida em alta escala no ano Sendo um produto novo, maiores são as chances de ocorrerem incompatibilidades, já que nem sempre todos os fabricantes seguem os mesmos padrões. Vamos então esclarecer os principais pontos. Módulos DDR Registered e Unbuffered Existem duas categorias de módulos DDR: 1) Registered 2) Unregistered ou Unbuffered. Página 16 de 35

17 Os fabricantes de memórias normalmente produzem ambos os tipos. O segundo é mais barato e mais indicado para PCs comuns. O tipo registered é mais caro, mas tem a vantagem de poder ser instalado em maiores quantidades, sendo ideal para servidores. Placas de CPU que suportam memórias DDR possuem em geral um jumper para a indicação do tipo de DDR. Jumper para indicar o tipo de DDR SDRAM (Registered / Unbuffered). É fácil identificar a diferença entre módulos DDR nas versões Registered e Unbuffered. A diferença está mostrada na figura seguinte. Ambos utilizam os chips de memória similares, mas o módulo registered possui chips adicionais localizados entre o conector e os chips de memória. Esses chips são os chamados Registers (registradores). Módulos de DDR SDRAM DIMM/184 nas versões Unbuffered e Registered. OBS.: A mesma regra é válida também para memórias SRAM. Os módulos SRAM registered possuem chips adicionais (registradores), como mostra a figura 18. Voltagem da DDR SDRAM Assim como as memórias SDRAM usadas na maioria dos PCs operam com 3,3 volts, as memórias DDR SDRAM mais usadas operam com 2,5 volts, mas existem as versões de 1,8 volts, ainda pouco utilizadas. Existem diferenças no soquete e nos módulos, que impedem o uso de módulos de 1,8 volts em soquetes de 2,5 volts, e vice-versa. A diferença fica por conta do posicionamento do chanfro do soquete. A próxima figura mostra os chanfros para os atuais módulos de 2,5 volts (chanfro à esquerda) e para as futuras memórias de 1,8 volts (chanfro no centro). Existe ainda uma posição reservada para uso futuro (chanfro à direita), que poderá ser usada com um eventual novo padrão de voltagem. O chanfro indica a voltagem do módulo de memória DDR. Velocidade da DDR SDRAM O selecionamento da DDR SDRAM começa pelo seu clock, de acordo com o apresentado na tabela abaixo. Note que as denominações DDRxxx são adotadas pelos chips de memória, enquanto nomenclaturas como PCXXXX (PC1600, PC2100, etc.) são usadas para designar módulo. Tipo Clock Taxa de transferência DDR200 / PC MHz 1,6 GB/s Página 17 de 35

18 DDR266 / PC MHz 2,1 GB/s DDR300 / PC MHz 2,4 GB/s DDR333 / PC MHz 2,7 GB/s DDR400 / PC MHz 3,2 GB/s Memórias DDR SDRAM também podem utilizar diferentes latências do CAS. As versões disponíveis no mercado devem operar com CL=2 ou CL=2,5. Daí surgem as versões DDR266A e DDR266B. Os chips classificados como DDR266A podem operar com CL=2, enquanto os do tipo DDR266B operam com CL=2,5. As placas de CPU que usam este tipo de memória podem ser configuradas de forma automática, na qual o CL é programado de acordo com as informações na EEPROM SPD (Serial Presence Detect), ou então manualmente. Escolhendo a RDRAM correta Os módulos de RDRAM são classificados de acordo com a velocidade, número de bits e tempo de acesso: Velocidade PC800, PC700, PC600 Numero de bits 16 ou 18 Tempo de acesso 40 a 55 ns Os módulos de 18 bits são usados em sistemas que operam com código de correção e detecção de erros (ECC). Os módulos de 16 bits são um pouco mais baratos e não utilizam este recurso. As velocidades estão relacionadas com a taxa de transferência: PC600 1,2 GB/s PC700 1,4 GB/s PC800 1,6 GB/s As memórias RDRAM são também classificadas de acordo com o seu tempo de acesso. Os fabricantes indicam em geral nos módulos de RDRAM, a taxa de transferência e o tempo de acesso. A próxima mostra um módulo padrão PC800, com tempo de acesso de 40 ns. Observe a indicação na parte direita da etiqueta. Um tempo de acesso de, por exemplo, 40 ns, indica que o primeiro acesso demorará 40 ns, e os acessos seguintes são feitos em alta velocidade. Módulo RIMM de 800 MHz e 40 ns. Nas placas de CPU equipadas com RDRAM, o BIOS pode obter os parâmetros de velocidade e tempo de acesso a partir dos dados armazenados na EEPROM SPD (Serial Presence Detect) da RDRAM, e programar o chipset para operar no modo correto. Em geral também é possível programar manualmente esses parâmetros através do CMOS Setup. Módulo RIMM de continuidade O barramento das memórias RDRAM não pode ter soquetes vazios. É necessário um casamento de impedância devido à sua elevada freqüência de operação. Devemos completar os soquetes vazios com módulos de continuidade. Página 18 de 35

19 Usando módulos de continuidade RIMM. Detecção e correção de erros na memória Todos os chips de memória estão sujeitos a erros. A probabilidade da ocorrência de erros é muito pequena, mas dependendo da aplicação, o erro pode ser tolerado ou não. Se um computador usado exclusivamente para jogos apresentar um erro por ano, isto não causará problema algum. Se um computador usado no monitoramento de um reator nuclear, a taxa de um erro a cada 10 anos seria catastrófica. Existem mecanismos para detectar erros, e outros que permitem ainda corrigir o erro encontrado. Paridade A paridade é um recurso que serve para aumentar a confiabilidade das memórias DRAM (isto se aplica a qualquer tipo de DRAM: RDRAM, DDR, SDRAM, EDO e FPM). A paridade nos PCs consiste em adicionar a cada grupo de 8 bits, um nono bit, chamado de bit de paridade. Este bit funciona como um dígito verificador, e permite detectar a maior parte dos erros na memória. Módulos SIMM/72 com paridade operam com 36 bits ao invés de 32, e módulos DIMM/168 (SDRAM) e DIMM/184 (DDR) com paridade operam com 72 bits ao invés de 64. Módulos RDRAM com paridade utilizam 18 bits, ao invés de 16. A paridade que já foi tão importante há alguns anos atrás, caiu de importância pelo fato das memórias terem se tornado mais confiáveis. Inclusive muitos chipsets para PCs de baixo custo não fazem checagem de paridade. ECC Uma outra técnica mais eficiente tem sido utilizada para detectar e corrigir erros na memória. Trata-se do ECC, usado em placas de CPU de alta confiabilidade, como as usadas em servidores. Para cada grupo de 64 bits, 8 bits adicionais são usados para detecção e correção de erros. Por isso os módulos DIMM/168 de 72 bits não são ditos com paridade, e sim, com ECC. Os 8 bits adicionais de ECC armazenam um código mais complexo, calculado em função dos 64 bits de dados. Através de técnicas matemáticas avançadas, porém de simples implementação através de circuitos digitais, o ECC permite não apenas detectar um bit errado, mas também descobrir qual é este bit e corrigir automaticamente o seu valor. Página 19 de 35

20 Memórias ROM A ROM (Read Only Memory, ou memória de apenas leitura) tem duas características principais. A primeira trata-se de uma memória não volátil, ou seja, que não perde seus dados quando é desligada. Por isso é a memória ideal para armazenar o BIOS, que precisa entrar em execução assim que o computador é ligado. A segunda característica, seu próprio nome já diz. É usada apenas para operações de leitura, não permitindo gravações. A maioria das ROMs usadas em PCs utiliza o encapsulamento DIP (Dual In-line Package). As ROMs mais comuns são as que armazenam o BIOS da placa de CPU e o BIOS da placa VGA. ROM, PROM, EPROM As ROMs são encontradas em diversas modalidades. As principais diferenças dizem respeito a como os dados originais são armazenados. Em uso normal, a ROM aceita apenas operações de leitura, e não de escrita, mas antes disso, é preciso que alguém (normalmente o fabricante) armazene os seus dados. A ROM é o tipo mais simples. Seus dados são gravados durante o processo de fabricação do chip. Um fabricante de placas de CPU, por exemplo, entrega ao fabricante de memórias, o conteúdo a ser gravado nas ROMs. A partir deste conteúdo, o fabricante de memórias produz uma matriz, com a qual serão construídos milhares de chips. A PROM (Programable ROM) é um tipo de memória ROM, com uma diferença: pode ser programada em laboratório, através de um gravador especial. Este tipo de gravação é feito através da queima de microscópicos elementos, que são como pequenos fusíveis, feitos de material semicondutor. Uma PROM nova vem em estado virgem, ou seja, com todos os seus fusíveis intactos. O processo de gravação faz a queima seletiva desses fusíveis, a fim de representar os bits desejados. Este processo é irreversível. Uma vez queimada, ou seja, programada, uma PROM não pode mais ser modificada. A EPROM ou UV-EPROM (Eraseable PROM, ou Ultra Violet Eraseable PROM) é uma ROM programável, que pode ser apagada e regravada. Seus dados podem ser apagados através de um feixe de luz ultra violeta de alta intensidade. As EPROMs possuem uma janela de vidro, através da qual podem incidir os raios ultra violeta usados no processo de apagamento. Esses raios são obtidos em um aparelho especial chamado apagador de EPROMs, que consiste em uma caixa plástica com uma lâmpada ultra violeta. Flash ROM Desde os anos 80 existe no mercado um tipo especial de ROM, que pode ser programada e apagada eletricamente: a EEPROM ou E 2 PROM (Eletrically Eraseable Programable ROM). Essas memórias são antecessoras das atuais Flash ROMs, que têm a mesma característica. São ROMs que podem ser regravadas através da aplicação de voltagens de programação especiais. Em uso normal, esta voltagem de programação não chega ao chip, e seus dados permanecem inalteráveis. Este tipo especial de ROM tem sido utilizado nas placas de CPU a partir de meados dos anos 90 para armazenar o seu BIOS. Pelo fato de serem alteráveis, permitem realizar atualizações do BIOS, através de programas especiais que ativam os seus circuitos de gravação. Shadow RAM A técnica da shadow RAM é utilizada para acelerar o BIOS da placa de CPU, o BIOS da placa de vídeo e outros BIOS eventualmente existentes em placas de expansão. A habilitação da shadow RAM é feita através do CMOS Setup. Consiste em copiar o conteúdo das ROMs (que são lentas) para a memória RAM (que é muito mais rápida). A seguir as ROMs são desativadas, e as áreas de RAM com suas cópias assumem o seu lugar. Expansão da memória Aumentar a quantidade de RAM de um PC não é uma tarefa difícil. Esses PCs possuem vários soquetes para a instalação de módulos de memória, e normalmente alguns deles estão livres para a instalação de novos módulos. Apenas é preciso saber o módulo correto a ser usado na expansão. Devem ser considerados os seguintes fatores: 1) Tipo Página 20 de 35

21 A maioria das placas de CPU produzidas nos últimos anos usa módulos SDRAM, com encapsulamento DIMM/168. Modelos mais antigos ( ) podem utilizar módulos SIMM/72, do tipo EDO ou FPM. A partir de 2001 surgiram placas de CPU com suporte para memórias DDR e RDRAM. Antes de comprar novas memórias para uma expansão, é preciso saber o tipo de módulo utilizado pela placa de CPU. 2) Capacidade Podemos encontrar módulos de memória com diversas capacidades. As mais comuns são as de 16 MB, 32 MB, 64 MB e 128 MB, mas encontramos também capacidades maiores (256 MB e 512 MB), assim como menores (8 MB, 4 MB, 2 MB, 1 MB). Antes de fazer uma expansão temos que consultar o manual da placa de CPU para verificar a sua capacidade máxima de memória, bem como as capacidades dos módulos suportados. Quando não temos o manual em mãos, podemos usar uma regra que normalmente funciona: utilize nos bancos vazios, módulos de memória iguais ao que já está instalado. 3) Velocidade Todos os tipos de memória são classificados de acordo com a velocidade. É preciso saber identificar as velocidades de memórias EDO, FPM, SDRAM, DDR e RDRAM. Compre as novas memórias com velocidade igual ou superior às das memórias que já estão instaladas. OBS.: Esta regra possui uma exceção. Entre as primeiras placas de CPU com suporte a memórias SDRAM, com barramento de 66 MHz, existem algumas que operam com memórias PC66 mas não suportam PC100 ou PC133. Este problema deve-se ao fato dos seus chipsets terem sido projetados antes do estabelecimento do padrão PC66. Podemos citar entre elas, as equipadas com o chipset conhecido como VXPro. As placas de CPU modernas são extremamente flexíveis no que diz respeito à capacidade dos módulos de memória. A maioria dos processadores modernos requer memórias de 64 bits, e os módulos SDRAM e DDR também são de 64 bits. Nesses casos, um único módulo é suficiente para formar um banco de memória. No passado, isto nem sempre foi simples assim. Nos tempos das velhas memórias SIMM/72 e das ainda mais antigas memórias SIMM/30, era preciso utilizar módulos de 2 em 2 ou de 4 em 4 para formar os bancos de memória. Cada processador precisa enxergar bancos de memória com o mesmo número de bits do seu barramento externo. Processadores 486, por exemplo, exigiam memórias de 32 bits. Ao usar memórias com encapsulamento SIMM/30 (8 bits), era preciso utilizar 4 módulos iguais para completar 32 bits. Em placas de CPU 486/586 com soquetes SIMM/72, um único módulo SIMM/72 fornece os 32 bits necessários para formar um banco. Já as placas de CPU Pentium (64 bits) equipadas com soquetes SIMM/72 necessitam do uso de módulos aos pares. Dois módulos iguais de 32 bits completam os 64 bits exigidos pelo processador. Os dois módulos SIMM/72 que formavam um banco deveriam ser preferencialmente iguais. Se isto não fosse possível, eles precisavam ser pelo menos compatíveis com o padrão exigido pela placa de CPU. Deveriam ser obrigatoriamente de mesma capacidade e se possível, de mesma velocidade, mesmo que sendo de fabricantes diferentes. Página 21 de 35

Memória ROM. Organização Funcional de um. Computador. ROM (Read-Only Memory) Memória Somente Leitura.

Memória ROM. Organização Funcional de um. Computador. ROM (Read-Only Memory) Memória Somente Leitura. Prof. Luiz Antonio do Nascimento Faculdade Nossa Cidade Organização Funcional de um Computador Unidade que realiza as operações lógicas e aritméticas Comanda as outras operações Sistema Central CPU ULA

Leia mais

Memória RAM. A memória RAM evolui constantemente. Qual a diferença entre elas? No clock (velocidade de comunicação com o processador)

Memória RAM. A memória RAM evolui constantemente. Qual a diferença entre elas? No clock (velocidade de comunicação com o processador) Memória RAM Introdução As memórias são as responsáveis pelo armazenamento de dados e instruções em forma de sinais digitais em computadores. Para que o processador possa executar suas tarefas, ele busca

Leia mais

ETEC Prof. Massuyuki Kawano Centro Paula Souza Prof. Anderson Tukiyama Berengue Instalação e Manutenção de Computadores Módulo: I Tupã SP Encapsulamento das Memórias Encapsulamento é o nome que se dá ao

Leia mais

Em um microcomputador qualquer, existem três componentes básicos:

Em um microcomputador qualquer, existem três componentes básicos: 1 Microcomputadores e Memórias Apostila de Sistema Micro processado - 1 Em um microcomputador qualquer, existem três componentes básicos: - Microprocessador - Memória - Periféricos ou Dispositivos de Entrada/Saída

Leia mais

Sigla Nome Tecnologia. vez. Programable Read Only Memory (memória programável somente de leitura)

Sigla Nome Tecnologia. vez. Programable Read Only Memory (memória programável somente de leitura) 1. Introdução As memórias são as responsáveis pelo armazenamento de dados e instruções em forma de sinais digitais em computadores. Para que o processador possa executar suas tarefas, ele busca na memória

Leia mais

Aula 06. Memórias RAM

Aula 06. Memórias RAM Aula 06 Memórias RAM Memória RAM As memórias RAM são responsáveis por armazenar as informações que estão em uso no computador, fazendo com que o acesso aos dados seja mais rápido. 17/01/2013 2 Encapsulamento

Leia mais

Tipos e Formatos de módulos de memória

Tipos e Formatos de módulos de memória Tipos e Formatos de módulos de memória Embora seja brutalmente mais rápida que o HD e outros periféricos, a memória RAM continua sendo muito mais lenta que o processador. Para reduzir a diferença (ou pelo

Leia mais

Figura 1 - Memória 1. OBJETIVO. Conhecer os principais tipos de memórias entendendo suas funcionalidades e características.

Figura 1 - Memória 1. OBJETIVO. Conhecer os principais tipos de memórias entendendo suas funcionalidades e características. MEMÓRIA Memória Principal BIOS Cache BIOS ROOM Cache Externo HD DVD DRIVE DE DISQUETE DE 3 1/2 1/2 DISQUETE DE 3 DISQUETE DE 5 1/4 Figura 1 - Memória MP 1. OBJETIVO Conhecer os principais tipos de memórias

Leia mais

Memória RAM. Administração de Sistemas Informáticos I 2005 / 2006. Grupo 1:

Memória RAM. Administração de Sistemas Informáticos I 2005 / 2006. Grupo 1: Administração de Sistemas Informáticos I 2005 / 2006 Departamento de Engenharia Informática Grupo 1: Clarisse Matos 1010463 Raquel Castro 1020013 Rui Patrão 1020043 Luís Lima 1020562 Índice Introdução...3

Leia mais

ROM e RAM. Memórias 23/11/2015

ROM e RAM. Memórias 23/11/2015 ROM e RAM Memórias Prof. Fabrício Alessi Steinmacher. Para que o processador possa executar suas tarefas, ele busca na memória todas as informações necessárias ao processamento. Nos computadores as memórias

Leia mais

Hardware Avançado. Laércio Vasconcelos Rio Branco, mar/2007 www.laercio.com.br

Hardware Avançado. Laércio Vasconcelos Rio Branco, mar/2007 www.laercio.com.br Hardware Avançado Laércio Vasconcelos Rio Branco, mar/2007 www.laercio.com.br Avanços recentes em Processadores Chipsets Memórias Discos rígidos Microeletrônica Um processador moderno é formado por mais

Leia mais

Curso de Instalação e Gestão de Redes Informáticas

Curso de Instalação e Gestão de Redes Informáticas ESCOLA PROFISSIONAL VASCONCELLOS LEBRE Curso de Instalação e Gestão de Redes Informáticas MEMÓRIA DDR (DOUBLE DATA RATING) José Vitor Nogueira Santos FT2-0749 Mealhada, 2009 Introdução A memória DDR (Double

Leia mais

Capítulo 2. AMD K6, K6-2, K6-III Super 7 Cyrix MII / 6x86 / 6x86MX Super 7 ou Socket 7 AMD K5, Pentium, Pentium MMX Socket 7

Capítulo 2. AMD K6, K6-2, K6-III Super 7 Cyrix MII / 6x86 / 6x86MX Super 7 ou Socket 7 AMD K5, Pentium, Pentium MMX Socket 7 Processadores Capítulo 2 O processador e o seu soquete Existem vários processadores para PCs. A maioria deles são produzidos pela Intel e AMD. É preciso levar em conta que cada processador exige um tipo

Leia mais

Organização de Computadores Como a informação é processada?

Organização de Computadores Como a informação é processada? Curso de ADS/DTEE/IFBA Organização de Computadores Como a informação é processada? Prof. Antonio Carlos Referências Bibliográficas: 1. Ciência da Computação: Uma visão abrangente - J.Glenn Brokshear 2.

Leia mais

Memórias. O que são Memórias de Semicondutores? São componentes capazes de armazenar informações Binárias (0s e 1s)

Memórias. O que são Memórias de Semicondutores? São componentes capazes de armazenar informações Binárias (0s e 1s) Memórias O que são Memórias de Semicondutores? São componentes capazes de armazenar informações Binárias (0s e 1s) Essas informações são guardadas eletricamente em células individuais. Chamamos cada elemento

Leia mais

Curso de Instalação e Gestão de Redes Informáticas

Curso de Instalação e Gestão de Redes Informáticas ESCOLA PROFISSIONAL VASCONCELLOS LEBRE Curso de Instalação e Gestão de Redes Informáticas MEMÓRIA DDR2 José Vitor Nogueira Santos FT2-0749 Mealhada, 2009 Introdução Como o próprio nome indica, a memória

Leia mais

Tecnologias de Construção de Memórias e Memórias RAM, entrelaçada e Virtual

Tecnologias de Construção de Memórias e Memórias RAM, entrelaçada e Virtual Tecnologias de Construção de Memórias e Memórias RAM, entrelaçada e Virtual Arquiteturas para Alto Desmpenho Prof. pauloac@ita.br Sala 110 Prédio da Computação www.comp.ita.br/~pauloac Tempos de Acesso

Leia mais

Capítulo. Memórias. Leitura e escrita

Capítulo. Memórias. Leitura e escrita Capítulo 11 Memórias Leitura e escrita Podemos dividir as memórias em duas grandes categorias: ROM e RAM. Em todos os computadores encontramos ambos os tipos. Cada um desses dois tipos é por sua vez, dividido

Leia mais

Técnico em Informática - Instalação e Manutenção de Computadores PROCESSADORES

Técnico em Informática - Instalação e Manutenção de Computadores PROCESSADORES Técnico em Informática - Instalação e Manutenção de Computadores PROCESSADORES Processador... 2 Clock... 5 Multiplicador de clock / FSB... 6 Memória Cache... 6 Processador O processador é o cérebro do

Leia mais

Sistemas Computacionais

Sistemas Computacionais 2 Introdução Barramentos são, basicamente, um conjunto de sinais digitais com os quais o processador comunica-se com o seu exterior, ou seja, com a memória, chips da placa-mãe, periféricos, etc. Há vários

Leia mais

Memórias. Sumário. Introdução... 2. Formatos... 2 DDR... 5. Memórias DDR2... 8. Memórias DDR3... 12

Memórias. Sumário. Introdução... 2. Formatos... 2 DDR... 5. Memórias DDR2... 8. Memórias DDR3... 12 Memórias Sumário Introdução... 2 Formatos... 2 DDR... 5 Memórias DDR2... 8 Memórias DDR3... 12 Introdução A memória RAM é um componente essencial não apenas nos PCs, mas em qualquer tipo de computador.

Leia mais

Montagem e Manutenção. Luís Guilherme A. Pontes

Montagem e Manutenção. Luís Guilherme A. Pontes Montagem e Manutenção Luís Guilherme A. Pontes Introdução Qual é a importância da Montagem e Manutenção de Computadores? Sistema Binário Sistema Binário Existem duas maneiras de se trabalhar e armazenar

Leia mais

AULA: Introdução à informática Computador Digital

AULA: Introdução à informática Computador Digital Campus Muriaé Professor: Luciano Gonçalves Moreira Disciplina: Informática Aplicada AULA: Introdução à informática Computador Digital Componentes de um computador digital : Hardware Refere-se às peças

Leia mais

R S Q 0 0 1 0 1 0 1 0 0 1 1 0 Tabela 17 - Tabela verdade NOR

R S Q 0 0 1 0 1 0 1 0 0 1 1 0 Tabela 17 - Tabela verdade NOR 19 Aula 4 Flip-Flop Flip-flops são circuitos que possuem a característica de manter os bits de saída independente de energia, podem ser considerados os princípios das memórias. Um dos circuitos sequenciais

Leia mais

Introdução a Organização de Computadores Aula 4

Introdução a Organização de Computadores Aula 4 1 Subsistemas de Memória 4.1 Introdução A memória é o componente de um sistema de computação cuja função é armazenar as informações que são (ou serão) manipuladas por esse sistema, para que as informações

Leia mais

CENTRAL PRCESSING UNIT

CENTRAL PRCESSING UNIT Processador O processador, também chamado de CPU ( CENTRAL PRCESSING UNIT) é o componente de hardware responsável por processar dados e transformar em informação. Ele também transmite estas informações

Leia mais

Aula 06. Discos e Drives

Aula 06. Discos e Drives Aula 06 Discos e Drives Disquetes São discos magnéticos usados para armazenar dados dos computadores. Podem armazenar textos, imagens, programas, etc. São vendidos normalmente em caixas com 10 unidades.

Leia mais

Circuitos de Memória: Tipos e Funcionamento. Fabrício Noveletto

Circuitos de Memória: Tipos e Funcionamento. Fabrício Noveletto Circuitos de Memória: Tipos e Funcionamento Fabrício Noveletto Memória de semicondutores São dispositivos capazes de armazenar informações digitais. A menor unidade de informação que pode ser armazenada

Leia mais

HD e Memória Virtual. Qual as vantagens e desvantagens da Memória Virtual?

HD e Memória Virtual. Qual as vantagens e desvantagens da Memória Virtual? Principais pontos Como funciona o HD O Hard Disk ou Disco Rígido e também conhecido com HD armazena os dados em discos magnéticos que mantêm a gravação por vários anos. Os discos giram a uma grande velocidade

Leia mais

Anatomia de uma Placa Mãe

Anatomia de uma Placa Mãe Anatomia de uma Placa Mãe Autor: Rafael Afonso de Souza Anatomia de uma placa-mãe - Parte 1 É muito importante que saibamos identificar os componentes de uma placa-mãe. Na figura abaixo vamos destacar

Leia mais

Introdução a Informática. Prof.: Roberto Franciscatto

Introdução a Informática. Prof.: Roberto Franciscatto Introdução a Informática Prof.: Roberto Franciscatto 2.1 CONCEITO DE BIT O computador só pode identificar a informação através de sua elementar e restrita capacidade de distinguir entre dois estados: 0

Leia mais

Introdução. Em se tratando de computador, entendemos que memória são dispositivos que armazenam dados com os quais o processador trabalha.

Introdução. Em se tratando de computador, entendemos que memória são dispositivos que armazenam dados com os quais o processador trabalha. Memorias Introdução Em se tratando de computador, entendemos que memória são dispositivos que armazenam dados com os quais o processador trabalha. Necessariamente existe dois tipos de memórias: -Memória

Leia mais

Capítulo 5. Figura 5.2. Conector para o monitor.

Capítulo 5. Figura 5.2. Conector para o monitor. Capítulo 5 Placas de vídeo Visão geral das placas de vídeo Esta placa está presente em todos os PCs, exceto nos que possuem placas de CPU com os circuitos de vídeo embutidos. A maioria dos PCs produzidos

Leia mais

FACULDADE PITÁGORAS DISCIPLINA: ARQUITETURA DE COMPUTADORES

FACULDADE PITÁGORAS DISCIPLINA: ARQUITETURA DE COMPUTADORES FACULDADE PITÁGORAS DISCIPLINA: ARQUITETURA DE COMPUTADORES Prof. Ms. Carlos José Giudice dos Santos cpgcarlos@yahoo.com.br www.oficinadapesquisa.com.br ESQUEMA EXTERNO DE UM MICROCOMPUTADOR Agora que

Leia mais

Universidade Tuiuti do Paraná UTP Faculdade de Ciências Exatas - FACET

Universidade Tuiuti do Paraná UTP Faculdade de Ciências Exatas - FACET Universidade Tuiuti do Paraná UTP Faculdade de Ciências Exatas - FACET Hardware de Computadores Questionário II 1. A principal diferença entre dois processadores, um deles equipado com memória cache o

Leia mais

Fonte : http://www.infowester.com/memoria.php. Introdução

Fonte : http://www.infowester.com/memoria.php. Introdução Fonte : http://www.infowester.com/memoria.php Introdução No que se refere ao hardware dos computadores, entendemos como memória os dispositivos que armazenam os dados com os quais o processador trabalha.

Leia mais

Memória cache. Prof. Francisco Adelton

Memória cache. Prof. Francisco Adelton Memória cache Prof. Francisco Adelton Memória Cache Seu uso visa obter uma velocidade de acesso à memória próxima da velocidade das memórias mais rápidas e, ao mesmo tempo, disponibilizar no sistema uma

Leia mais

Introdução à estrutura e funcionamento de um Sistema Informático

Introdução à estrutura e funcionamento de um Sistema Informático Introdução à estrutura e funcionamento de um Sistema Informático Elementos que constituem o Computador O funcionamento do computador é possível devido aos vários elementos interligados que o constituem:

Leia mais

Placa-Mãe. Christian César de Azevedo

Placa-Mãe. Christian César de Azevedo Placa-Mãe Christian César de Azevedo Componentes Básicos Placa-Mãe 2 Componentes da Placa-Mãe 1. Soquete do Processador 2. Chipset 3. Soquetes de memória RAM 4. Conector de alimentação 5. Conector do drive

Leia mais

Técnicas de Manutenção de Computadores

Técnicas de Manutenção de Computadores Técnicas de Manutenção de Computadores Professor: Luiz Claudio Ferreira de Souza Processadores É indispensável em qualquer computador, tem a função de gerenciamento, controlando todas as informações de

Leia mais

Fundamentos de Hardware

Fundamentos de Hardware Fundamentos de Hardware Curso Técnico em Informática SUMÁRIO PROCESSADOR... 3 CLOCK... 4 PROCESSADORES COM 2 OU MAIS NÚCLEOS... 5 NÚCLEOS FÍSICOS E LÓGICOS... 6 PRINCIPAIS FABRICANTES E MODELOS... 6 PROCESSADORES

Leia mais

Processadores. Guilherme Pontes

Processadores. Guilherme Pontes Processadores Guilherme Pontes Já sabemos o básico! Como já sabemos, o processador exerce uma das mais importantes funções do computador. Vamos agora nos aprofundar em especificações mais técnicas sobre

Leia mais

Memórias Prof. Galvez Gonçalves

Memórias Prof. Galvez Gonçalves Arquitetura e Organização de Computadores 1 s Prof. Galvez Gonçalves Objetivo: Compreender os tipos de memória e como elas são acionadas nos sistemas computacionais modernos. INTRODUÇÃO Nas aulas anteriores

Leia mais

Introdução a Informática. Prof.: Roberto Franciscatto

Introdução a Informática. Prof.: Roberto Franciscatto Introdução a Informática Prof.: Roberto Franciscatto 3.1 EXECUÇÃO DAS INSTRUÇÕES A UCP tem duas seções: Unidade de Controle Unidade Lógica e Aritmética Um programa se caracteriza por: uma série de instruções

Leia mais

Curso Profissional de Electrónica, Automação e Computadores. Automação e Computadores

Curso Profissional de Electrónica, Automação e Computadores. Automação e Computadores Curso Profissional de Electrónica, Automação e Computadores Automação e Computadores Memórias Significado Em informática, memória são todos os dispositivos que permitem a um computador guardar dados, temporariamente

Leia mais

CIÊNCIA E TECNOLOGIA DO RIO INFORMÁTICA BÁSICA AULA 03. Docente: Éberton da Silva Marinho e-mail: ebertonsm@gmail.com 25/06/2014

CIÊNCIA E TECNOLOGIA DO RIO INFORMÁTICA BÁSICA AULA 03. Docente: Éberton da Silva Marinho e-mail: ebertonsm@gmail.com 25/06/2014 INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE INFORMÁTICA BÁSICA AULA 03 Docente: Éberton da Silva Marinho e-mail: ebertonsm@gmail.com 25/06/2014 Unidades de armazenamento

Leia mais

INTRODUÇÃO BARRAMENTO PCI EXPRESS.

INTRODUÇÃO BARRAMENTO PCI EXPRESS. INTRODUÇÃO BARRAMENTO EXPRESS. O processador se comunica com os outros periféricos do micro através de um caminho de dados chamado barramento. Desde o lançamento do primeiro PC em 1981 até os dias de hoje,

Leia mais

HIERARQUIA DE MEMÓRIAS

HIERARQUIA DE MEMÓRIAS MEMÓRIA SECUNDARIA HIERARQUIA DE MEMÓRIAS Memórias Memória Secundaria Memória Terciária Sigla NOME TECNOLOGIA ROM Read Only Memory (memória somente de leitura) Gravada na fábrica uma única vez PROM EPROM

Leia mais

for Information Interchange.

for Information Interchange. 6 Memória: 6.1 Representação de Memória: Toda a informação com a qual um sistema computacional trabalha está, em algum nível, armazenada em um sistema de memória, guardando os dados em caráter temporário

Leia mais

HARDWARE FUNDAMENTAL. Unidade de sistema CPU Memória Primária Bus ou Barramento

HARDWARE FUNDAMENTAL. Unidade de sistema CPU Memória Primária Bus ou Barramento HARDWARE FUNDAMENTAL Unidade de sistema CPU Memória Primária Bus ou Barramento Um computador é um sistema capaz de processar informação de acordo com as instruções contidas em programas, independentemente

Leia mais

Soquetes para o processador

Soquetes para o processador Soquetes para o processador Nos primeiros equipamentos 286, os soquetes eram bem simples. Para a remoção do processador, era necessária a utilização de uma chave de fenda. Nos processadores 386DX, isso

Leia mais

Visão geral das placas-mãe

Visão geral das placas-mãe IDENTIFICAÇÃO DOS PRICIPAIS COMPONENTES DA PLACA-MÃE Professor Marlon Marcon Visão geral das placas-mãe Conhecida como: Motherboard Mainboard Responsável pela interconexão de todas as peças que formam

Leia mais

PROCESSADOR. Montagem e Manutenção de Microcomputadores (MMM).

PROCESSADOR. Montagem e Manutenção de Microcomputadores (MMM). PROCESSADOR Montagem e Manutenção de Microcomputadores (MMM). INTRODUÇÃO O processador é o C.I. mais importante do computador. Ele é considerado o cérebro do computador, também conhecido como uma UCP -

Leia mais

Identificação das partes constituintes de um PC

Identificação das partes constituintes de um PC Identificação das partes constituintes de um PC Durante este exercício deverá identificar e localizar as partes constituintes de um Computador Pessoal (PC), nomeadamente: Placa Principal (Mother Board)

Leia mais

Introdução à Arquitetura de Computadores

Introdução à Arquitetura de Computadores Introdução à Arquitetura de Computadores Prof. Tiago Semprebom Instituto Federal de Educação, Ciência e Tecnologia Santa Catarina - Campus São José tisemp@sj.ifsc.edu.br 31 de julho de 2009 Prof. Tiago

Leia mais

SERVIÇO NACIONAL DE APRENDIZAGEM COMERCIAL

SERVIÇO NACIONAL DE APRENDIZAGEM COMERCIAL Entendendo o Computador Componentes do Computador COMPONENTES DO COMPUTADOR Tabela ASCII A sigla ASCII deriva de American Standard Code for Information Interchange, ou seja, Código no Padrão Americano

Leia mais

ARQUITETURA DE COMPUTADORES Prof. João Inácio

ARQUITETURA DE COMPUTADORES Prof. João Inácio ARQUITETURA DE COMPUTADORES Prof. João Inácio Memórias Memória: é o componente de um sistema de computação cuja função é armazenar informações que são, foram ou serão manipuladas pelo sistema. Em outras

Leia mais

Tudo o que você precisa saber sobre cartões de memória

Tudo o que você precisa saber sobre cartões de memória Tudo o que você precisa saber sobre cartões de memória Conheça os diferentes tipos de cartões de memória existentes e saiba o que levar em consideração antes de adquirir um modelo. SD, minisd, microsd,

Leia mais

SRAM Static RAM. E/L Escrita Leitura. FPM DRAM Fast Page Mode EDO DRAM Extended Data Output SDRAM Synchronous DDR SDRAM Double Data Rate RDRAM Rambus

SRAM Static RAM. E/L Escrita Leitura. FPM DRAM Fast Page Mode EDO DRAM Extended Data Output SDRAM Synchronous DDR SDRAM Double Data Rate RDRAM Rambus TIPOS DE MEMÓRIA RAM Random Access Memory E/L Escrita Leitura SRAM Static RAM DRAM Dynamic RAM FPM DRAM Fast Page Mode EDO DRAM Extended Data Output SDRAM Synchronous DDR SDRAM Double Data Rate RDRAM Rambus

Leia mais

TECNOLOGIAS DA INFORMAÇÃO E COMUNICAÇÃO

TECNOLOGIAS DA INFORMAÇÃO E COMUNICAÇÃO TECNOLOGIAS DA INFORMAÇÃO E COMUNICAÇÃO O que é a Informática? A palavra Informática tem origem na junção das palavras: INFORMAÇÃO + AUTOMÁTICA = INFORMÁTICA...e significa, portanto, o tratamento da informação

Leia mais

HARDWARE COMPONENTES BÁSICOS E FUNCIONAMENTO. Wagner de Oliveira

HARDWARE COMPONENTES BÁSICOS E FUNCIONAMENTO. Wagner de Oliveira HARDWARE COMPONENTES BÁSICOS E FUNCIONAMENTO Wagner de Oliveira SUMÁRIO Hardware Definição de Computador Computador Digital Componentes Básicos CPU Processador Memória Barramento Unidades de Entrada e

Leia mais

CEFET-RS Curso de Eletrônica

CEFET-RS Curso de Eletrônica CEFET-RS Curso de Eletrônica 3.1 - Memória DRAM Profs. Roberta Nobre & Sandro Silva robertacnobre@gmail.com e sandro@cefetrs.tche.br Estrutura básica da DRAM LSB CAS Decodificador de Colunas Endereço Real

Leia mais

A placa-mãe é o componente mais importante do micro, pois é ela a responsável pela comunicação entre todos os componentes.

A placa-mãe é o componente mais importante do micro, pois é ela a responsável pela comunicação entre todos os componentes. Placa Mãe A placa-mãe é o componente mais importante do micro, pois é ela a responsável pela comunicação entre todos os componentes. A qualidade da placa-mãe é de longe mais importante que o desempenho

Leia mais

ARQUITETURA DE COMPUTADORES

ARQUITETURA DE COMPUTADORES 1 ARQUITETURA DE COMPUTADORES U C P Prof. Leandro Coelho Plano de Aula 2 Aula Passada Definição Evolução dos Computadores Histórico Modelo de Von-Neumann Básico CPU Mémoria E/S Barramentos Plano de Aula

Leia mais

Instalar o computador

Instalar o computador ThinkPad R40 Series Lista de verificação de componentes Part Number: 9P54 Manual de Instalação A IBM agradece a sua preferência por um computador IBM ThinkPad R Series. Confronte os itens indicados nesta

Leia mais

Hardware de Computadores

Hardware de Computadores Placa Mãe Hardware de Computadores Introdução Placa-mãe, também denominada mainboard ou motherboard, é uma placa de circuito impresso eletrônico. É considerado o elemento mais importante de um computador,

Leia mais

REPRESENTAÇÃO DE DADOS EM SISTEMAS DE COMPUTAÇÃO AULA 03 Arquitetura de Computadores Gil Eduardo de Andrade

REPRESENTAÇÃO DE DADOS EM SISTEMAS DE COMPUTAÇÃO AULA 03 Arquitetura de Computadores Gil Eduardo de Andrade REPRESENTAÇÃO DE DADOS EM SISTEMAS DE COMPUTAÇÃO AULA 03 Arquitetura de Computadores Gil Eduardo de Andrade O conteúdo deste documento é baseado no livro Princípios Básicos de Arquitetura e Organização

Leia mais

Arquitetura de processadores: RISC e CISC

Arquitetura de processadores: RISC e CISC Arquitetura de processadores: RISC e CISC A arquitetura de processador descreve o processador que foi usado em um computador. Grande parte dos computadores vêm com identificação e literatura descrevendo

Leia mais

1. CAPÍTULO COMPUTADORES

1. CAPÍTULO COMPUTADORES 1. CAPÍTULO COMPUTADORES 1.1. Computadores Denomina-se computador uma máquina capaz de executar variados tipos de tratamento automático de informações ou processamento de dados. Os primeiros eram capazes

Leia mais

Introdução. Hardware (Parte II) Universidade Federal de Campina Grande Departamento de Sistemas e Computação. joseana@computacao.ufcg.edu.

Introdução. Hardware (Parte II) Universidade Federal de Campina Grande Departamento de Sistemas e Computação. joseana@computacao.ufcg.edu. Universidade Federal de Campina Grande Departamento de Sistemas e Computação Introdução à Computação Hardware (Parte II) Prof. a Joseana Macêdo Fechine Régis de Araújo joseana@computacao.ufcg.edu.br Carga

Leia mais

COLÉGIO PIO XII ELETRÔNICA V LUÍS FERNANDO TIPOS DE MEMÓRIAS. Wellington Braz de Freitas - N 38 1 Ano Eletrônica

COLÉGIO PIO XII ELETRÔNICA V LUÍS FERNANDO TIPOS DE MEMÓRIAS. Wellington Braz de Freitas - N 38 1 Ano Eletrônica COLÉGIO PIO XII ELETRÔNICA V LUÍS FERNANDO TIPOS DE MEMÓRIAS Wellington Braz de Freitas - N 38 1 Ano Eletrônica Junho 2007 História da Primeira Memória O UNIVAC dos anos 50 foi uma super máquina com alta

Leia mais

MEMÓRIA. 0 e 1 únicos elementos do sistema de numeração de base 2

MEMÓRIA. 0 e 1 únicos elementos do sistema de numeração de base 2 MEMÓRIA CONCEITO Bit- 0 1 Essência de um sistema chamado BIESTÁVEL Ex: Lâmpada 0 apagada 1 acesa 0 e 1 únicos elementos do sistema de numeração de base 2 A que se destina a memória: Armazenamento das instruções

Leia mais

ARQUITETURA DE COMPUTADORES

ARQUITETURA DE COMPUTADORES ARQUITETURA DE COMPUTADORES Aula 04: Subsistemas de Memória SUBSISTEMAS DE MEMÓRIA Tipos de memória: de semicondutores (ROM, PROM, EPROM, EEPROM, Flash, RAM); magnéticas (discos e fitas) e... óticas( CD

Leia mais

Placa Mãe. Componentes da Placa Mãe

Placa Mãe. Componentes da Placa Mãe - 1 - Placa Mãe O elemento central de um microcomputador é uma placa onde se encontra o microprocessador e vários componentes que fazem a comunicação entre o microprocessador com meios periféricos externos

Leia mais

CAPÍTULO 4 Interface USB

CAPÍTULO 4 Interface USB Interfaces e Periféricos 29 CAPÍTULO 4 Interface USB Introdução Todo computador comprado atualmente possui uma ou mais portas (conectores) USB. Estas portas USB permitem que se conecte desde mouses até

Leia mais

Introdução à Engenharia de Computação

Introdução à Engenharia de Computação Introdução à Engenharia de Computação Tópico: Organização Básica de um Computador Digital Introdução à Engenharia de Computação 2 Componentes de um Computador Computador Eletrônico Digital É um sistema

Leia mais

2.1 Montando o cabo serial... 4 2.2 Conectando o receptor ao PC... 5 2.3 Instalando o programa (DRU)... 5

2.1 Montando o cabo serial... 4 2.2 Conectando o receptor ao PC... 5 2.3 Instalando o programa (DRU)... 5 1 SUMÁRIO 1. Introdução... 3 2. Instalação... 4 2.1 Montando o cabo serial... 4 2.2 Conectando o receptor ao PC... 5 2.3 Instalando o programa (DRU)... 5 3. Atualizando o receptor... 8 3.1 Qual o software

Leia mais

Memória é um dispositivo capaz de armazenar informação. Logo, podemos dividir dos dispositivos que podem armazenar dados em Quatro tipos:

Memória é um dispositivo capaz de armazenar informação. Logo, podemos dividir dos dispositivos que podem armazenar dados em Quatro tipos: Memória Memória é um dispositivo capaz de armazenar informação Logo, podemos dividir dos dispositivos que podem armazenar dados em Quatro tipos: Memória Principal ROM RAM Memória Secundária Disco rígidos,

Leia mais

Introdução. Hardware (Parte II) Informações Adicionais. Universidade Federal de Campina Grande Departamento de Sistemas e Computação

Introdução. Hardware (Parte II) Informações Adicionais. Universidade Federal de Campina Grande Departamento de Sistemas e Computação Universidade Federal de Campina Grande Departamento de Sistemas e Computação Introdução à Computação Hardware (Parte II) Informações Adicionais Prof. a Joseana Macêdo Fechine Régis de Araújo joseana@computacao.ufcg.edu.br

Leia mais

Prof. Mizael Cortez everson.cortez@ifrn.edu.br. Dispositivos de processamento Armazenamento Outros componentes

Prof. Mizael Cortez everson.cortez@ifrn.edu.br. Dispositivos de processamento Armazenamento Outros componentes Prof. Mizael Cortez everson.cortez@ifrn.edu.br Dispositivos de processamento Armazenamento Outros componentes Dispositivos de processamento Os dispositivos de processamento são responsáveis por interpretar

Leia mais

PROCESSADORES. Introdução 25/04/2012. Professor Marlon Marcon

PROCESSADORES. Introdução 25/04/2012. Professor Marlon Marcon PROCESSADORES Professor Marlon Marcon Introdução Também conhecido como microprocessador, CPU ou UCP, trabalha como o cérebro do computador Responsável por processar as informações utilizando outros componentes

Leia mais

O processador é um dos elementos componentes do computador moderno, sendo responsável pelo gerenciamento de todo o computador.

O processador é um dos elementos componentes do computador moderno, sendo responsável pelo gerenciamento de todo o computador. Resumo 01 O que é um processador? O processador é um dos elementos componentes do computador moderno, sendo responsável pelo gerenciamento de todo o computador. Os processadores atualmente são encapsulados

Leia mais

A porta paralela. 1 - Introdução. 2- Modelos de porta paralela

A porta paralela. 1 - Introdução. 2- Modelos de porta paralela A porta paralela 1 - Introdução A porta paralela é uma interface de comunicação desenvolvida pela IBM para funcionar nos primeiros computadores PC lançado em 1983, ela também é chamada de porta para impressora.

Leia mais

Top Guia In.Fra: Perguntas para fazer ao seu fornecedor de CFTV

Top Guia In.Fra: Perguntas para fazer ao seu fornecedor de CFTV Top Guia In.Fra: Perguntas para fazer ao seu fornecedor de CFTV 1ª Edição (v1.4) 1 Um projeto de segurança bem feito Até pouco tempo atrás o mercado de CFTV era dividido entre fabricantes de alto custo

Leia mais

Professor: Venicio Paulo Mourão Saldanha E-mail: veniciopaulo@gmail.com Site: www.veniciopaulo.com

Professor: Venicio Paulo Mourão Saldanha E-mail: veniciopaulo@gmail.com Site: www.veniciopaulo.com Professor: Venicio Paulo Mourão Saldanha E-mail: veniciopaulo@gmail.com Site: www.veniciopaulo.com Formação: Graduando em Analises e Desenvolvimento de Sistemas (8º Período) Pregoeiro / Bolsa de Valores

Leia mais

AULA 1. Informática Básica. Gustavo Leitão. gustavo.leitao@ifrn.edu.br. Disciplina: Professor: Email:

AULA 1. Informática Básica. Gustavo Leitão. gustavo.leitao@ifrn.edu.br. Disciplina: Professor: Email: AULA 1 Disciplina: Informática Básica Professor: Gustavo Leitão Email: gustavo.leitao@ifrn.edu.br Estudo de caso Empresa do ramo de seguros Presidência RH Financeiro Vendas e Marketing TI CRM Riscos Introdução

Leia mais

Placas-mãe, uma breve introdução

Placas-mãe, uma breve introdução Placas-mãe, uma breve introdução Artigo de Carlos E. Morimoto Publicado em 27/08/2007. A placa-mãe é o componente mais importante do micro, pois é ela a responsável pela comunicação entre todos os componentes.

Leia mais

DRAM. DRAM (Dynamic RAM) É a tecnologia usada na fabricação das memória de 30, 72 e 168 pinos. Divide-se em:

DRAM. DRAM (Dynamic RAM) É a tecnologia usada na fabricação das memória de 30, 72 e 168 pinos. Divide-se em: DRAM DRAM (Dynamic RAM) É a tecnologia usada na fabricação das memória de 30, 72 e 168 pinos. Divide-se em: FPM RAM (Fast Page Mode) EDO RAM (Extended Data Output RAM) BEDO RAM (Burst Extended Data Output

Leia mais

MODULO II - HARDWARE

MODULO II - HARDWARE MODULO II - HARDWARE AULA 01 O Bit e o Byte Definições: Bit é a menor unidade de informação que circula dentro do sistema computacional. Byte é a representação de oito bits. Aplicações: Byte 1 0 1 0 0

Leia mais

Sua Oficina Virtual Apostila totalmente Gratuita Edição 2002

Sua Oficina Virtual Apostila totalmente Gratuita Edição 2002 Sua Oficina Virtual Apostila totalmente Gratuita Edição 2002 Expandindo a memória Como expandir a memória, em PCs baseados no 386, 486, 586, Pentium e similares, bem como Pentium Pro, Pentium MMX, K6 e

Leia mais

Arquitetura de Computadores Circuitos Combinacionais, Circuitos Sequênciais e Organização de Memória

Arquitetura de Computadores Circuitos Combinacionais, Circuitos Sequênciais e Organização de Memória Introdução Arquitetura de Computadores Circuitos Combinacionais, Circuitos Sequênciais e O Nível de lógica digital é o nível mais baixo da Arquitetura. Responsável pela interpretação de instruções do nível

Leia mais

Simulado Informática Concurso Correios - IDEAL INFO

Simulado Informática Concurso Correios - IDEAL INFO Simulado Informática Concurso Correios - IDEAL INFO Esta prova de informática é composta por 20 (vinte) questões de múltipla escolha seguindo o molde adotado pela UnB/CESPE. O tempo para a realização deste

Leia mais

Motherboard Significado

Motherboard Significado Motherboard Significado Motherboard, também m designada por mainboard ou Placa-mãe, é uma placa de circuito impresso, que serve como base para a instalação dos componentes do computador, tais como processador,

Leia mais

Sistema de Memórias de Computadores

Sistema de Memórias de Computadores Sistema de Memórias de Computadores Uma memória é um dispositivo que permite um computador armazenar dados temporariamente ou permanentemente. Sabemos que todos os computadores possuem memória. Mas quando

Leia mais

Introdução à Informática. Alexandre Meslin

Introdução à Informática. Alexandre Meslin Introdução à Informática Alexandre Meslin (meslin@nce.ufrj.br) Módulo 4 Objetivos Aula 1 Componentes principais em um computador pessoal Fluxo de informações em um computador idealizado Componentes do

Leia mais

7 - Memória Principal

7 - Memória Principal 7 - Memória Principal A memória é a parte do computador onde os programas e os dados são armazenados. Sem uma memória na qual os processadores possam ler ou escrever informações, o conceito de computador

Leia mais

Curso Técnico de Nível Médio

Curso Técnico de Nível Médio Curso Técnico de Nível Médio Disciplina: Informática Básica 2. Hardware: Componentes Básicos e Funcionamento Prof. Ronaldo Componentes de um Sistema de Computador HARDWARE: unidade

Leia mais

Conceitos e Evolução Capítulos 1 e 2

Conceitos e Evolução Capítulos 1 e 2 Aula 2 ARQUITETURA DE COMPUTADORES Conceitos e Evolução Capítulos 1 e 2 Prof. Osvaldo Mesquita E-mail: oswaldo.mesquita@gmail.com 1/48 CONTEÚDO DA AULA Conceitos Importantes O que é arquitetura de computadores?

Leia mais

Hardware Fundamental

Hardware Fundamental Hardware Fundamental Arquitectura de Computadores 10º Ano 2006/2007 Unidade de Sistema Um computador é um sistema capaz de processar informação de acordo com as instruções contidas em programas. Na década

Leia mais

Hamtronix CONTROLE REMOTO DTMF. CRD200 - Manual de Instalação e Operação. Software V 2.0 Hardware Revisão B

Hamtronix CONTROLE REMOTO DTMF. CRD200 - Manual de Instalação e Operação. Software V 2.0 Hardware Revisão B Hamtronix CRD200 - Manual de Instalação e Operação Software V 2.0 Hardware Revisão B INTRODUÇÃO Índice...01 Suporte On-line...01 Termo de Garantia...01 Em Caso de Problemas (RESET)...01 Descrição do Produto...02

Leia mais